Solver-Aided Programming |

Emina Torlak

emina@cs.washington.edu

Topics

What is this course about?
Course logistics

Getting started with solver-aided programming!

Tools for building better software, more easily

morvre reliable,
efficient, secure

better software

better software

automated verification,
synthesis, debugging, based
on satisfiability solvers

better software

automated verification,
synthesis, debugging, based
on satisfiability solvers

‘“solver-aided tools”

By the end of this course, you’ll be able to
build solver-aided tools for any domain!

S S
5"'6«‘/ icu,. ity
- N
biology education

— ———

By the end of this course, you’ll be able to
build solver-aided tools for any domain!

King
h netWor
e —
\e databases lo
EEE— W.
{Wep c
°’h pll

high-performance computing \tlhg

Topics, structure, people

Course overview

program question

tool

logic

automated
reasoning
engine

Course overview

program question

verifier,
synthesizer,
fault localizer

logic

SAT, SMT,
model finders

Course overview

program question

verifier,
synthesizer,
fault localizer

logic

SAT, SMT,
model finders

Drawing from “Decision Procedures” by Kroening & Strichman

Course overview

program question

verifier,
synthesizer,
fault localizer

logic

SAT, SMT,
model finders

Drawing from “Decision Procedures” by Kroening & Strichman

Course overview

program question

by,
verifier, (IJQ,"IQ'
synthesizer, tll)
fault localizer

logic

SAT, SMT,
model finders

el

Drawing from “Decision Procedures” by Kroening & Strichman

Grading

§'
3 individual homework assignments (75%) tllqy
- conceptual problems & proofs (TeX) @th,
/,

- implementations (Racket)

» completed on your own (may discuss HWs with course staff only)

Course project (25%)
* build a computer-aided reasoning tool for a domain of your choice
* teams of 2-3 people

* see the course web page for timeline, deliverables and other details

Reading and references

Recommended readings posted on the course web page
* Complete each reading before the lecture for which it is assigned

* If multiple papers are listed, only the first is required reading

Recommended text books
* Bradley & Manna, The Calculus of Computation

* Kroening & Strichman, Decision Procedures

http://www.springer.com/computer/communication+networks/book/978-3-540-74112-1
http://www.springer.com/computer/ai/book/978-3-540-74104-6

Adyvice for doing well in 507

Come to class (prepared)

* Lecture slides are enough to teach from, but not enough to learn from

Participate

* Ask and answer questions

Meet deadlines
* Turn homework in on time
- Start homework and project sooner than you think you need to
* Follow instructions for submitting code (we have to be able to run it)

* No proof should be longer than a page (most are ~| paragraph)

People

AL e : IA
Emina Torlak Sorawee Porncharoenwase
PLSE PLSE
CSE 596 CSE 486

OH Th 2-3pm

-
.
Your name
Research area

i ;’A
Emina Torlak Sorawee Porncharoenwase
PLSE PLSE
CSE 596 CSE 486

By appointment OH Th 2-3pm

Solver-aided programming in two parts:
(1) getting started and (2) going pro

A programming model that
integrates solvers into the
language, providing constructs
for program verification,
synthesis, and more.

Solver-aided programming in two parts:
(1) getting started and (2) going pro

A programming model that
integrates solvers into the
language, providing constructs
for program verification,
synthesis, and more.

Solver-aided programming in two parts:
(1) getting started and (2) going pro

How to use a solver-aided
language: the workflow,
constructs, and gotchas.

A programming model that
integrates solvers into the
language, providing constructs
for program verification,
synthesis, and more.

Solver-aided programming in two parts:
(1) getting started and (2) going pro

How to use a solver-aided How to build your own
language: the workflow, solver-aided tool via direct
constructs, and gotchas. symbolic evaluation or

language embedding.

A programming model that RUSETTE
integrates solvers into the

language, providing constructs
for program verification,
synthesis, and more.

Solver-aided programming in two parts:
(1) getting started and (2) going pro

How to use a solver-aided How to build your own
language: the workflow, solver-aided tool via direct
constructs, and gotchas. symbolic evaluation or

language embedding.

A programming model that RUSETTE
integrates solvers into the

language, providing constructs
for program verification,
synthesis, and more.

Solver-aided programming in two parts:
(1) and (2) going pro

How to use a solver-aided How to build your own
language: the workflow, solver-aided tool via direct
constructs and gotchas. symbolic evaluation or

language embedding.

Classic programming: from spec to code

P(x) {
specification

.-

U

Classic programming: check code against spec

check the e 1
specification -

on concrete

. J

inputs assert safe(2, P(2))

U

Solver-aided programming: add symbolic values

check the P(x) { The S)C'Im:)ollc value
specification X st.an 5 elf el

on symbolic \ arbitrary integer.
Inputs assert safe(x, P(x))

e

Solver-aided programming: query code against spec

queries

P(x) {

.-

assert safe(x, P(x))

\

/

The symbolic value
x stands for an
arbitrary integer.

solver-aided
language

The runtime uses the
solver to determine
the concrete meaning
of x in response to
solver-aided queries.

SMT solver

Solver-aided programming: query code against spec

queries
verify "
debug -
solve }
synthesize assert safe(x, P(x))

U

solver-aided

SMT solver
language

Solver-aided programming: verify code against spec

P Find an input on which the program fails.
verif (X) {
Yy

.-

assert safe(x, P(x))

/

solver-aided

SMT solver
language

A

[Ix . 1safe(x, P(x))]

Solver-aided programming: debug code against spec

P(x) { Find an input on which the program fails.

v =

.-

assert safe(x, P(x))

/

verify
debug

Localize bad parts of the program.

solver-aided

SMT solver
language

A

Ix . safe(x, P(x))
x = 42 A safe(x, P(x))

Solver-aided programming: solve for values from spec

verify
debug
solve

P(x) {

v = choice()

.-

assert safe(x, P(x))

/

Find an input on which the program fails.
Localize bad parts of the program.

Find values that repair the failing run.

solver-aided

SMT solver
language

A

Ix . safe(x, P(x))
x = 42 A safe(x, P(x))
Jv .safe(42, P,(42))

Solver-aided programming: synthesize code from spec

Find an input on which the program fails.

verify P(x) {

debug v=10n Localize bad parts of the program.

solve) Find values that repair the failing run.
thesi

synthesize assert safe(x, P(x)) Find code that repairs the program.

U

solver-aided

SMT solver
language

A

Ix . safe(x, P(x))

x = 42 A safe(x, P(x))
Jv . safe(42, P,(42))
Je.Vx. safe(x, Pe(x))

Solver-aided programming: workflow

P Use assertions and symbolic values

- () { e Y

veriry to express the specification.

debug o .

solve } Ask queries about program behavior (on

synthesize arbitrary inputs) with respect to the
assert safe(x, P(x)) specification.

U

solver-aided

SMT solver
language

A

Ix . safe(x, P(x))

x = 42 A safe(x, P(x))
Jv . safe(42, P,(42))
Je.Vx. safe(x, Pe(x))

RUSETTE

symbolic values
assertions
queries

getting started

constructs

Rosette extends Racket with solver-aided constructs

(define-symbolic id type)
(define-symbolicx id type)

(assert expr)

(verify expr)
(debug [type ...+] expr)
(solve expr)
(synthesize
#:forall expr
#:quarantee expr)

symbolic
values

assertions

queries

Racket

“A programming language
for creating new
programming languages”

"

A modern descendent of
Scheme and Lisp with
powerful macro-based meta
programming.

Rosette extends Racket with solver-aided constructs

(define-symbolic id type)
(define-symbolicx id type)

(assert expr)

(verify expr)
(debug [type ...+] expr)
(solve expr)
(synthesize
#:forall expr
#:quarantee expr)

symbolic
values

assertions

queries

Rosette constructs: define-symbolic

define-symbolic creates a fresh
symbolic constant of the given type
and binds it to the variable id.

(define-symbolic id type) > (define-symbolic x integer?)

Rosette constructs: define-symbolic

A type that is efficiently supported
by SMT solvers: booleans, integers,
reals, bitvectors, uninterpreted
functions.

define-symbolic creates a fresh

symbolic constant of the given type
and binds it to the variable id.

(define-symbolic id type) > (define-symbolic x integer?)

Rosette constructs: define-symbolic

A type that is efficiently supported
by SMT solvers: booleans, integers,
reals, bitvectors, uninterpreted
functions.

(define-symbolic id type)

define-symbolic creates a fresh
symbolic constant of the given type
and binds it to the variable id.

> (define-symbolic x integer?)
> (+ 1 x 2 3)
(+ 6 x)

Symbolic values of a given type can
be used just like concrete values of
that type.

Rosette constructs: define-symbolic

A type that is efficiently supported
by SMT solvers: booleans, integers,
reals, bitvectors, uninterpreted
functions.

(define-symbolic id type)

define-symbolic creates a fresh
symbolic constant of the given type
and binds it to the variable id.

> (define (same-x)
(define-symbolic x integer?)

X)
> (same=x) id is bound to the same
% constant every time define-
> (same-x) symbolic is evaluated.
X
> (eq? (same-x) (same-x))
#t

Symbolic values of a given type can
be used just like concrete values of
that type.

Rosette constructs: define-symbolic*

A type that is efficiently supported
by SMT solvers: booleans, integers,
reals, bitvectors, uninterpreted
functions.

(define-symbolic id type)
(define-symbolicx id type)

define-symbolic* creates a fresh
symbolic constant of the given type
and binds it to the variable id.

> (define (new-x)
(define-symbolickx x integer?)

X)
> (new=x) id is bound to a different
X$0 constant every time define-
> (new—x) symbolic* is evaluated.
x$1
> (eq? (new—-x) (new-x))
(= x$2 x$3)

Symbolic values of a given type can
be used just like concrete values of
that type.

Rosette constructs: creating complex symbolic values

define-symbolic(*) can be used to
create bounded symbolic instances
of complex data types.

(define-symbolic id type)
(define-symbolicx id type)

Rosette constructs: creating complex symbolic values

(define-symbolic id type)
(define-symbolicx id type)

define-symbolic(*) can be used to
create bounded symbolic instances
of complex data types.

> (define-symbolicx xs integer? [4])
> XS
(list xs$0 xs$1 xs$2 xs$3)

A concrete list of 4 symbolic
integers; this is just a short-hand
for evaluating define-symbolic* 4
times and collecting the results
into a list.

Rosette constructs: creating complex symbolic values

(define-symbolic id type)
(define-symbolicx id type)

define-symbolic(*) can be used to
create bounded symbolic instances
of complex data types.

> (define-symbolicx xs integer? [4])
> XS

(list xs$0 xs$1 xs$2 xs$3)

> (define-symbolicx len integer?)

> (take xs len)

{[(= 0 1len%$0) ()]
[(= 1 1ens$0) (xs$0)]
[(= 2 1en$0) (xs$0 xs$1)]
[(= 3 1en$0) (xs$0 xs$1 xs$2)]
[(= 4 1en$0) (xs$0 xs$1 xs$2 xs$3)1}

A symbolic list of length up to 4,
consisting of symbolic integers.

Rosette constructs: assert

assert checks that expr evaluates
to a true value.

(define-symbolic id type) > (assert (>= 2 1)) ; passes
(define-symbolicx id type) > (assert (<2 1)) ; fails

(assert expr) assert: failed

Rosette constructs: assert

(define-symbolic id type)
(define-symbolicx id type)

(assert expr)

assert checks that expr evaluates
to a true value.

> (assert (>= 2 1)) ; passes
> (assert (<2 1)) : fails
assert: failed

> (define-symbolickx x integer?)
> (assert (>= x 1))

Symbolic expr gets added to the
assertion store. lts meaning (true

or false) is eventually determined

by the solver in response to
queries.

Rosette constructs: assert

(define-symbolic id type)
(define-symbolicx id type)

(assert expr)

assert checks that expr evaluates
to a true value.

> (assert (>= 2 1)) ; passes
> (assert (<2 1)) : fails
assert: failed

(define-symbolicx x integer?)

(asserts)

>

> (assert (>= x 1))

>

(list (<= 1 x%$0) ...)

Symbolic expr gets added to the
assertion store. lts meaning (true
or false) is eventually determined
by the solver in response to
queries.

Rosette constructs: from assert to verify

Do poly and fact produce the
same output on all inputs!?

(define (poly x)
(define-symbolic id type) (+ (¢ x X X X) (x 6 X X X)
(define-symbolickx id type) (x 11 x x) (x 6 X)))

(assert expr) (define (fact x)

(x X (+ x 1) (+ x 2) (+ x 2)))

(define (same p f Xx)
(assert (= (p x) (f x))))

; some tests ...

> (same poly fact @) ; pass
> (same poly fact -1) ; pass
> (same poly fact -2) ; pass

Rosette constructs: verify

verify searches for a binding of Do poly and fact produce the
symbolic constants to concrete same output on all inputs?
values that causes at least one

assertion in expr to fail.

(define (poly x)

(define-symbolic id type) (+ (¢ x X X X) (x 6 X X X)
(define-symbolicx id type) (x 11 x x) (x 6 X)))
(assert expr) (define (fact x)

(verify expr) (x x (+ x 1) (+ x 2) (+ x 2)))

(define (same p f Xx)
(assert (= (p x) (f x))))

; some tests ...

> (same poly fact @) ; pass
> (same poly fact -1) ; pass
> (same poly fact -2) ; pass

Rosette constructs: verify

verify searches for a binding of
symbolic constants to concrete
values that causes at least one
assertion in expr to fail.

(define-symbolic id type)
(define-symbolicx id type)
(assert expr)

(verify expr)

Do poly and fact produce the
same output on all inputs!?

(define (poly x)
(+ (¢ x x x x) (6 X X X)
(x 11 x x) (x 6 X)))

(define (fact x)
(x X (+ x 1) (+ x 2) (+ x 2)))

(define (same p f Xx)
(assert (= (p x) (f x))))

> (define-symbolic i integer?)
> (verify (same poly fact i)))

Rosette constructs: verify

verify searches for a binding of
symbolic constants to concrete
values that causes at least one
assertion in expr to fail.

(define-symbolic id type)
(define-symbolicx id type)

(assert expr)

(verify expr)

No! The solver finds a concrete
counterexample to the assertion
in same.

Do poly and fact produce the
same output on all inputs!?

(define (poly x)
(+ (¢ x x x x) (6 X X X)
(x 11 x x) (x 6 X)))

(define (fact x)
(x X (+ x 1) (+ x 2) (+ x 2)))

(define (same p f Xx)
(assert (= (p x) (f x))))

> (define-symbolic i integer?)
> (verify (same poly fact i)))
(model [i -6])

Rosette constructs: verify

verify searches for a binding of
symbolic constants to concrete
values that causes at least one
assertion in expr to fail.

(define-symbolic id type)
(define-symbolicx id type)

(assert expr)

(verify expr)

We can store bindings in
variables and evaluate arbitrary
expressions against them.

Do poly and fact produce the
same output on all inputs!?

(define (poly x)
(+ (¢ x x x x) (6 X X X)
(x 11 x x) (x 6 X)))

(define (fact x)
(x X (+ x 1) (+ x 2) (+ x 2)))

(define (same p f Xx)
(assert (= (p x) (f x))))

> (define-symbolic i integer?)
> (define cex

(verify (same poly fact i)))
> (evaluate 1 cex)

—06

Rosette constructs: verify

verify searches for a binding of
symbolic constants to concrete
values that causes at least one
assertion in expr to fail.

(define-symbolic id type)
(define-symbolicx id type)

(assert expr)

(verify expr)

The assertions encountered
while evaluating expr are
removed from the asserts store
once a query (such as verify)
completes.

Do poly and fact produce the
same output on all inputs!?

(define (poly x)
(+ (¢ x x x x) (6 X X X)
(x 11 x x) (x 6 X)))

(define (fact x)
(x X (+ x 1) (+ x 2) (+ x 2)))

(define (same p f Xx)
(assert (= (p x) (f x))))

> (define-symbolic i integer?)
> (define cex

(verify (same poly fact i)))
> (asserts)

(list)

Rosette constructs: from verify to debug

(define-symbolic id type)
(define-symbolicx id type)

(assert expr)

(verify expr)

Why do poly and fact output
different values on the input -6!

(define (poly x)
(+ (¢ x x x x) (6 X X X)
(x 11 x x) (x 6 X)))

(define (fact x)
(x X (+ x 1) (+ x 2) (+ x 2)))

(define (same p f Xx)
(assert (= (p x) (f x))))

Rosette constructs: from verify to debug

debug searches for a minimal Why do poly and fact output
set of expressions of the given different values on the input -6/
types that cause the evaluation

of expr to fail.

(define (poly x)

(define-symbolic id type) (+ (¢ x X X X) (x 6 X X X)
(define-symbolicx id type) (x 11 x x) (x 6 X)))
(assert expr) (define (fact x)

(verify expr) (x x (+ x 1) (+ x 2) (+ x 2)))

(debug [type ...+] expr) (define (same p f Xx)

(assert (= (p x) (f x))))

Rosette constructs: debug

debug searches for a minimal Why do poly and fact output
set of expressions of the given different values on the input -6/
types that cause the evaluation
of expr to fail.

(require rosette/query/debug

(define-symbolic id type) rosette/lib/render)

(define-symbolicx id type) .
y /P (define (poly x)

(assert expr) (+ (* x x x X) (x 6 X X X)

(verify expr) (x 11 x x) (x 6 x)))

(debug [type ...+] expr) (define/debug (fact x)
(x x (+ x 1) (+ x 2) (+ x 2)))

(define (same p f Xx)
(assert (= (p x) (f x))))

To use debug, require the

debugging libraries, mark fact
as the candidate for debugging,
save the module to a file, and (same poly fact -6)))

issue a debug query.

> (render ; visualize the result
(debug [integer?]

Rosette constructs: debug

debug searches for a minimal Why do poly and fact output
set of expressions of the given different values on the input -6?
types that cause the evaluation

of expr to fail.

(require rosette/query/debug

(define-symbolic id type) rosette/lib/render)

(define-symbolicx id type) .
y /P (define (poly x)

(assert expr) (+ (* x x x X) (x 6 X X X)

(verify expr) (x 11 x x) (x 6 x)))
(debug [type ...+] expr)

(% X (+ x 2) (+ x 2))

(define (same p f Xx)
(assert (= (p x) (f x))))

To use debug, require the

debugging libraries, mark fact
as the candidate for debugging,
save the module to a file, and (same poly fact -6)))

issue a debug query.

> (render ; visualize the result
(debug [integer?]

Rosette constructs: from debug to solve

(define-symbolic id type)
(define-symbolicx id type)

(assert expr)

(verify expr)
(debug [type

...+] expr)

Can we repair fact on the
input -6 as suggested by debug!?

(define (poly x)
(+ (¢ x x x x) (6 X X X)
(x 11 x x) (x 6 X)))

(define (fact x)
(x x (+ x 1) (+ x 2) (+ x 2)))

(define (same p f Xx)
(assert (= (p x) (f x))))

Rosette constructs: from debug to solve

solve searches for a binding of
symbolic constants to concrete
values that causes all assertions
in expr to pass.

(define-symbolic id type)
(define-symbolicx id type)

(assert expr)

(verify expr)
(debug [type ...+] expr)
(solve expr)

Can we repair fact on the
input -6 as suggested by debug!?

(define (poly x)
(+ (¢ x x x x) (6 X X X)
(x 11 x x) (x 6 X)))

(define (fact x)
(x x (+ x 1) (+ x 2) (+ x 2)))

(define (same p f Xx)
(assert (= (p x) (f x))))

Rosette constructs: solve

solve searches for a binding of
symbolic constants to concrete
values that causes all assertions
in expr to pass.

(define-symbolic id type)
(define-symbolicx id type)

(assert expr)

(verify expr)
(debug [type ...+] expr)
(solve expr)

Can we repair fact on the
input -6 as suggested by debug!?

(define (poly x)
(+ (¢ x x x x) (6 X X X)
(x 11 x x) (x 6 X)))

(define (fact x)
(define-symbolicx c1 c2 c3 integer?)
(x (+ x c1) (+ x 1) (+ x c2) (+ x c3)))

(define (same p f Xx)
(assert (= (p x) (f x))))

> (solve (same poly fact -6))

Rosette constructs: solve

solve searches for a binding of
symbolic constants to concrete
values that causes all assertions
in expr to pass.

(define-symbolic id type)
(define-symbolicx id type)

(assert expr)

(verify expr)
(debug [type ...+] expr)
(solve expr)

Yes! The solver finds concrete
values for c1, c2, and c3 that
work for the input -6.

Can we repair fact on the
input -6 as suggested by debug!?

(define (poly x)
(+ (¢ x x x x) (6 X X X)
(x 11 x x) (x 6 X)))

(define (fact x)
(define-symbolicx c1 c2 c3 integer?)
(x (+ x c1) (+ x 1) (+ x c2) (+ x c3)))

(define (same p f Xx)
(assert (= (p x) (f x))))

> (solve (same poly fact -6))
(model [c1$0 -66] [c2%$0 7] [c3%0 7])

Rosette constructs: solve many with define-symbolic*

solve searches for a binding of
symbolic constants to concrete
values that causes all assertions
in expr to pass.

(define-symbolic id type)
(define-symbolicx id type)

(assert expr)

(verify expr)
(debug [type ...+] expr)
(solve expr)

Solving same for multiple inputs:
note the behavior of define-
symbolic*.

Can we repair fact on multiple
inputs individually?

(define (poly x)
(+ (¢ x x x x) (6 X X X)
(x 11 x x) (x 6 X)))

(define (fact x)
(define-symbolicx c1 c2 c3 integer?)
(x (+ x c1) (+ x 1) (+ x c2) (+ x c3)))

(define (same p f Xx)
(assert (= (p x) (f x))))

> (solve (begin
(same poly fact -6)
(same poly fact 12)))
(model [c1$1 -66] [c2$1 7] [c3%$1 7]
[c1$2 2508] [c2%$2 -11] [c3%$2 -111])

Rosette constructs: solve many with define-symbolic

solve searches for a binding of
symbolic constants to concrete
values that causes all assertions
in expr to pass.

(define-symbolic id type)
(define-symbolicx id type)

(assert expr)

(verify expr)
(debug [type ...+] expr)
(solve expr)

Solving same for multiple inputs:
note the behavior of define-
symbolic.

Can we repair fact on multiple
inputs simultaneously?

(define (poly x)
(+ (¢ x x x x) (6 X X X)
(x 11 x x) (x 6 X)))

(define (fact x)
(define-symbolic c1 c2 c3 integer?)
(x (+ x cl1) (+ x 1) (+ x c2) (+ x c3)))

(define (same p f Xx)
(assert (= (p x) (f x))))

> (solve (begin
(same poly fact -6)
(same poly fact 12)))
(model [cl 2] [c2 3] [c3 @])

Rosette constructs: from solve to synthesize

Can we repair fact on all
inputs as suggested by solve!

(define (poly x)

(define-symbolic id type) (+ (¢ x X X X) (x 6 X X X)
(define-symbolickx id type) (x 11 x x) (x 6 X)))

(assert expr) (define (fact x)

(verify expr) (define-symbolic c1 c2 c3 integer?)
(debug [type ...+] expr) (x (+ x c1) (+ x 1) (+ x c2) (+ x c3)))

(L0 @00, (define (same p f Xx)

(assert (= (p x) (f x))))

Rosette constructs: synthesize

synthesize searches for a

binding that causes all assertions
in #:guarantee expr to pass for

all bindings of the symbolic

constants in the #:forall expr.

(define-symbolic id type)
(define-symbolicx id type)

(

(
(
(
(

assert expr)

verify expr)

debug [type ...+] expr)
solve expr)

synthesize

#:forall expr
#:quarantee expr)

Can we repair fact on all
inputs as suggested by solve!

(define (poly x)
(+ (¢ x x x x) (6 X X X)
(x 11 x x) (x 6 X)))

(define (fact x)
(define-symbolic c1 c2 c3 integer?)
(x (+ x cl1) (+ x 1) (+ x c2) (+ x c3)))

(define (same p f Xx)
(assert (= (p x) (f x))))

> (define-symbolicx i integer?)
> (synthesize
#:forall 1
#:guarantee (same poly fact 1i))

Rosette constructs: synthesize

synthesize searches for a Can we repair fact on all

binding that causes all assertions inputs as suggested by solve?
in #:guarantee expr to pass for

all bindings of the symbolic

constants in the #:forall expr. (define (poly x)

(define-symbolic id type) (+ (¢ x X X X) (x 6 X X X)
(define-symbolicx id type) (x 11 x x) (x 6 X)))

(assert expr) (define (fact x)

(verify expr) (define-symbolic c1 c2 c3 integer?)
(debug [type ...+] expr) (x (+ x c1) (+ x 1) (+ x c2) (+ x c3)))
(solve expr)

(

(define (same p f Xx)

thesi
synthesize (assert (= (p x) (f x))))

#:forall expr
#:quarantee expr)
> (define-symbolicx i integer?)
Yes! The solver finds concrete > (synthesize

values for c1, c2, and c3 that #:forall 1

st vy I L #:guarantee (same poly fact 1i))

(model [c1l 3] [c2 @] [c3 2])

Rosette constructs: synthesize

synthesize searches for a
binding that causes all assertions
in #:guarantee expr to pass for
all bindings of the symbolic
constants in the #:forall expr.

Can we repair fact on all
inputs as suggested by solve!

(require rosette/lib/synthax)
(define-symbolic id type)
(define-symbolicx id type)

(define (poly x)

(+ (x x x x xX) (k6 X X X)

(assert expr) (x 11 x x) (* 6 x)))
(verify expr) (define (fact x)
(debug [type ...+] expr) (k (+ x (??)) (+ x 1) (+ x (??)) (+ x (?2?7))))
(solve expr) (define (same p f x)
(synthesize (assert (= (p x) (f x))))

#:forall expr

#:guarantee expr) > (define-symbolicx i integer?)

> (print-forms ; print the generated code

To generate code, require the (synthesize
sketching library, save the #:forall i
module to a file,and issue a #:guarantee (same poly fact i)))

synthesize query.

Rosette constructs: synthesize

synthesize searches for a

binding that causes all assertions
in #:guarantee expr to pass for

all bindings of the symbolic
constants in the #:forall expr.

(define-symbolic id type)
(define-symbolicx id type)

(assert expr)

(verify expr)
(debug [type ...+] expr)
(solve expr)
(synthesize
#:forall expr
#:quarantee expr)

To generate code, require the
sketching library, save the
module to a file, and issue a
synthesize query.

Can we repair fact on all
inputs as suggested by solve!

(require rosette/lib/synthax)

(define (poly x)
(+ (x x x x xX) (k6 X X X)
(x 11 x x) (x 6 x)))

(define (fact x)
(x (+ x 3) (+ x 1) (+ x0) (+ x 2)))

(define (same p f x)
(assert (= (p x) (f x))))

> (define-symbolicx i integer?)

> (print-forms ; print the generated code
(synthesize
#:forall i
#:qguarantee (same poly fact i)))

A programming model that RUSETTE
integrates solvers into the

language, providing constructs
for program verification,
synthesis, and more.

Solver-aided programming in two parts:
(1) and (2) going pro

How to use a solver-aided How to build your own
language: the workflow, solver-aided tool via direct
constructs, and gotchas. symbolic evaluation or

language embedding.

Common pitfalls and gotchas

Reasoning precision
Unbounded loops

Unsafe features

“A gotcha is a valid construct in a
system, program or programming
language that works as documented
but is counter-intuitive and almost
invites mistakes because it is both
easy to invoke and unexpected or
unreasonable in its outcome.”

—Wikipedia

Common pitfalls and gotchas: reasoning precision

Reasoning precision

+ Determines if integers and

reals are approximated using
k-bit words or treated as
infinite-precision values.

- Controlled by setting

current-bitwidth to an
integer k > 0 or #f for
approximate or precise
reasoning, respectively.

Common pitfalls and gotchas: reasoning precision

Reasoning precision ; default current-bitwidth 1is #f
> (define-symbolic x integer?)
> (solve (assert (= x 64)))

- Determines if integers and
reals are approximated using
k-bit words or treated as
infinite-precision values.

- Controlled by setting
current-bitwidth to an
integer k > 0 or #f for
approximate or precise
reasoning, respectively.

Common pitfalls and gotchas: reasoning precision

Reasoning precision ; default current-bitwidth is #f
> (define-symbolic x integer?)
> (solve (assert (= x 64)))
(model [x 64])

- Determines if integers and
reals are approximated using
k-bit words or treated as
infinite-precision values.

- Controlled by setting
current-bitwidth to an
integer k > 0 or #f for
approximate or precise
reasoning, respectively.

Common pitfalls and gotchas: reasoning precision

Reasoning precision ; default current-bitwidth is #f
> (define-symbolic x integer?)
> (solve (assert (= x 64)))
(model [x 64])

- Determines if integers and > (verify (assert (not (= x 64))))

reals are approximated using
k-bit words or treated as
infinite-precision values.

- Controlled by setting
current-bitwidth to an
integer k > 0 or #f for
approximate or precise
reasoning, respectively.

Common pitfalls and gotchas: reasoning precision

Reasoning precision ; default current-bitwidth is #f
> (define-symbolic x integer?)
> (solve (assert (= x 64)))
(model [x 64])

- Determines if integers and > (verify (assert (not (= x 64))))

reals are approximated using (model [x 64])
k-bit words or treated as
infinite-precision values.

- Controlled by setting
current-bitwidth to an
integer k > 0 or #f for
approximate or precise
reasoning, respectively.

Common pitfalls and gotchas: reasoning precision

Reasoning precision ; default current-bitwidth is #f
> (define-symbolic x integer?)
> (solve (assert (= x 64)))
(model [x 64])

- Determines if integers and > (verify (assert (not (= x 64))))

reals are approximated using (model [x 64])
k-bit words or treated as

infinite-precision values. (current-bitwidth 5)

>
 Controlled by setting > (solve (assert (= x 64)))
current-bitwidth to an
integer k > 0 or #f for
approximate or precise

reasoning, respectively.

Common pitfalls and gotchas: reasoning precision

Reasoning precision ; default current-bitwidth is #f
> (define-symbolic x integer?)
> (solve (assert (= x 64)))
(model [x 64])

- Determines if integers and > (verify (assert (not (= x 64))))

reals are approximated using (model [x 64])
k-bit words or treated as
infinite-precision values. > (current-bitwidth 5)
+ Controlled by setting > (solve (assert (= x 64)))
current-bitwidth to an (model [x 01)

integer k > 0 or #f for
approximate or precise
reasoning, respectively.

> (verify (assert (not (= x 64))))
(model [x 0])

Common pitfalls and gotchas: unbounded loops

Reasoning precision

Unbounded loops

 Loops and recursion must be

bounded (aka self-finitizing) by

* concrete termination
conditions, or

* upper bounds on size of
iterated (symbolic) data
structures.

- Unbounded loops and

recursion run forever.

Common pitfalls and gotchas: unbounded loops

Reasoning precision (define (search x xs)
(cond

[(null? xs) #f]
[(equal? x (car xs)) #t]

* Loops and recursion must be [else (search x (cdr xs))]))
bounded (aka self-finitizing) by

Unbounded loops

* concrete termination
conditions, or

define-symbolic xs integer? [5])
define-symbolic x1 i integer?)
* upper bounds on size of

iterated (symbolic) data
structures.

(
(
(define ys (take xs x1))
(

vV V V V

verify
(when (<=0 i (- x1 1))

* Unbounded loops and (assert (search (list-ref ys i) ys))))

recursion run forever.

Common pitfalls and gotchas: unbounded loops

Reasoning precision (define (search x xs)
(cond

[(null? xs) #f]
[(equal? x (car xs)) #t]

* Loops and recursion must be [else (search x (cdr xs))]))
bounded (aka self-finitizing) by

Unbounded loops

* concrete termination
conditions, or

define-symbolic xs integer? [5])
define-symbolic x1 i integer?)
* upper bounds on size of

iterated (symbolic) data
structures.

(
(
(define ys (take xs x1))
(

vV V V V

verify
(when (<=0 i (- x1 1))

* Unbounded loops and (assert (search (list-ref ys i) ys))))

recursion run forever.
(unsat)

Terminates because search
iterates over a bounded structure.

Common pitfalls and gotchas: unbounded loops

Reasoning precision

Unbounded loops

* Loops and recursion must be
bounded (aka self-finitizing) by

* concrete termination
conditions, or

* upper bounds on size of
iterated (symbolic) data
structures.

- Unbounded loops and
recursion run forever.

(define (factorial n)
(cond
[(=n 0) 1]
[else (x n (factorial (- n 1)))1))

Common pitfalls and gotchas: unbounded loops

Reasoning precision (define (factorial n)
Unbounded loops (cond
[(=n @) 1]

[else (x n (factorial (- n 1)))1))

* Loops and recursion must be

bounded (aka self-finitizing) by (define-symbolic k integer?)

>
* concrete termination > (solve

conditions, or (assert (> (factorial k) 10)))

* upper bounds on size of
iterated (symbolic) data
structures.

- Unbounded loops and
recursion run forever.

Common pitfalls and gotchas: unbounded loops

Reasoning precision

Unbounded loops

* Loops and recursion must be
bounded (aka self-finitizing) by

* concrete termination
conditions, or

* upper bounds on size of
iterated (symbolic) data
structures.

- Unbounded loops and
recursion run forever.

(define (factorial n)
(cond
[(=n 0) 1]
[else (x n (factorial (- n 1)))1))

> (define-symbolic k integer?)
> (solve
(assert (> (factorial k) 10)))

Unbounded because
factorial termination
depends on k.

Common pitfalls and gotchas: unbounded loops

Reasoning precision

Unbounded loops

* Loops and recursion must be
bounded (aka self-finitizing) by

* concrete termination
conditions, or

* upper bounds on size of
iterated (symbolic) data
structures.

» Unbounded loops and
recursion run forever.

Bound the recursion
with a concrete guard.

(define (factorial n g)
(assert (>= g 0))
(cond
[(=n @) 1]
[else (x n (factorial (- n 1) (- g 1))1))

Common pitfalls and gotchas: unbounded loops

Bound the recursion
with a concrete guard.

Reasoning precision (define (factorial n g)
Unbounded loops (assert (>= g 0))
(cond
[(=n @) 1]
* Loops and recursion must be [else (x n (factorial (- n 1) (- g 1))]))

bounded (aka self-finitizing) by

« concrete termination > (define-symbolic k integer?)
conditions, or > (solve

» upper bounds on size of (assert (> (factorial k 3) 10)))
iterated (symbolic) data
structures.

» Unbounded loops and
recursion run forever.

Common pitfalls and gotchas: unbounded loops

Bound the recursion
with a concrete guard.

Reasoning precision (define (factorial n g)
Unbounded loops (assert (>= g 0))
(cond
[(=n @) 1]
* Loops and recursion must be [else (x n (factorial (- n 1) (- g 1))]))

bounded (aka self-finitizing) by

« concrete termination > (define-symbolic k integer?)
conditions, or > (solve

» upper bounds on size of (assert (> (factorial k 3) 10)))
iterated (symbolic) data
structures. (unsat)

- Unbounded loops and UNSAT because the
) bound is too small to
recursion run forever.

find a solution.

Common pitfalls and gotchas: unbounded loops

Bound the recursion
with a concrete guard.

Reasoning precision (define (factorial n g)
Unbounded loops (assert (>= g 0))
(cond
[(=n @) 1]
* Loops and recursion must be [else (x n (factorial (- n 1) (- g 1))]))

bounded (aka self-finitizing) by

« concrete termination > (define-symbolic k integer?)
conditions, or > (solve

» upper bounds on size of (assert (> (factorial k 4) 10)))
iterated (symbolic) data
structures. (model

- Unbounded loops and [k 41)

recursion run forever.

Make sure the bound is
large enough ...

Common pitfalls and gotchas: unsafe features

Reasoning precision
Unbounded loops

Unsafe features

- Rosette lifts only a core

subset of Racket to operate
on symbolic values. This

includes all constructs in
#lang rosette/safe

« Unlifted constructs can be

used in #lang rosette but
require care: the programmer
must determine when it is
okay for symbolic values to
flow to unlifted code.

Common pitfalls and gotchas: unsafe features

Reasoning precision ; vectors are lifted

Unbounded loops > (define v (vector 1 2))

. _ , ,
Unsafe features > (define-symbolic k integer?)

> (vector-ref v k)

Rosette lifts only a core
subset of Racket to operate
on symbolic values. This

includes all constructs in
#lang rosette/safe

* Unlifted constructs can be
used in #lang rosette but
require care: the programmer
must determine when it is
okay for symbolic values to
flow to unlifted code.

Common pitfalls and gotchas: unsafe features

Reasoning precision ; vectors are lifted

Unbounded loops > (define v (vector 1 2))

. _ , ,
Unsafe features > (define-symbolic k integer?)

> (vector-ref v k)

* Rosette lifts only a core (itex (- (=0 k) 1) (- (=1 k) 2)))

subset of Racket to operate
on symbolic values. This

includes all constructs in
#lang rosette/safe

* Unlifted constructs can be
used in #lang rosette but
require care: the programmer
must determine when it is
okay for symbolic values to
flow to unlifted code.

Common pitfalls and gotchas: unsafe features

Reasoning precision ; vectors are lifted

Unbounded loops > (define v (vector 1 2))

. _ , ,
Unsafe features > (define-symbolic k integer?)

> (vector-ref v k)

* Rosette lifts only a core (itex (- (=0 k) 1) (- (=1 k) 2)))

subset of Racket to operate

on symbolic values. This ; hashes are unlifted

includes all constructs in > (define h (make-hash '((0 . 1)(1 .

#lang rosette/safe
> (hash-ref h k)

* Unlifted constructs can be
used in #lang rosette but
require care: the programmer
must determine when it is
okay for symbolic values to
flow to unlifted code.

Common pitfalls and gotchas: unsafe features

Reasoning precision
Unbounded loops

Unsafe features

Rosette lifts only a core
subset of Racket to operate
on symbolic values. This

includes all constructs in
#lang rosette/safe

* Unlifted constructs can be
used in #lang rosette but
require care: the programmer
must determine when it is
okay for symbolic values to
flow to unlifted code.

: vectors are lifted
> (define v (vector 1 2))

> (define-symbolic k integer?)

> (vector-ref v k)

(itex (- (=0 k) 1) (- (=

* hashes are unlifted

> (define h (make-hash '((@ . 1)(1 .

> (hash-ref h k)

1 k) 2)))

hash—-ref: no value found for key

key: Kk

2))))

Common pitfalls and gotchas: unsafe features

Reasoning precision
Unbounded loops

Unsafe features

Rosette lifts only a core
subset of Racket to operate
on symbolic values. This

includes all constructs in
#lang rosette/safe

* Unlifted constructs can be
used in #lang rosette but
require care: the programmer
must determine when it is
okay for symbolic values to
flow to unlifted code.

: vectors are lifted
> (define v (vector 1 2))

> (define-symbolic k integer?)

> (vector-ref v k)

(itex (- (=0 k) 1) (- (=

* hashes are unlifted

> (define h (make-hash '((@ . 1)(1 .

> (hash-ref h k)

1 k) 2)))

hash—-ref: no value found for key

key: Kk
> (hash-set! h k 3)
> (hash-ref h k)

2))))

Common pitfalls and gotchas: unsafe features

Reasoning precision
Unbounded loops

Unsafe features

Rosette lifts only a core
subset of Racket to operate
on symbolic values. This

includes all constructs in
#lang rosette/safe

* Unlifted constructs can be
used in #lang rosette but
require care: the programmer
must determine when it is
okay for symbolic values to
flow to unlifted code.

: vectors are lifted
> (define v (vector 1 2))

> (define-symbolic k integer?)

> (vector-ref v k)

(itex (- (=0 k) 1) (- (=

* hashes are unlifted

> (define h (make-hash '((@ . 1)(1 .

> (hash-ref h k)

1 k) 2)))

hash—-ref: no value found for key

key: Kk
> (hash-set! h k 3)
> (hash-ref h k)
3

2))))

A programming model that
integrates solvers into the
language, providing constructs
for program verification,
synthesis, and more.

getting started

How to use a solver-aided
language: the workflow,
constructs, and gotchas.

RUSETTE

emina.github.io/rosette/

https://emina.github.io/rosette/

sSummary

Today
» Course overview & logistics

* Getting started with solver-aided programming

NeXxt lecture

* Going pro with solver-aided programming

