Satisfiability Modulo Theories

Emina Torlak

emina@cs.washington.edu

Today

Last lecture

* Practical applications of SAT and the need for a richer logic

Today
* Introduction to Satisfiability Modulo Theories (SMT)
* Syntax and semantics of (quantifier-free) first-order logic

* Overview of key theories

Reminder

* HWI due tonight at | |pm

Satisfiability Modulo Theories (SMT)

SMT solver

Satisfiability Modulo Theories (SMT)

First-Order Logic

SMT solver

Satisfiability Modulo Theories (SMT)

x = g(y) A

2x+y <5 T 5 /Y\ SMT solver
T ~

b>>2)=c _»;; e
e N

ali] = x -

Theories First-Order Logic

Satisfiability Modulo Theories (SMT)

(un)satisfiable

- : SMT solver
(b>>2)=c N < |
.................... v / X /J
.
A1 = x % v

Theories First-Order Logic

Satisfiability Modulo Theories (SMT)

(un)satisfiable

x = g(y) —
2x+y <5 T 5 /Y\ SMT solver
b>>2)=c— 7 — % |
----------------- 4 | -
Z, . 4 —>» Core solver |[¢——
ali] = x - 1!
DPLL(T)
|
v v
| Theory Theory

Theories First-Order Logic solver [-++| solver |

Syntax of First-Order Logic (FOL)

Logical symbols
+ Connectives: 71, A, V, =, <
* Parentheses: ()
« Quantifiers: Vv, 3

Non-logical symbols
+ Constants: X,Y,z
+ N-ary functions: f, g
* N-ary predicates: p, q
* Variables: u,v,w

Syntax of First-Order Logic (FOL)

Logical symbols
- Connectives: 7, A, V, 2, &

* Parentheses: ()

Quantifiers: Vv, 3 We will only consider the
X o quantifier-free fragment of
Non-logical symbols FOL.

+ Constants: X,Y,z

+ N-ary functions: f, g
* N-ary predicates: p, q
* Variables: u,v,w

Syntax of First-Order Logic (FOL)

Logical symbols
- Connectives: 7, A, V, 2, &

* Parentheses: ()

X Quantifiers: Vv, 3

We will only consider the

quantifier-free fragment of

Non-logical symbols FOL.

+ Constants: X,Y,z
+ N-ary functions: f, g
* N-ary predicates: p, q

XVariabIes: u, v, W : : :
In particular, we will consider

quantifier-free ground
formulas.

Syntax of quantifier-free ground FOL formulas

Logical symbols .
- Atermisa constant, or an n-

+ Connectives: 7, A, Vv, =, < : .
A ary function applied to n terms.

- Parentheses:
() - An atom s T, L, or an n-ary

predicate applied to n terms.

Non-logical symbols - A literal is an atom or its
- Constants: X, Y,z negation.
 N-ary functions: f, g * A (quantifier-free ground)
. N-ary predicates: p, q formula is a literal or the

application of logical connectives
to formulas.

Syntax of quantifier-free ground FOL formulas

Logical symbols
- Connectives: 7, A, V, 2, &

* Parentheses: ()

Non-logical symbols
+ Constants: X,Y,z
 N-ary functions: f, g
* N-ary predicates: p, q

isPrime(x) — - isInteger(sqrt(x))

- A term is a constant, or an n-

ary function applied to n terms.

- Anatomis T, L, or an n-ary

predicate applied to n terms.

- A literal is an atom or its

negation.

* A (quantifier-free ground)

formula is a literal or the
application of logical connectives
to formulas.

Semantics of FOL: first-order structures (U, I)

Universe

Interpretation

Semantics of FOL: universe

Universe

- A non-empty set of values
» Finite or (un)countably infinite

Interpretation

Semantics of FOL: interpretation

Universe

* A non-empty set of values
» Finite or (un)countably infinite

Interpretation

- Maps a constant symbol ¢ to an
element of U: I[c] e U

+ Maps an n-ary function symbol f
to a function fj: Un = U

+ Maps an n-ary predicate symbol
p to an n-ary relation p; € Un

Semantics of FOL: inductive definition

Universe
I[f(t1, ..., ta)] = I[f]([ti], ..., I[tn])

* A non-empty set of values

- Finite or (un)countably infinite Ip(ti, ..., t)] = (CI[ti], ..., I[ta]> € I[p])
[<U’ I> |= —I—
Interpretation
U D EL
+ Maps a constant symbol ¢ to an
element of U: I[c] € U M, D Eplt, ..., to) iff I[p(t, ..., t,)] = true
- Maps an n-ary function symbol f U, = -Fiff (U D # F

to a function fi: U» = U

+ Maps an n-ary predicate symbol
p to an n-ary relation p; € Un

Semantics of FOL: inductive definition

Universe
I[f(t1, ..., ta)] = I[f]([ti], ..., I[tn])

* A non-empty set of values

- Finite or (un)countably infinite Ip(ti, ..., t)] = (CI[ti], ..., I[ta]> € I[p])
. UDET
Interpretation
U D EL
+ Maps a constant symbol ¢ to an
element of U: I[c] € U M, D Eplt, ..., to) iff I[p(t, ..., t,)] = true
- Maps an n-ary function symbol f U, = -Fiff (U D # F

to a function fi: U» = U

+ Maps an n-ary predicate symbol
p to an n-ary relation p; € Un

This is the semantics of unsorted FOL. SMT solvers work on many-
sorted FOL, which partitions the universe into different types or sorts, and
assigns types to non-logical symbols. SMT interpretations respect these types.

Semantics of FOL: example

Universe
- A non-empty set of values
» Finite or (un)countably infinite U = {oo-, 8}
Interpretation X] = o
« Maps a constant symbol ¢ to an y] = &
element of U: l[c] € U f] = {0 - 8, 8 > 9
-+ Maps an n-ary function symbol f o] = {065 (6 4
to a function fi: Ur» = U P] = {0900, CF, 7}
+ Maps an n-ary predicate symbol U, I = plf(y), #(f(x))) !

——

p to an n-ary relation p; € Un

Satisfiability and validity of FOL

F is satisfiable iff M = F for some
structure M = U, |).

F is valid iff M = F for all structures
M= WU, D.

Duality of satisfiability and validity:

F is valid iff =F is unsatisfiable.

First-order theories

Signature 2t

Set of T-models

First-order theories

Signature 2t

» Set of constant, predicate, and
function symbols

Set of T-models

First-order theories

Signature 2t

» Set of constant, predicate, and
function symbols

Set of T-models

* One or more (possibly infinitely
many) models that fix the
interpretation of the symbols in 27

+ Can also view a theory as a set of

axioms over 271 (and T-models are
the models of the theory axioms)

First-order theories

Signature 2t

» Set of constant, predicate, and

function symbols A formula F is satisfiable

modulo T iff M = F for some T-

Set of T-models model M.
* One or more (possibly infinitely A formula F is valid modulo T
many) models that fix the iff M = F for all T-models M.

interpretation of the symbols in 27

+ Can also view a theory as a set of

axioms over 271 (and T-models are
the models of the theory axioms)

First-order theories: expansion

Signature 2t

» Set of constant, predicate, and
function symbols

Set of T-models

* One or more (possibly infinitely
many) models that fix the
interpretation of the symbols in 27

+ Can also view a theory as a set of

axioms over 21 (and T-models are
the models of the theory axioms)

We can expand a theory’s
signature to include additional
uninterpreted symbols (e.g.,
constants).

If ET is an expansion of 21, then
the T-models of Et are the set of
all possible expansions of the T-

models of 27 to include
interpretations for the symbols in

Er\ 2T

Common theories

Equality (and uninterpreted functions)
© x = g(y)

Fixed-width bitvectors
- (b>1)=c

Linear arithmetic (over R and Z)
- 2x+y <5

Arrays
- afi] = x

Theory of equality with uninterpreted functions

Signature: {=;, X, ¥y Z, cees Ty €5 cces Py Ay o}

* The binary predicate = is interpreted.
» All constant, function, and predicate symbols are uninterpreted.

Axioms
* VX. X =X
* VX,Y. X=y ?Yy=X
* VX, V,Z. X=YAY=Z ?PX=Z
* VXl ooy Xy Yy ee o Yoo (XIS YT A ooo A X =Yn) 2 (f(X1, ..., Xn) = (Y1, ..., Yn))
* VXl ooy Xny Yy ooy Yo (XI = Y1 A woo AXn =Yn) = (P(XIy ..0s Xn) < P(YI, ..., ¥n))

Deciding T-

* Conjunctions of literals modulo T= is decidable in polynomial time.

T= example: checking program equivalence

int abs(int y) {
return y<0 ? -y : vy;

}

int sq(int y) {
return yxy,;

}

int sqgabs(int y) {
return abs(y)xabs(y);
+

T= example: checking program equivalence

int abs(int y) { Are sq and sqabs equivalent
return y<@ 7 -y : vy; on all 128-bit integers?

}

int sq(int y) {
return yxy,;

}

int sqabs(int y) {
return abs(y)*abs(y);

}

T= example: checking program equivalence

int abs(int y) { Are sq and sqabs equivalent
) return y<@ 7 -y : y; on all 128-bit integers?
Yes, but the solver takes a while
int sq(int y) { to return an answer because
return yxy; reasoning about multiplication is
b expensive.

int sqabs(int y) {
return abs(y)*abs(y);

}

T= example: checking program equivalence

int abs(int y) { Are sq and sqabs equivalent
) return y<@ 7 -y : y; on all 128-bit integers?
Yes, but the solver takes a while
int sq(int y) { to return an answer because
return yxy; reasoning about multiplication is
b expensive.
int sqabs(int y) { What happens if we replace the
return abs(y)xabs(y); multiplication with an

} uninterpreted function?

Theory of fixed-width bitvectors

Signhature

* Fixed-width words modeling machine ints, longs, ...

* Arithmetic operations: bvadd, bvsub, bvmul, ...
- Bitwise operations: bvand, bvor; bvnot, ...

- Comparison predicates: bvlt, bvgt, ...

* Equality: =

* Expanded with all constant symbols: x,y, z, ...

Deciding Tgv

* NP-complete.

Theories of linear integer and real arithmetic

Signature
* Integers (or reals)
* Arithmetic operations: multiplication by an integer (or real) number, +, -.
* Predicates: =, <.

- Expanded with all constant symbols: x,y, z, ...

Deciding TLia and TLra
* NP-complete for linear integer arithmetic (LIA).

* Polynomial time for linear real arithmetic (LRA).

* Polynomial time for difference logic (conjunctions of the form x -y < c,
where c is an integer or real number).

LIA example: compiler optimization

for (i=1; i<=10; i++) {
alj+i] = aljl;
} A LIA formula that is unsatisfiable iff
this transformation is valid:

int v = aljl;

for (i=1; i<=10; i++) {
alj+i]l = v;

+

LIA example: compiler optimization

for (i=1; i<=10; i++) {
alj+il = aljl;

} A LIA formula that is unsatisfiable iff
this transformation is valid:
i=D)A(i=<10)A
(+i=j)

int v = aljl; Polyhedral model

for (i=1; i<=10; i++) {
alj+i]l = v;
+

Theory of arrays

Signhature
* Array operations: read, write
* Equality: =
- Expanded with all constant symbols: x,y, z, ...
Axioms
* Va,i, V. read(write(a, i, v),i) = v
* Va,i,j,v. (i =) = (read(write(a, i, V),) = read(a, j))
* Va,b.(Vi.read(a,i) = read(b,i)) > a=b
Deciding Ta

- Satisfiability problem: NP-complete.
* Used in many software verification tools to model memory.

sSummary

Today
* Introduction to SMT
* Quantifier-free FOL (syntax & semantics)

« Qverview of common theories

NeXxt lecture

* Survey of theory solvers

