
CSE507
Emina Torlak
emina@cs.washington.edu

Computer-Aided Reasoning for Software

Solver-Aided Programming II

Topics

Last lecture
• Getting started with solver-aided programming.

Today
• Going pro with solver-aided programming.

Announcements
• HW1 is out.

to
pi

cs

Solver-aided programming in two parts:
(1) getting started and (2) going pro

ROSETTEA programming model that
integrates solvers into the
language, providing constructs
for program verification,
synthesis, and more.

How to use a solver-aided
language: the workflow,
constructs, and gotchas.

How to build your own
solver-aided language
How to build your own
solver-aided tool via direct
symbolic evaluation or
language embedding.

How to build your own solver-aided tool or language

The classic (hard) way to build a tool
What is hard about building a solver-aided tool?

An easier way: tools as languages
How to build tools by stacking layers of languages.

Behind the scenes: symbolic virtual machine
How Rosette works so you don’t have to.

A last look: a few recent applications
Cool tools built with Rosette!

SDSL

SVM

SMT

The classic (hard) way to build a tool

How to build your own solver-aided tool or language

The classic (hard) way to build a tool
What is hard about building a solver-aided tool?

An easier way: tools as languages
How to build tools by stacking layers of languages.

Behind the scenes: symbolic virtual machine
How Rosette works so you don’t have to.

A last look: a few recent applications
Cool tools built with Rosette!

SDSL

SVM

SMT

The classic (hard) way to build a tool

The classic (hard) way to build a tool

∃x . ¬safe(x, P(x))

x = 42 ⋀ safe(x, P(x))

∃v . safe(42, Pv(42))

∃e.∀x. safe(x, Pe(x))

SMT solversolver-aided tool

assert safe(x, P(x))

verify
debug
solve
synthesize

P(x) {
…
…

}

Recall the solver-aided programming tool
chain: the tool reduces a query about
program behavior to an SMT problem.

SMT solver

The classic (hard) way to build a tool

solver-aided tool

P(x)

symbolic
compiler

assert safe(x, P(x))

verify
debug
solve
synthesize

P(x) {
…
…

}

Recall the solver-aided programming tool
chain: the tool reduces a query about
program behavior to an SMT problem.

What all queries have in common: they
need to translate programs to constraints!

SMT solver

The classic (hard) way to build a tool

P(x)

expertise in PL, FM, SE

symbolic
compiler

assert safe(x, P(x))

verify
debug
solve
synthesize

P(x) {
…
…

}

SDSL

programming

Wanted: an easier way to build tools

an interpreter
for the source

language

assert safe(x, P(x))

verify
debug
solve
synthesize

P(x) {
…
…

}

SMTSVM

ROSETTE

SMT solversymbolic virtual
machine

programming

Wanted: an easier way to build tools

assert safe(x, P(x))

verify
debug
solve
synthesize

P(x) {
…
…

}

SDSLan interpreter
for the source

language

SMTSVM

ROSETTE

SMT solversymbolic virtual
machine

Wanted: an easier way to build tools

[Torlak & Bodik, PLDI’14]

Technical challenge:
how to efficiently
translate a program
and its interpreter?assert safe(x, P(x))

verify
debug
solve
synthesize

P(x) {
…
…

}

SDSLan interpreter
for the source

language

How to build your own solver-aided tool or language

The classic (hard) way to build a tool
What is hard about building a solver-aided tool?

An easier way: tools as languages
How to build tools by stacking layers of languages.

Behind the scenes: symbolic virtual machine
How Rosette works so you don’t have to.

A last look: a few recent applications
Cool tools built with Rosette!

SVM

SMT

The classic (hard) way to build a tool

SDSL

domain-specific language
(DSL)

Layers of classic languages: DSLs and hosts

host language

A formal language that is
specialized to a particular
application domain and often
limited in capability.

A high-level language for
implementing DSLs, usually
with meta-programming
features.

domain-specific language
(DSL)

Layers of classic languages: DSLs and hosts

host language

library
(shallow)
embedding

interpreter
(deep)
embedding

A formal language that is
specialized to a particular
application domain and often
limited in capability.

A high-level language for
implementing DSLs, usually
with meta-programming
features.

domain-specific language
(DSL)

Layers of classic languages: many DSLs and hosts

host language

library
(shallow)
embedding

interpreter
(deep)
embedding

artificial intelligence
Church, BLOG

databases
SQL, Datalog

hardware design
Bluespec, Chisel, Verilog, VHDL

math and statistics
Eigen, Matlab, R

layout and visualization
LaTex, dot, dygraphs, D3

Racket, Scala, JavaScript, …

C = A * Bdomain-specific language
(DSL)

Layers of classic languages: why DSLs?

host language

library
(shallow)
embedding

interpreter
(deep)
embedding C / Java

Eigen / Matlab

for (i = 0; i < n; i++)
 for (j = 0; j < m; j++)
 for (k = 0; k < p; k++)
 C[i][k] += A[i][j] * B[j][k]

C = A * Bdomain-specific language
(DSL)

Layers of classic languages: why DSLs?

host language

library
(shallow)
embedding

interpreter
(deep)
embedding C / Java

Eigen / Matlab

for (i = 0; i < n; i++)
 for (j = 0; j < m; j++)
 for (k = 0; k < p; k++)
 C[i][k] += A[i][j] * B[j][k]

Easier for people to read,
write, and get right.

C = A * Bdomain-specific language
(DSL)

Layers of classic languages: why DSLs?

host language

library
(shallow)
embedding

interpreter
(deep)
embedding C / Java

Eigen / Matlab

[associativity]C = A * B

for (i = 0; i < n; i++)
 for (j = 0; j < m; j++)
 for (k = 0; k < p; k++)
 C[i][k] += A[i][j] * B[j][k]

Easier for people to read,
write, and get right.

Easier for tools to analyze.

solver-aided domain-
specific language (SDSL)

Layers of solver-aided languages

solver-aided host language

library
(shallow)
embedding

interpreter
(deep)
embedding

solver-aided domain-
specific language (SDSL)

Layers of solver-aided languages: tools as SDSLs

library
(shallow)
embedding

interpreter
(deep)
embedding

education and games
Enlearn, RuleSy (VMCAI’18),
Nonograms (FDG’17), UCB feedback
generator (ITiCSE'17)

synthesis-aided compilation
LinkiTools, Chlorophyll (PLDI’14),
GreenThumb (ASPLOS’16)

type system soundness
Bonsai (POPL’18)

computer architecture
MemSynth (PLDI’17)

databases
Cosette (CIDR’17)

radiation therapy control
Neutrons (CAV’16)

… and more

ROSETTE

solver-aided domain-
specific language (SDSL)

Layers of solver-aided languages: tools as SDSLs

library
(shallow)
embedding

interpreter
(deep)
embedding

education and games
Enlearn, RuleSy (VMCAI’18),
Nonograms (FDG’17), UCB feedback
generator (ITiCSE'17)

synthesis-aided compilation
LinkiTools, Chlorophyll (PLDI’14),
GreenThumb (ASPLOS’16)

type system soundness
Bonsai (POPL’18)

computer architecture
MemSynth (PLDI’17)

databases
Cosette (CIDR’17)

radiation therapy control
Neutrons (CAV’16)

… and more

ROSETTE

education and games
Enlearn, RuleSy (VMCAI’18),
Nonograms (FDG’17), UCB feedback
generator (ITiCSE'17)

synthesis-aided compilation
LinkiTools, Chlorophyll (PLDI’14),
GreenThumb (ASPLOS’16)

type system soundness
Bonsai (POPL’18)

computer architecture
MemSynth (PLDI’17)

databases
Cosette (CIDR’17)

radiation therapy control
Neutrons (CAV’16)

… and more

A tiny example SDSL

BV: A tiny assembly-like
language for writing fast, low-
level library functions.

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

A tiny example SDSL

BV: A tiny assembly-like
language for writing fast, low-
level library functions.

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

We want to test, verify,
debug, and synthesize
programs in the BV SDSL.

A tiny example SDSL

BV: A tiny assembly-like
language for writing fast, low-
level library functions.

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

We want to test, verify,
debug, and synthesize
programs in the BV SDSL.

1. interpreter [10 LOC]

2. verifier [free]

3. debugger [free]

4. synthesizer [free]

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> bvmax(-2, -1)

A tiny example SDSL ROSETTE

(define bvmax
 `((2 bvsge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> bvmax(-2, -1)

A tiny example SDSL

parse

ROSETTE

(define bvmax
 `((2 bvsge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

(define bvmax
 `((2 bvsge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> bvmax(-2, -1)

A tiny example SDSL

parse

ROSETTE

(out opcode in ...)

(define bvmax
 `((2 bvsge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

A tiny example SDSL ROSETTE

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> bvmax(-2, -1)
-1

(define (interpret prog inputs)
 (make-registers prog inputs)
 (for ([stmt prog])
 (match stmt
 [(list out opcode in ...)
 (define op (eval opcode))
 (define args (map load in))
 (store out (apply op args))]))
 (load (last)))

interpret

`(-2 -1)

(define bvmax
 `((2 bvsge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

A tiny example SDSL ROSETTE

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> bvmax(-2, -1)
-1

(define (interpret prog inputs)
 (make-registers prog inputs)
 (for ([stmt prog])
 (match stmt
 [(list out opcode in ...)
 (define op (eval opcode))
 (define args (map load in))
 (store out (apply op args))]))
 (load (last)))

interpret

0 -2
1 -1
2 0
3 0
4 -2
5 0
6 -1

(define bvmax
 `((2 bvsge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

A tiny example SDSL ROSETTE

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> bvmax(-2, -1)
-1

(define (interpret prog inputs)
 (make-registers prog inputs)
 (for ([stmt prog])
 (match stmt
 [(list out opcode in ...)
 (define op (eval opcode))
 (define args (map load in))
 (store out (apply op args))]))
 (load (last)))

interpret

0 -2
1 -1
2 0
3 0
4 -2
5 0
6 -1

(2 bvsge 0 1)

(define bvmax
 `((2 bvsge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

A tiny example SDSL ROSETTE

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> bvmax(-2, -1)
-1

(define (interpret prog inputs)
 (make-registers prog inputs)
 (for ([stmt prog])
 (match stmt
 [(list out opcode in ...)
 (define op (eval opcode))
 (define args (map load in))
 (store out (apply op args))]))
 (load (last)))

interpret

0 -2
1 -1
2 0
3 0
4 -2
5 0
6 -1

(2 bvsge 0 1)

(define bvmax
 `((2 bvsge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

A tiny example SDSL ROSETTE

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> bvmax(-2, -1)
-1

(define (interpret prog inputs)
 (make-registers prog inputs)
 (for ([stmt prog])
 (match stmt
 [(list out opcode in ...)
 (define op (eval opcode))
 (define args (map load in))
 (store out (apply op args))]))
 (load (last)))

interpret

0 -2
1 -1
2 0
3 0
4 -2
5 0
6 -1

(2 bvsge 0 1)

(define bvmax
 `((2 bvsge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

A tiny example SDSL ROSETTE

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> bvmax(-2, -1)
-1

(define (interpret prog inputs)
 (make-registers prog inputs)
 (for ([stmt prog])
 (match stmt
 [(list out opcode in ...)
 (define op (eval opcode))
 (define args (map load in))
 (store out (apply op args))]))
 (load (last)))

interpret

0 -2
1 -1
2 0
3 0
4 -2
5 0
6 -1

(2 bvsge 0 1)

(define bvmax
 `((2 bvsge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

A tiny example SDSL ROSETTE

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> bvmax(-2, -1)
-1

(define (interpret prog inputs)
 (make-registers prog inputs)
 (for ([stmt prog])
 (match stmt
 [(list out opcode in ...)
 (define op (eval opcode))
 (define args (map load in))
 (store out (apply op args))]))
 (load (last)))

interpret

0 -2
1 -1
2 0
3 0
4 -2
5 0
6 -1

(define bvmax
 `((2 bvsge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

(2 bvsge 0 1)

(define bvmax
 `((2 bvsge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

A tiny example SDSL ROSETTE

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> bvmax(-2, -1)
-1

(define (interpret prog inputs)
 (make-registers prog inputs)
 (for ([stmt prog])
 (match stmt
 [(list out opcode in ...)
 (define op (eval opcode))
 (define args (map load in))
 (store out (apply op args))]))
 (load (last)))

interpret

0 -2
1 -1
2 0
3 0
4 -2
5 0
6 -1

(define bvmax
 `((2 bvsge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

(2 bvsge 0 1)

A tiny example SDSL ROSETTE

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> bvmax(-2, -1)
-1

(define bvmax
 `((2 bvsge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

‣ pattern matching
‣ dynamic evaluation
‣ first-class & higher-

order procedures
‣ side effects

(define (interpret prog inputs)
 (make-registers prog inputs)
 (for ([stmt prog])
 (match stmt
 [(list out opcode in ...)
 (define op (eval opcode))
 (define args (map load in))
 (store out (apply op args))]))
 (load (last)))

A tiny example SDSL ROSETTE

(define-symbolic x y int32?)
(define in (list x y))
(verify
 (assert (equal? (interpret bvmax in)
 (interpret max in))))

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> verify(bvmax, max) query

A tiny example SDSL ROSETTE

(define-symbolic x y int32?)
(define in (list x y))
(verify
 (assert (equal? (interpret bvmax in)
 (interpret max in))))

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> verify(bvmax, max) query

Creates two fresh symbolic
values of type 32-bit
integer and binds them to
the variables x and y.

A tiny example SDSL ROSETTE

(define-symbolic x y int32?)
(define in (list x y))
(verify
 (assert (equal? (interpret bvmax in)
 (interpret max in))))

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> verify(bvmax, max) query

Creates two fresh symbolic
values of type 32-bit
integer and binds them to
the variables x and y.

Symbolic values can be
used just like concrete
values of the same type.

A tiny example SDSL ROSETTE

(define-symbolic x y int32?)
(define in (list x y))
(verify
 (assert (equal? (interpret bvmax in)
 (interpret max in))))

query

Symbolic values can be
used just like concrete
values of the same type.

Creates two fresh symbolic
values of type 32-bit
integer and binds them to
the variables x and y.

(verify expr) searches
for a concrete
interpretation of
symbolic values that
causes expr to fail.

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> verify(bvmax, max)

A tiny example SDSL ROSETTE

(define-symbolic x y int32?)
(define in (list x y))
(verify
 (assert (equal? (interpret bvmax in)
 (interpret max in))))

query

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> verify(bvmax, max)
[0, -2]

> bvmax(0, -2)
-1

A tiny example SDSL ROSETTE

(define-symbolic x y int32?)
(define in (list x y))
(verify
 (assert (equal? (interpret bvmax in)
 (interpret max in))))

query

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> verify(bvmax, max)
[0, -2]

> bvmax(0, -2)
-1

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> debug(bvmax, max,[0, -2])

A tiny example SDSL ROSETTE

(define in (list (int32 0) (int32 -2)))
(debug [register?]
 (assert (equal? (interpret bvmax in)
 (interpret max in))))

query

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> debug(bvmax, max,[0, -2])

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

A tiny example SDSL ROSETTE

(define in (list (int32 0) (int32 -2)))
(debug [register?]
 (assert (equal? (interpret bvmax in)
 (interpret max in))))

query

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(??, ??)
 r5 = bvand(r3, ??)
 r6 = bvxor(??, ??)
 return r6

> synthesize(bvmax, max)

A tiny example SDSL ROSETTE

(define-symbolic x y int32?)
(define in (list x y))
(synthesize
 #:forall in
 #:guarantee
 (assert (equal? (interpret bvmax in)
 (interpret max in)))))

query

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(??, ??)
 r5 = bvand(r3, ??)
 r6 = bvxor(??, ??)
 return r6

> synthesize(bvmax, max)

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r1)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

A tiny example SDSL ROSETTE

(define-symbolic x y int32?)
(define in (list x y))
(synthesize
 #:forall in
 #:guarantee
 (assert (equal? (interpret bvmax in)
 (interpret max in)))))

query

How to build your own solver-aided tool or language

The classic (hard) way to build a tool
What is hard about building a solver-aided tool?

An easier way: tools as languages
How to build tools by stacking layers of languages.

Behind the scenes: symbolic virtual machine
How Rosette works so you don’t have to.

A last look: a few recent applications
Cool tools built with Rosette!

SVM

SMT

The classic (hard) way to build a tool

SDSL

SMT solver
Z3

ROSETTE

How it all works: a big picture view

SDSL

program

query

Symbolic
Virtual

Machine

SMT solver
Z3

ROSETTE

How it all works: a big picture view

SDSL

program

query result

Symbolic
Virtual

Machine

SMT solver
Z3

ROSETTE

How it all works: a big picture view

SDSL

program

query result

‣ pattern matching
‣ dynamic evaluation
‣ first-class procedures
‣ higher-order procedures
‣ side effects
‣ macros

theories of bitvectors,
integers, reals, and
uninterpreted functions

Symbolic
Virtual

Machine

(3, 1, -2) (1, 3)

Translation to constraints by example

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

reverse and filter, keeping
only positive numbers

vs ps

(3, 1, -2) (1, 3)

Translation to constraints by example

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

vs ps

Translation to constraints by example

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

vs psconstraints

 (a, b)

Translation to constraints by example

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

vs psconstraints

a>0 ∧ b>0 (a, b)

Translation to constraints by example

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

vs psconstraints

Design space of precise symbolic encodings

symbolic execution

bounded model checkingsolve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

{ }a > 0
b ≤ 0
false

Design space of precise symbolic encodings

a > 0

b ≤ 0

ps ↦ (a)

ps ↦ (a)

vs ↦ (a, b)
ps ↦ ()

symbolic execution

bounded model checkingsolve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

{ }a > 0
b ≤ 0
false

∨ ∨ ∨

Design space of precise symbolic encodings

a > 0

b ≤ 0

ps ↦ (a)

ps ↦ (a)

vs ↦ (a, b)
ps ↦ ()

b > 0b > 0

ps ↦ (b) ps ↦ (b, a)

{ }a ≤ 0
b > 0
false

{ }a > 0
b > 0
true

a ≤ 0

b ≤ 0

ps ↦ ()

ps ↦ ()

{ }a ≤ 0
b ≤ 0
false

symbolic execution

bounded model checkingsolve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

vs ↦ (a, b)
ps ↦ ()

ps ↦ (a)

ps ↦ ps0

ps ↦ ()

{ }a > 0
b ≤ 0
false

∨ ∨ ∨

Design space of precise symbolic encodings

a > 0a ≤ 0

ps0 = ite(a > 0, (a), ())
ps1 = insert(b, ps0)
ps2 = ite(b > 0, ps0, ps1)
assert len(ps2) = 2

a > 0

b ≤ 0

ps ↦ (a)

ps ↦ (a)

vs ↦ (a, b)
ps ↦ ()

b > 0b > 0

ps ↦ (b) ps ↦ (b, a)

{ }a ≤ 0
b > 0
false

{ }a > 0
b > 0
true

a ≤ 0

b ≤ 0

ps ↦ ()

ps ↦ ()

{ }a ≤ 0
b ≤ 0
false

symbolic execution

bounded model checkingsolve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

vs ↦ (a, b)
ps ↦ ()

ps ↦ (a)

ps ↦ ps0

ps ↦ ()

ps ↦ ps1

{ }a > 0
b ≤ 0
false

∨ ∨ ∨

Design space of precise symbolic encodings

a > 0a ≤ 0

ps0 = ite(a > 0, (a), ())
ps1 = insert(b, ps0)
ps2 = ite(b > 0, ps0, ps1)
assert len(ps2) = 2

a > 0

b ≤ 0

ps ↦ (a)

ps ↦ (a)

vs ↦ (a, b)
ps ↦ ()

b > 0b > 0

ps ↦ (b) ps ↦ (b, a)

{ }a ≤ 0
b > 0
false

{ }a > 0
b > 0
true

a ≤ 0

b ≤ 0

ps ↦ ()

ps ↦ ()

{ }a ≤ 0
b ≤ 0
false

symbolic execution

bounded model checking

b > 0

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

vs ↦ (a, b)
ps ↦ ()

ps ↦ (a)

ps ↦ ps0

ps ↦ ()

ps ↦ ps1

ps ↦ ps2

ps ↦ ps0

{ }a > 0
b ≤ 0
false

∨ ∨ ∨

Design space of precise symbolic encodings

a > 0a ≤ 0

ps0 = ite(a > 0, (a), ())
ps1 = insert(b, ps0)
ps2 = ite(b > 0, ps0, ps1)
assert len(ps2) = 2

a > 0

b ≤ 0

ps ↦ (a)

ps ↦ (a)

vs ↦ (a, b)
ps ↦ ()

b > 0b > 0

ps ↦ (b) ps ↦ (b, a)

{ }a ≤ 0
b > 0
false

{ }a > 0
b > 0
true

a ≤ 0

b ≤ 0

ps ↦ ()

ps ↦ ()

{ }a ≤ 0
b ≤ 0
false

symbolic execution

bounded model checking

b > 0b ≤ 0

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

A new design: type-driven state merging

{ }a > 0
b > 0
true

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

Merge instances of
‣ primitive types: symbolically
‣ value types: structurally
‣ all other types: via unions

A new design: type-driven state merging

{ }a > 0
b > 0
true

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

Merge instances of
‣ primitive types: symbolically
‣ value types: structurally
‣ all other types: via unions

ba

A new design: type-driven state merging

{ }a > 0
b > 0
true

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

⁊g g

c

Merge instances of
‣ primitive types: symbolically
‣ value types: structurally
‣ all other types: via unions

ba (c, d)(a, b)

A new design: type-driven state merging

{ }a > 0
b > 0
true

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

⁊g g

c(e, f)

Merge instances of
‣ primitive types: symbolically
‣ value types: structurally
‣ all other types: via unions

ba (c, d)

A new design: type-driven state merging

{ }a > 0
b > 0
true

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

⁊g g

c(e, f){ ¬g ⊦ a, g ⊦ () }

()

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

A new design: type-driven state merging

symbolic virtual machine

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

a > 0a ≤ 0

A new design: type-driven state merging

vs ↦ (a, b)
ps ↦ ()

ps ↦ (a)ps ↦ ()

symbolic virtual machine

Symbolic union: a set of
guarded values, with
disjoint guards.

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

g0 = a > 0
g1 = b > 0
g2 = g0 ∧ g1

g3 = ¬(g0 ⇔ g1)
g4 = ¬g0 ∧ ¬g1

c = ite(g1, b, a)
assert g2

a > 0a ≤ 0 g0¬ g0

A new design: type-driven state merging

vs ↦ (a, b)
ps ↦ ()

ps ↦ (a)ps ↦ ()

symbolic virtual machine

ps ↦ { g0 ⊦ (a),
 ¬g0 ⊦ () }

Execute insert
concretely on all
lists in the union.

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

g0 = a > 0
g1 = b > 0
g2 = g0 ∧ g1

g3 = ¬(g0 ⇔ g1)
g4 = ¬g0 ∧ ¬g1

c = ite(g1, b, a)
assert g2

a > 0a ≤ 0

g1

g0¬ g0

A new design: type-driven state merging

vs ↦ (a, b)
ps ↦ ()

ps ↦ (a)ps ↦ ()

symbolic virtual machine

ps ↦ { g0 ⊦ (a),
 ¬g0 ⊦ () }

ps ↦ { g0 ⊦ (b, a),
 ¬g0 ⊦ (b) }

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

g0 = a > 0
g1 = b > 0
g2 = g0 ∧ g1

g3 = ¬(g0 ⇔ g1)
g4 = ¬g0 ∧ ¬g1

c = ite(g1, b, a)
assert g2

a > 0a ≤ 0

¬ g1 g1

g0¬ g0

A new design: type-driven state merging

vs ↦ (a, b)
ps ↦ ()

ps ↦ (a)ps ↦ ()

symbolic virtual machine

ps ↦ { g0 ⊦ (a),
 ¬g0 ⊦ () }

ps ↦ { g0 ⊦ (b, a),
 ¬g0 ⊦ (b) }

ps ↦ { g0 ⊦ (a),
 ¬g0 ⊦ () }

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

Evaluate len concretely
on all lists in the union;
assertion true only on
the list guarded by g2.

g0 = a > 0
g1 = b > 0
g2 = g0 ∧ g1

g3 = ¬(g0 ⇔ g1)
g4 = ¬g0 ∧ ¬g1

c = ite(g1, b, a)
assert g2

a > 0a ≤ 0

¬ g1 g1

g0¬ g0

A new design: type-driven state merging

vs ↦ (a, b)
ps ↦ ()

ps ↦ (a)ps ↦ ()

symbolic virtual machine

ps ↦ { g0 ⊦ (a),
 ¬g0 ⊦ () }

ps ↦ { g0 ⊦ (b, a),
 ¬g0 ⊦ (b) }

ps ↦ { g0 ⊦ (a),
 ¬g0 ⊦ () }

ps ↦ { g2 ⊦ (b, a),
 g3 ⊦ (c),
 g4 ⊦ () }

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

g0 = a > 0
g1 = b > 0
g2 = g0 ∧ g1

g3 = ¬(g0 ⇔ g1)
g4 = ¬g0 ∧ ¬g1

c = ite(g1, b, a)
assert g2

a > 0a ≤ 0

¬ g1 g1

g0¬ g0

A new design: type-driven state merging

vs ↦ (a, b)
ps ↦ ()

ps ↦ (a)ps ↦ ()

symbolic virtual machine

ps ↦ { g0 ⊦ (a),
 ¬g0 ⊦ () }

ps ↦ { g0 ⊦ (b, a),
 ¬g0 ⊦ (b) }

ps ↦ { g0 ⊦ (a),
 ¬g0 ⊦ () }

ps ↦ { g2 ⊦ (b, a),
 g3 ⊦ (c),
 g4 ⊦ () }

concrete evaluation

polynomial encoding

How to build your own solver-aided tool or language

The classic (hard) way to build a tool
What is hard about building a solver-aided tool?

An easier way: tools as languages
How to build tools by stacking layers of languages.

Behind the scenes: symbolic virtual machine
How Rosette works so you don’t have to.

A last look: a few recent applications
Cool tools built with Rosette!

SVM

SMT

The classic (hard) way to build a tool

SDSL

Verifying a radiation therapy system

Clinical Neutron Therapy
System (CNTS) at UW

• 30 years of incident-free service.
• Controlled by custom software, built

by CNTS engineering staff.
• Third generation of Therapy Control

software built recently.

Sensors

Beam, motors, etc.

Prescription

Therapy Control Software

Verifying a radiation therapy system

Clinical Neutron Therapy
System (CNTS) at UW

EPICS programTherapy Control Software

Verifying a radiation therapy system

Experimental Physics and
Industrial Control System
(EPICS) Dataflow Language

Clinical Neutron Therapy
System (CNTS) at UW

Verifying a radiation therapy system

bug report

EPICS verifier

safety propertyEPICS programClinical Neutron Therapy
System (CNTS) at UW

Verifying a radiation therapy system

bug report

EPICS verifier

safety propertyEPICS program
Prototyped in a few
days and found bugs.

Calvin Loncaric

Verifying a radiation therapy system

bug report

EPICS verifier

safety propertyEPICS program

[Pernsteiner et al.,
CAV’16]

Found safety-critical defects
in a pre-release version of
the therapy control software.

Used by CNTS staff to verify
changes to the controller.

 40

Synthesizing memory models

x = y = 0
a = x b = y
y = 1 x = 1
a ≡ b ≡ 1

Memory consistency models
define memory reordering
behaviors on multiprocessors.

 40

Synthesizing memory models

x = y = 0
a = x b = y
y = 1 x = 1
a ≡ b ≡ 1

Memory consistency models
define memory reordering
behaviors on multiprocessors.

Forbidden by sequential
consistency.

Allowed by x86 and other
hardware memory models.

 40

Synthesizing memory models

x = y = 0
a = x b = y
y = 1 x = 1
a ≡ b ≡ 1

Memory consistency models
define memory reordering
behaviors on multiprocessors.

Forbidden by sequential
consistency.

Allowed by x86 and other
hardware memory models.

Formalizing memory models is hard:
e.g., PowerPC formalized over 7
publications in 2009-2015.

 40

Synthesizing memory models

x = y = 0
a = x b = y
y = 1 x = 1
a ≡ b ≡ 1

Memory consistency models
define memory reordering
behaviors on multiprocessors.

Forbidden by sequential
consistency.

Allowed by x86 and other
hardware memory models.

Memory model specification

Relational logic
synthesizer

A set of litmus
tests

A framework
sketch

 41

Synthesizing memory models

Memory model specification

Relational logic
synthesizer

A set of litmus
tests

A framework
sketch

Prototyped in a few
weeks and synthesized
real memory models.

James Bornholt

 42

Synthesizing memory models

Memory model specification

Relational logic
synthesizer

A set of litmus
tests

A framework
sketch

[Bornholt and Torlak, PLDI’17]

Synthesized PowerPC in 12 seconds
from 768 previously published tests.

Synthesized x86 in 2 seconds from
Intel’s litmus tests. Discovered 4
tests are missing from the Intel
manual.

 43

Synthesizing strategies for games and education

Nonograms game mechanics:
The numbered hints describe how
many contiguous blocks of cells are
filled with true. Cells filled with true
are marked as a black square and
cells filled with false as a red X.

 43

Synthesizing strategies for games and education

Nonograms game mechanics:
The numbered hints describe how
many contiguous blocks of cells are
filled with true. Cells filled with true
are marked as a black square and
cells filled with false as a red X.

A computer solves puzzles by
reducing the game mechanics to
backtracking search, but human
players solve puzzles by using
multiple strategies to make
progress without guessing.
Finding these strategies is a key
challenge in game design, and is
usually done through human testing.

 44

Synthesizing strategies for games and education

A computer solves puzzles by
reducing the game mechanics to
backtracking search, but human
players solve puzzles by using
multiple strategies to make
progress without guessing.
Finding these strategies is a key
challenge in game design, and is
usually done through human testing.

The ‘big hint” strategy.

 45

Synthesizing strategies for games and education

A computer solves puzzles by
reducing the game mechanics to
backtracking search, but human
players solve puzzles by using
multiple strategies to make
progress without guessing.
Finding these strategies is a key
challenge in game design, and is
usually done through human testing.

The ‘big hint” strategy.

 46

Synthesizing strategies for games and education

An optimal set of most concise,
general, and sound strategies

Strategy DSL
synthesizer

Game states for
training and testing

Game
mechanics

 47

Synthesizing strategies for games and education

An optimal set of most concise,
general, and sound strategies

Strategy DSL
synthesizer

Game states for
training and testing

Game
mechanics

Eric Butler

Prototyped in a few
weeks and synthesized
real strategies.

 48

Synthesizing strategies for games and education

An optimal set of most concise,
general, and sound strategies

Strategy DSL
synthesizer

Game states for
training and testing

Game
mechanics

[Butler et al., FDG’17, VMCAI’18]

Synthesized strategies that
outperform documented strategies
for Nonograms, both in terms of
coverage and quality.
Also used to synthesize strategies
for solving K-12 algebra and proofs
for propositional logic, recovering
and outperforming textbook
strategies for these domains.

Summary

Today
• Going pro with solver-aided programming.

Next lecture
• Getting started with SAT solving!

