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Topics

Last lecture
• Getting started with solver-aided programming.

Today
• Going pro with solver-aided programming.

Announcements
• HW1 is out.
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Solver-aided programming in two parts: 
(1) getting started and (2) going pro

ROSETTEA programming model that 
integrates solvers into the 
language, providing constructs 
for program verification, 
synthesis, and more.

How to use a solver-aided 
language: the workflow, 
constructs, and gotchas.

How to build your own 
solver-aided language
How to build your own 
solver-aided tool via direct 
symbolic evaluation or 
language embedding.



How to build your own solver-aided tool or language

The classic (hard) way to build a tool
What is hard about building a solver-aided tool?

An easier way: tools as languages
How to build tools by stacking layers of languages.

Behind the scenes: symbolic virtual machine
How Rosette works so you don’t have to.

A last look: a few recent applications
Cool tools built with Rosette!

SDSL

SVM

SMT

The classic (hard) way to build a tool
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The classic (hard) way to build a tool

∃x . ¬safe(x, P(x))

x = 42 ⋀ safe(x, P(x))

∃v . safe(42, Pv(42))

∃e.∀x. safe(x, Pe(x))

SMT solversolver-aided tool

assert safe(x, P(x))

verify
debug
solve
synthesize

P(x) {
…
…

}

Recall the solver-aided programming tool 
chain: the tool reduces a query about 
program behavior to an SMT problem.



SMT solver

The classic (hard) way to build a tool

solver-aided tool

P(x)

symbolic 
compiler

assert safe(x, P(x))

verify
debug
solve
synthesize

P(x) {
…
…

}

Recall the solver-aided programming tool 
chain: the tool reduces a query about 
program behavior to an SMT problem.

What all queries have in common: they 
need to translate programs to constraints!



SMT solver

The classic (hard) way to build a tool

P(x)

expertise in PL, FM, SE

symbolic 
compiler

assert safe(x, P(x))

verify
debug
solve
synthesize

P(x) {
…
…

}



SDSL

programming

Wanted: an easier way to build tools

an interpreter 
for the source 

language

assert safe(x, P(x))

verify
debug
solve
synthesize

P(x) {
…
…

}



SMTSVM

ROSETTE

SMT solversymbolic virtual 
machine

programming

Wanted: an easier way to build tools

assert safe(x, P(x))

verify
debug
solve
synthesize

P(x) {
…
…

}

SDSLan interpreter 
for the source 

language



SMTSVM

ROSETTE

SMT solversymbolic virtual 
machine

Wanted: an easier way to build tools

[Torlak & Bodik, PLDI’14]

Technical challenge:  
how to efficiently 
translate a program 
and its interpreter?assert safe(x, P(x))

verify
debug
solve
synthesize

P(x) {
…
…

}

SDSLan interpreter 
for the source 

language



How to build your own solver-aided tool or language

The classic (hard) way to build a tool
What is hard about building a solver-aided tool?

An easier way: tools as languages
How to build tools by stacking layers of languages.

Behind the scenes: symbolic virtual machine
How Rosette works so you don’t have to.

A last look: a few recent applications
Cool tools built with Rosette!

SVM

SMT

The classic (hard) way to build a tool

SDSL



domain-specific language 
(DSL)

Layers of classic languages: DSLs and hosts 

host language

A formal language that is 
specialized to a particular 
application domain and often 
limited in capability.

A high-level language for 
implementing DSLs, usually 
with meta-programming 
features.



domain-specific language 
(DSL)

Layers of classic languages: DSLs and hosts 

host language

library
(shallow)
embedding

interpreter
(deep)
embedding

A formal language that is 
specialized to a particular 
application domain and often 
limited in capability.

A high-level language for 
implementing DSLs, usually 
with meta-programming 
features.



domain-specific language 
(DSL)

Layers of classic languages: many DSLs and hosts 

host language

library
(shallow)
embedding

interpreter
(deep)
embedding

artificial intelligence
Church, BLOG

databases
SQL, Datalog

hardware design
Bluespec, Chisel, Verilog, VHDL

math and statistics
Eigen, Matlab, R

layout and visualization
LaTex, dot, dygraphs, D3

Racket, Scala, JavaScript, …



C = A * Bdomain-specific language 
(DSL)

Layers of classic languages: why DSLs?

host language

library
(shallow)
embedding

interpreter
(deep)
embedding C / Java

Eigen / Matlab

for (i = 0; i < n; i++)  
 for (j = 0; j < m; j++) 
  for (k = 0; k < p; k++) 
   C[i][k] += A[i][j] * B[j][k]
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library
(shallow)
embedding

interpreter
(deep)
embedding C / Java

Eigen / Matlab

for (i = 0; i < n; i++)  
 for (j = 0; j < m; j++) 
  for (k = 0; k < p; k++) 
   C[i][k] += A[i][j] * B[j][k]

Easier for people to read, 
write, and get right.



C = A * Bdomain-specific language 
(DSL)

Layers of classic languages: why DSLs?

host language

library
(shallow)
embedding

interpreter
(deep)
embedding C / Java

Eigen / Matlab

[associativity]C = A * B

for (i = 0; i < n; i++)  
 for (j = 0; j < m; j++) 
  for (k = 0; k < p; k++) 
   C[i][k] += A[i][j] * B[j][k]

Easier for people to read, 
write, and get right.

Easier for tools to analyze.



solver-aided domain-
specific language (SDSL)

Layers of solver-aided languages

solver-aided host language

library
(shallow)
embedding

interpreter
(deep)
embedding



solver-aided domain-
specific language (SDSL)

Layers of solver-aided languages: tools as SDSLs

library
(shallow)
embedding

interpreter
(deep)
embedding

education and games
Enlearn, RuleSy (VMCAI’18), 
Nonograms (FDG’17), UCB feedback 
generator (ITiCSE'17)

synthesis-aided compilation
LinkiTools, Chlorophyll (PLDI’14), 
GreenThumb (ASPLOS’16)

type system soundness
Bonsai (POPL’18)

computer architecture 
MemSynth (PLDI’17)

databases
Cosette (CIDR’17)

radiation therapy control
Neutrons (CAV’16)

… and more

ROSETTE
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A tiny example SDSL

BV:  A tiny assembly-like 
language for writing fast, low-
level library functions.

def bvmax(r0, r1) : 
  r2 = bvsge(r0, r1) 
  r3 = bvneg(r2) 
  r4 = bvxor(r0, r2) 
  r5 = bvand(r3, r4) 
  r6 = bvxor(r1, r5) 
  return r6 



A tiny example SDSL

BV:  A tiny assembly-like 
language for writing fast, low-
level library functions.

def bvmax(r0, r1) : 
  r2 = bvsge(r0, r1) 
  r3 = bvneg(r2) 
  r4 = bvxor(r0, r2) 
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  r6 = bvxor(r1, r5) 
  return r6 

We want to test, verify, 
debug, and synthesize 
programs in the BV SDSL.



A tiny example SDSL

BV:  A tiny assembly-like 
language for writing fast, low-
level library functions.

def bvmax(r0, r1) : 
  r2 = bvsge(r0, r1) 
  r3 = bvneg(r2) 
  r4 = bvxor(r0, r2) 
  r5 = bvand(r3, r4) 
  r6 = bvxor(r1, r5) 
  return r6 

We want to test, verify, 
debug, and synthesize 
programs in the BV SDSL.

1. interpreter       [10 LOC]

2. verifier                   [free]

3. debugger                [free]

4. synthesizer             [free]



def bvmax(r0, r1) : 
  r2 = bvsge(r0, r1) 
  r3 = bvneg(r2) 
  r4 = bvxor(r0, r2) 
  r5 = bvand(r3, r4) 
  r6 = bvxor(r1, r5) 
  return r6 

> bvmax(-2, -1) 

A tiny example SDSL ROSETTE



(define bvmax 
 `((2 bvsge 0 1) 
   (3 bvneg 2) 
   (4 bvxor 0 2) 
   (5 bvand 3 4) 
   (6 bvxor 1 5)))

def bvmax(r0, r1) : 
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A tiny example SDSL

parse

ROSETTE
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   (5 bvand 3 4) 
   (6 bvxor 1 5)))

(define bvmax 
 `((2 bvsge 0 1) 
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  r6 = bvxor(r1, r5) 
  return r6 

> bvmax(-2, -1) 

A tiny example SDSL

parse

ROSETTE

(out opcode in ...)



(define bvmax 
 `((2 bvsge 0 1) 
   (3 bvneg 2) 
   (4 bvxor 0 2) 
   (5 bvand 3 4) 
   (6 bvxor 1 5)))

A tiny example SDSL ROSETTE

def bvmax(r0, r1) : 
  r2 = bvsge(r0, r1) 
  r3 = bvneg(r2) 
  r4 = bvxor(r0, r2) 
  r5 = bvand(r3, r4) 
  r6 = bvxor(r1, r5) 
  return r6 

> bvmax(-2, -1) 
-1 

(define (interpret prog inputs) 
  (make-registers prog inputs) 
  (for ([stmt prog]) 
    (match stmt 
      [(list out opcode in ...) 
       (define op (eval opcode)) 
       (define args (map load in)) 
       (store out (apply op args))])) 
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interpret

`(-2 -1)
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A tiny example SDSL ROSETTE

def bvmax(r0, r1) : 
  r2 = bvsge(r0, r1) 
  r3 = bvneg(r2) 
  r4 = bvxor(r0, r2) 
  r5 = bvand(r3, r4) 
  r6 = bvxor(r1, r5) 
  return r6 

> bvmax(-2, -1) 
-1 

(define bvmax 
 `((2 bvsge 0 1) 
   (3 bvneg 2) 
   (4 bvxor 0 2) 
   (5 bvand 3 4) 
   (6 bvxor 1 5)))

‣ pattern matching
‣ dynamic evaluation
‣ first-class & higher-

order procedures
‣ side effects

(define (interpret prog inputs) 
  (make-registers prog inputs) 
  (for ([stmt prog]) 
    (match stmt 
      [(list out opcode in ...) 
       (define op (eval opcode)) 
       (define args (map load in)) 
       (store out (apply op args))])) 
  (load (last)))



A tiny example SDSL ROSETTE

(define-symbolic x y int32?) 
(define in (list x y)) 
(verify  
  (assert (equal? (interpret bvmax in)  
                  (interpret max in))))

def bvmax(r0, r1) : 
  r2 = bvsge(r0, r1) 
  r3 = bvneg(r2) 
  r4 = bvxor(r0, r2) 
  r5 = bvand(r3, r4) 
  r6 = bvxor(r1, r5) 
  return r6 

> verify(bvmax, max) query
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values of type 32-bit 
integer and binds them to 
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A tiny example SDSL ROSETTE

(define-symbolic x y int32?) 
(define in (list x y)) 
(verify  
  (assert (equal? (interpret bvmax in)  
                  (interpret max in))))

query

Symbolic values can be 
used just like concrete 
values of the same type.

Creates two fresh symbolic 
values of type 32-bit 
integer and binds them to 
the variables x and y.

(verify expr) searches 
for a concrete 
interpretation of 
symbolic values that 
causes expr to fail.

def bvmax(r0, r1) : 
  r2 = bvsge(r0, r1) 
  r3 = bvneg(r2) 
  r4 = bvxor(r0, r2) 
  r5 = bvand(r3, r4) 
  r6 = bvxor(r1, r5) 
  return r6 

> verify(bvmax, max) 



A tiny example SDSL ROSETTE

(define-symbolic x y int32?) 
(define in (list x y)) 
(verify  
  (assert (equal? (interpret bvmax in)  
                  (interpret max in))))

query

def bvmax(r0, r1) : 
  r2 = bvsge(r0, r1) 
  r3 = bvneg(r2) 
  r4 = bvxor(r0, r2) 
  r5 = bvand(r3, r4) 
  r6 = bvxor(r1, r5) 
  return r6 

> verify(bvmax, max) 
[0, -2] 

> bvmax(0, -2) 
-1



A tiny example SDSL ROSETTE

(define-symbolic x y int32?) 
(define in (list x y)) 
(verify  
  (assert (equal? (interpret bvmax in)  
                  (interpret max in))))

query

def bvmax(r0, r1) : 
  r2 = bvsge(r0, r1) 
  r3 = bvneg(r2) 
  r4 = bvxor(r0, r2) 
  r5 = bvand(r3, r4) 
  r6 = bvxor(r1, r5) 
  return r6 

> verify(bvmax, max) 
[0, -2] 

> bvmax(0, -2) 
-1



def bvmax(r0, r1) : 
  r2 = bvsge(r0, r1) 
  r3 = bvneg(r2) 
  r4 = bvxor(r0, r2) 
  r5 = bvand(r3, r4) 
  r6 = bvxor(r1, r5) 
  return r6 

> debug(bvmax, max,[0, -2]) 

A tiny example SDSL ROSETTE

(define in (list (int32 0) (int32 -2))) 
(debug [register?]  
  (assert (equal? (interpret bvmax in)  
                  (interpret max in))))

query



def bvmax(r0, r1) : 
  r2 = bvsge(r0, r1) 
  r3 = bvneg(r2) 
  r4 = bvxor(r0, r2) 
  r5 = bvand(r3, r4) 
  r6 = bvxor(r1, r5) 
  return r6 

> debug(bvmax, max,[0, -2]) 

def bvmax(r0, r1) : 
  r2 = bvsge(r0, r1) 
  r3 = bvneg(r2) 
  r4 = bvxor(r0, r2) 
  r5 = bvand(r3, r4) 
  r6 = bvxor(r1, r5) 
  return r6

A tiny example SDSL ROSETTE

(define in (list (int32 0) (int32 -2))) 
(debug [register?]  
  (assert (equal? (interpret bvmax in)  
                  (interpret max in))))

query



def bvmax(r0, r1) : 
  r2 = bvsge(r0, r1) 
  r3 = bvneg(r2) 
  r4 = bvxor(??, ??) 
  r5 = bvand(r3, ??) 
  r6 = bvxor(??, ??) 
  return r6 

> synthesize(bvmax, max) 

A tiny example SDSL ROSETTE

(define-symbolic x y int32?) 
(define in (list x y)) 
(synthesize  
  #:forall in 
  #:guarantee 
  (assert (equal? (interpret bvmax in)  
                  (interpret max in)))))

query



def bvmax(r0, r1) : 
  r2 = bvsge(r0, r1) 
  r3 = bvneg(r2) 
  r4 = bvxor(??, ??) 
  r5 = bvand(r3, ??) 
  r6 = bvxor(??, ??) 
  return r6 

> synthesize(bvmax, max) 

def bvmax(r0, r1) : 
  r2 = bvsge(r0, r1) 
  r3 = bvneg(r2) 
  r4 = bvxor(r0, r1) 
  r5 = bvand(r3, r4) 
  r6 = bvxor(r1, r5) 
  return r6

A tiny example SDSL ROSETTE

(define-symbolic x y int32?) 
(define in (list x y)) 
(synthesize  
  #:forall in 
  #:guarantee 
  (assert (equal? (interpret bvmax in)  
                  (interpret max in)))))

query
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SMT solver
Z3

ROSETTE

How it all works:  a big picture view

SDSL

program

query result

‣ pattern matching
‣ dynamic evaluation
‣ first-class procedures 
‣ higher-order procedures
‣ side effects
‣ macros

theories of bitvectors, 
integers, reals, and 
uninterpreted functions

Symbolic 
Virtual 

Machine



(3, 1, -2) (1, 3)

Translation to constraints by example

solve: 
  ps = () 
  for v in vs: 
    if v > 0: 
      ps = insert(v, ps) 
  assert len(ps) == len(vs)

reverse and filter, keeping 
only positive numbers 

vs ps



(3, 1, -2) (1, 3)

Translation to constraints by example

solve: 
  ps = () 
  for v in vs: 
    if v > 0: 
      ps = insert(v, ps) 
  assert len(ps) == len(vs)

vs ps



Translation to constraints by example

solve: 
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    if v > 0: 
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 (a, b)

Translation to constraints by example

solve: 
  ps = () 
  for v in vs: 
    if v > 0: 
      ps = insert(v, ps) 
  assert len(ps) == len(vs)

vs psconstraints



a>0 ∧ b>0 (a, b)

Translation to constraints by example

solve: 
  ps = () 
  for v in vs: 
    if v > 0: 
      ps = insert(v, ps) 
  assert len(ps) == len(vs)

vs psconstraints



Design space of precise symbolic encodings

symbolic execution

bounded model checkingsolve: 
  ps = () 
  for v in vs: 
    if v > 0: 
      ps = insert(v, ps) 
  assert len(ps) == len(vs)
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A new design:  type-driven state merging

{  }a > 0
b > 0
true

solve: 
  ps = () 
  for v in vs: 
    if v > 0: 
      ps = insert(v, ps) 
  assert len(ps) == len(vs)



Merge instances of
‣ primitive types:    symbolically
‣ value types:          structurally
‣ all other types:     via unions

A new design:  type-driven state merging

{  }a > 0
b > 0
true

solve: 
  ps = () 
  for v in vs: 
    if v > 0: 
      ps = insert(v, ps) 
  assert len(ps) == len(vs)



Merge instances of
‣ primitive types:    symbolically
‣ value types:          structurally
‣ all other types:     via unions

ba

A new design:  type-driven state merging

{  }a > 0
b > 0
true

solve: 
  ps = () 
  for v in vs: 
    if v > 0: 
      ps = insert(v, ps) 
  assert len(ps) == len(vs)

⁊g g

c



Merge instances of
‣ primitive types:    symbolically
‣ value types:          structurally
‣ all other types:     via unions

ba (c, d)(a, b)

A new design:  type-driven state merging

{  }a > 0
b > 0
true

solve: 
  ps = () 
  for v in vs: 
    if v > 0: 
      ps = insert(v, ps) 
  assert len(ps) == len(vs)

⁊g g

c(e, f)



Merge instances of
‣ primitive types:    symbolically
‣ value types:          structurally
‣ all other types:     via unions

ba (c, d)

A new design:  type-driven state merging

{  }a > 0
b > 0
true

solve: 
  ps = () 
  for v in vs: 
    if v > 0: 
      ps = insert(v, ps) 
  assert len(ps) == len(vs)

⁊g g

c(e, f){ ¬g ⊦ a, g ⊦ () }
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solve: 
  ps = () 
  for v in vs: 
    if v > 0: 
      ps = insert(v, ps) 
  assert len(ps) == len(vs)

A new design:  type-driven state merging

symbolic virtual machine



solve: 
  ps = () 
  for v in vs: 
    if v > 0: 
      ps = insert(v, ps) 
  assert len(ps) == len(vs)

a > 0a ≤ 0

A new design:  type-driven state merging

vs ↦ (a, b)
ps ↦ ( )

ps ↦ (a)ps ↦ ( )

symbolic virtual machine



Symbolic union:  a set of 
guarded values, with 
disjoint guards.

solve: 
  ps = () 
  for v in vs: 
    if v > 0: 
      ps = insert(v, ps) 
  assert len(ps) == len(vs)

g0 = a > 0
g1 = b > 0 
g2 = g0 ∧ g1

g3 = ¬(g0 ⇔ g1)
g4 = ¬g0 ∧ ¬g1

c = ite(g1, b, a)
assert g2

a > 0a ≤ 0 g0¬ g0

A new design:  type-driven state merging

vs ↦ (a, b)
ps ↦ ( )

ps ↦ (a)ps ↦ ( )

symbolic virtual machine

ps ↦ { g0 ⊦ (a), 
        ¬g0 ⊦ ( ) } 



Execute insert 
concretely on all 
lists in the union.

solve: 
  ps = () 
  for v in vs: 
    if v > 0: 
      ps = insert(v, ps) 
  assert len(ps) == len(vs)

g0 = a > 0
g1 = b > 0 
g2 = g0 ∧ g1

g3 = ¬(g0 ⇔ g1)
g4 = ¬g0 ∧ ¬g1

c = ite(g1, b, a)
assert g2

a > 0a ≤ 0

g1

g0¬ g0

A new design:  type-driven state merging

vs ↦ (a, b)
ps ↦ ( )

ps ↦ (a)ps ↦ ( )

symbolic virtual machine

ps ↦ { g0 ⊦ (a), 
        ¬g0 ⊦ ( ) } 

ps ↦ { g0 ⊦ (b, a), 
        ¬g0 ⊦ (b) }



solve: 
  ps = () 
  for v in vs: 
    if v > 0: 
      ps = insert(v, ps) 
  assert len(ps) == len(vs)

g0 = a > 0
g1 = b > 0 
g2 = g0 ∧ g1

g3 = ¬(g0 ⇔ g1)
g4 = ¬g0 ∧ ¬g1

c = ite(g1, b, a)
assert g2

a > 0a ≤ 0

¬ g1 g1

g0¬ g0

A new design:  type-driven state merging

vs ↦ (a, b)
ps ↦ ( )

ps ↦ (a)ps ↦ ( )

symbolic virtual machine

ps ↦ { g0 ⊦ (a), 
        ¬g0 ⊦ ( ) } 

ps ↦ { g0 ⊦ (b, a), 
        ¬g0 ⊦ (b) }

ps ↦ { g0 ⊦ (a), 
        ¬g0 ⊦ ( ) } 



solve: 
  ps = () 
  for v in vs: 
    if v > 0: 
      ps = insert(v, ps) 
  assert len(ps) == len(vs)

Evaluate len concretely 
on all lists in the union; 
assertion true only on 
the list guarded by g2.

g0 = a > 0
g1 = b > 0 
g2 = g0 ∧ g1

g3 = ¬(g0 ⇔ g1)
g4 = ¬g0 ∧ ¬g1

c = ite(g1, b, a)
assert g2

a > 0a ≤ 0

¬ g1 g1

g0¬ g0

A new design:  type-driven state merging
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ps ↦ ( )

ps ↦ (a)ps ↦ ( )

symbolic virtual machine

ps ↦ { g0 ⊦ (a), 
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ps ↦ { g2 ⊦ (b, a), 
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solve: 
  ps = () 
  for v in vs: 
    if v > 0: 
      ps = insert(v, ps) 
  assert len(ps) == len(vs)

g0 = a > 0
g1 = b > 0 
g2 = g0 ∧ g1

g3 = ¬(g0 ⇔ g1)
g4 = ¬g0 ∧ ¬g1

c = ite(g1, b, a)
assert g2

a > 0a ≤ 0

¬ g1 g1

g0¬ g0

A new design:  type-driven state merging

vs ↦ (a, b)
ps ↦ ( )

ps ↦ (a)ps ↦ ( )

symbolic virtual machine

ps ↦ { g0 ⊦ (a), 
        ¬g0 ⊦ ( ) } 

ps ↦ { g0 ⊦ (b, a), 
        ¬g0 ⊦ (b) }

ps ↦ { g0 ⊦ (a), 
        ¬g0 ⊦ ( ) } 

ps ↦ { g2 ⊦ (b, a), 
          g3 ⊦ (c),
          g4 ⊦ ( ) }

concrete evaluation

polynomial encoding
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Verifying a radiation therapy system 

Clinical Neutron Therapy 
System (CNTS) at UW

• 30 years of incident-free service. 
• Controlled by custom software, built 

by CNTS engineering staff. 
• Third generation of Therapy Control 

software built recently.



Sensors

Beam, motors, etc.

Prescription

Therapy Control Software

Verifying a radiation therapy system 

Clinical Neutron Therapy 
System (CNTS) at UW



EPICS programTherapy Control Software

Verifying a radiation therapy system 

Experimental Physics and 
Industrial Control System 
(EPICS) Dataflow Language

Clinical Neutron Therapy 
System (CNTS) at UW



Verifying a radiation therapy system 

bug report

EPICS verifier

safety propertyEPICS programClinical Neutron Therapy 
System (CNTS) at UW



Verifying a radiation therapy system 

bug report

EPICS verifier

safety propertyEPICS program
Prototyped in a few 
days and found bugs.

Calvin Loncaric



Verifying a radiation therapy system 

bug report

EPICS verifier

safety propertyEPICS program

[Pernsteiner et al., 
CAV’16]

Found safety-critical defects 
in a pre-release version of 
the therapy control software.

Used by CNTS staff to verify 
changes to the controller.
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Synthesizing memory models

x = y = 0
a = x b = y
y = 1 x = 1
a ≡ b ≡ 1 

Memory consistency models 
define memory reordering 
behaviors on multiprocessors.

Forbidden by sequential 
consistency. 

Allowed by x86 and other 
hardware memory models.

Formalizing memory models is hard: 
e.g., PowerPC formalized over 7 
publications in 2009-2015.
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Synthesizing memory models

x = y = 0
a = x b = y
y = 1 x = 1
a ≡ b ≡ 1 

Memory consistency models 
define memory reordering 
behaviors on multiprocessors.

Forbidden by sequential 
consistency. 

Allowed by x86 and other 
hardware memory models.

Memory model specification

Relational logic 
synthesizer

A set of litmus 
tests

A framework 
sketch
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Synthesizing memory models

Memory model specification

Relational logic 
synthesizer

A set of litmus 
tests

A framework 
sketch

Prototyped in a few 
weeks and synthesized 
real memory models.

James Bornholt
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Synthesizing memory models

Memory model specification

Relational logic 
synthesizer

A set of litmus 
tests

A framework 
sketch

[Bornholt and Torlak, PLDI’17]

Synthesized PowerPC in 12 seconds 
from 768 previously published tests.

Synthesized x86 in 2 seconds from 
Intel’s litmus tests.  Discovered 4 
tests are missing from the Intel 
manual.
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Nonograms game mechanics: 
The numbered hints describe how 
many contiguous blocks of cells are 
filled with true.  Cells filled with true 
are marked as a black square and 
cells filled with false as a red X. 
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A computer solves puzzles by 
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backtracking search, but human 
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Finding these strategies is a key 
challenge in game design, and is 
usually done through human testing.
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An optimal set of most concise, 
general, and sound strategies

Strategy DSL  
synthesizer 

Game states for 
training and testing 

Game 
mechanics
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Synthesizing strategies for games and education 

An optimal set of most concise, 
general, and sound strategies

Strategy DSL  
synthesizer 

Game states for 
training and testing 

Game 
mechanics

Eric Butler

Prototyped in a few 
weeks and synthesized 
real strategies.
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Synthesizing strategies for games and education 

An optimal set of most concise, 
general, and sound strategies

Strategy DSL  
synthesizer 

Game states for 
training and testing 

Game 
mechanics

[Butler et al., FDG’17, VMCAI’18]

Synthesized strategies that 
outperform documented strategies 
for Nonograms, both in terms of 
coverage and quality. 
Also used to synthesize strategies 
for solving K-12 algebra and proofs 
for propositional logic, recovering 
and outperforming textbook 
strategies for these domains.



Summary

Today
• Going pro with solver-aided programming.

Next lecture
• Getting started with SAT solving!


