
CSE 507: Computer-Aided Reasoning for Software Spring 2018

Homework Assignment 2
Due: May 04, 2018 at 11:00pm

Total points: 100
Deliverables: hw2.pdf containing typeset solutions to Problems 1-13.

tree.als containing your Alloy encoding for Problems 7-10.
verifier containing your implementation for Problem 12.

1 Theory of Equality and Uninterpreted Functions (15 points)

1. (5 points) Apply the congruence closure algorithm to decide the satisfiability of the following T=

formula:
f(g(x)) = g(f(x)) ∧ f(g(f(y))) = x ∧ f(y) = x ∧ g(f(x)) 6= x

Provide the level of detail as in Lecture 05. In particular, show the intermediate partitions (sets of
congruence classes) after each merger or propagation step, together with a brief explanation of how
the algorithm arrived at that partition (e.g., “according to the literal f(x) = y, merge f(x) with y”).

2. Consider the following program fragments, where all variables are 32-bit integers:

P1:

return (x1 + y1) * (x2 + y2)

P2:

u1 = (x1 + y1)
u2 = (x2 + y2)
return (u1 * u2)

(a) (5 points) Use Bounded Model Checking (BMC) to construct a formula in the theory of equality
(T=) that is unsatisfiable iff P1 and P2 are equivalent ignoring the semantics of 32-bit addition and
multiplication. Use variables r1 and r2 to stand for the return values of P1 and P2, respectively.

(b) (5 points) Construct a program P3 such that P3 is equivalent to P1, but the equivalence of P1

and P3 cannot be proven without considering some aspect of the semantics of 32-bit addition or
multiplication. In particular, P3 should be constructed by modifying exactly one expression
in P2. The BMC formula for checking the equivalence of P1 and P3 must be satisfiable in T= but
unsatisfiable in the theory of bitvectors (Tbv); provide a brief explanation of why this is true for
your P3.

1 of 5

https://courses.cs.washington.edu/courses/cse507/18sp/doc/L05.pdf

CSE 507: Computer-Aided Reasoning for Software
Spring 2018

Homework Assignment 2
Due: May 04, 2018 at 11:00pm

2 Combining Theories with Nelson-Oppen (35 points)

3. Consider the following formula in T= ∪ TR:

g(x+ y, z) = f(g(x, y)) ∧ x+ z = y ∧ z ≥ 0 ∧ x ≥ y ∧ g(x, x) = z ∧ f(z) 6= g(2x, 0)

(a) (5 points) Purify the formula and show the resulting T= and TR formulas. Show the purification
results using the table below. Apply purification to the (current) innermost term first. If there
are several innermost terms, prefer the leftmost one. Use ai to refer to the ith auxiliary literal,
starting with a1. All occurrences of the same term should be mapped to the same auxiliary literal.
You do not need to show the individual steps of the purification process, just the final result.

T= TR

.

(b) (5 points) Use the Nelson-Oppen procedure to decide the satisfiability of the purified formula. In
one sentence, state which version of the procedure you are using and justify your choice. Show
the equality propagation by filling out the table below. If Ti infers the jth equality (or disjunction
of equalities), enter it into the jth row and ith column only—leave the remaining column in that
row empty.

T= TR

.

4. (5 points) Recall that the theory of arrays TA = {read,write,=} is defined by the following axioms.

∀a, i, j. i = j → read(a, i) = read(a, j)
∀a, v, i, j. i = j → read(write(a, i, v), j) = v
∀a, v, i, j. i 6= j → read(write(a, i, v), j) = read(a, j)

Prove that TA is not convex by constructing n ≥ 3 formulas in TA such that F1 ⇒ (F2 ∨ . . . ∨ Fn) but
F1 6⇒ Fi for any i ∈ [2 . . . n].

5. (10 points) Prove that the theory of equality T= is convex.

6. (10 points) Let F be a conjunctive formula in a non-convex theory T . Let G be a finite disjunction of
equalities

∨n
i=1 ui = vi, also in T , such that F ⇒ G. Describe an algorithm for computing a minimal

disjunction G′ of the equalities in G such that F ⇒ G′. If your algorithm returns a minimal disjunction
with m equalities, then it should have invoked the decision procedure for T at most O(m log n) times.

2 of 5

CSE 507: Computer-Aided Reasoning for Software
Spring 2018

Homework Assignment 2
Due: May 04, 2018 at 11:00pm

3 Finite Model Finding with Alloy (20 points)

Node3

Node2

Node4

Node0 Node1

Figure 1: A tree is a binary re-
lation between nodes.

In this part of the assignment, you will write four short Alloy specifications
and check their correctness with the help of Alloy’s finite model finder (Lec-
ture 08). To start, download alloy.jar and double click on it to launch the
tool. You may also want to skim Parts 1 and 2 of the Alloy tutorial.

The following questions ask you to formally define different kinds of tree
data structures. We will only consider trees that have directed edges and
no unconnected nodes. Such a tree is fully described by its set of edges. In
Alloy, we model the edges of a tree (or, more generally, a graph) as a binary
relation from nodes to nodes.

A skeleton solution can be found in tree.als. Complete the missing defi-
nitions and submit your copy of tree.als. Solutions will be automatically
checked against a reference specification, so they need to be fully contained
in the submitted file.

7. (5 points) A tree is a graph that satisfies additional properties. What are those properties? Formalize
them by completing the definition of the tree predicate in tree.als. Use the Alloy tool to check that
your definition is correct (i.e., it rejects relations that are not trees) and non-vacuous (i.e., it admits
some relations) in a universe with a small number of nodes.

8. (5 points) Formalize the properties of a spanning tree (of a directed graph) by completing the definition
of the spanningTree predicate in tree.als. Check your definition for correctness and vacuity errors.

9. (5 points) Define binary trees in terms of their left and right relations, which map tree nodes to their
left and right children (if any), respectively. Use your definition to complete the binaryTree predicate
in tree.als. Check your definition for correctness and vacuity errors.

10. (5 points) Define binary search trees in terms of their left, right, and key relations. As above, the left
and right relations map tree nodes to their left and right children (if any). The key relation maps tree
nodes to integer keys. Use your definition to complete the binarySearchTree predicate in tree.als.
Check your definition for correctness and vacuity errors.

3 of 5

http://alloytools.org/
https://courses.cs.washington.edu/courses/cse507/18sp/doc/L08.pdf
https://courses.cs.washington.edu/courses/cse507/18sp/doc/L08.pdf
http://alloytools.org/download/alloy4.2_2015-02-22.jar
http://alloytools.org/tutorials/day-course/s1_logic.pdf
http://alloytools.org/tutorials/day-course/s2_language.pdf
http://alloytools.org/tutorials/day-course/
https://gitlab.cs.washington.edu/cse507/hw18sp/blob/master/hw2/alloy/tree.als
https://gitlab.cs.washington.edu/cse507/hw18sp/blob/master/hw2/alloy/tree.als
https://gitlab.cs.washington.edu/cse507/hw18sp/blob/master/hw2/alloy/tree.als
https://gitlab.cs.washington.edu/cse507/hw18sp/blob/master/hw2/alloy/tree.als
https://gitlab.cs.washington.edu/cse507/hw18sp/blob/master/hw2/alloy/tree.als
https://gitlab.cs.washington.edu/cse507/hw18sp/blob/master/hw2/alloy/tree.als

CSE 507: Computer-Aided Reasoning for Software
Spring 2018

Homework Assignment 2
Due: May 04, 2018 at 11:00pm

4 A Verifier for Superoptimization (30 points)

Superoptimization is the task of replacing a given loop-free sequence of instructions with an equivalent se-
quence that is better according to some metric (e.g., shorter). Modern superoptimizers work by employing
various forms of the guess-and-check strategy: given a sequence s of instructions, they guess a better re-
placement sequence r, and then they check that s and r are equivalent. In this problem, you will develop
a simple SMT-based verifier for superoptimization. Given two loop-free sequences of 32-bit integer instruc-
tions, your verifier will either confirm that they are equivalent or, if they are not, it will produce a concrete
counterexample—an input on which the two sequences produce different outputs.

The verifier will accept programs in the BV language, which has the following grammar:
Prog := (define-fragment (id id∗) Stmt∗ Ret)
Stmt := (define id Expr) | (set! id Expr)
Ret := (return Expr)
Expr := id | const | (if Expr Expr Expr) | (unary-op Expr) |

(binary-op Expr Expr) | (nary-op Expr+)
unary-op := bvneg | bvnot
binary-op := = | bvule | bvult | bvuge | bvugt | bvsle | bvslt | bvsge | bvsgt |

bvsdiv | bvsrem | bvshl | bvlshr | bvashr | bvsub
nary-op := bvor | bvand | bvxor | bvadd | bvmul
id := identifier
const := 32-bit integer | true | false

Assume the following well-formedness rules for programs, which your verifier does not need to check:

1. an identifier is not used before it is defined;

2. an identifier is not defined more than once;

3. the first sub-expression of an if-expression is of type boolean, and its remaining subexpressions have
the same type.

The statement (set! id Expr) assigns the value of Expr to the variable id; the types of id and Expr must
match. The inputs to a fragment are 32-bit integers.

The operators in the BV language have the same semantics as the corresponding operators in Tbv (see the Z3
tutorial on bitvectors). For example, the following BV programs correspond to P1 and P2 from Problem 2:

(define-fragment (P1 x1 y1 x2 y2)
(return (bvmul (bvadd x1 y1) (bvadd x2 y2))))

(define-fragment (P2 x1 y1 x2 y2)
(define u1 (bvadd x1 y1))
(define u2 (bvadd x2 y2))
(return (bvmul u1 u2)))

11. (5 points) The grammar for the BV language is designed in such a way that you do not need to convert
a BV program to Static Single Assignment (SSA) form before translating it to bit vector logic. Explain
in a few sentences what property of this grammar allows you to avoid SSA conversion.

12. (20 points) Implement a BMC verifier for the BV language in Racket, using the solution skeleton in the
simple-verifier directory. See the README.md file for instructions on using the skeleton with Z3.

Your verifier (see verifier.rkt) should take as input two BV program fragments (examples.rkt
and bv.rkt); produce a QF_BV formula that is unsatisfiable iff the programs are equivalent; invoke
Z3 on the generated formula (solver.rkt); and decode Z3’s output as follows. If the programs are

4 of 5

http://rise4fun.com/z3/tutorial
http://rise4fun.com/z3/tutorial
http://racket-lang.org
https://gitlab.cs.washington.edu/cse507/hw18sp/blob/master/hw2/simple-verifier
https://gitlab.cs.washington.edu/cse507/hw18sp/blob/master/hw2/README.md
https://github.com/z3prover/z3
https://gitlab.cs.washington.edu/cse507/hw18sp/blob/master/hw2/simple-verifier/verifier.rkt
https://gitlab.cs.washington.edu/cse507/hw18sp/blob/master/hw2/simple-verifier/examples.rkt
https://gitlab.cs.washington.edu/cse507/hw18sp/blob/master/hw2/simple-verifier/bv.rkt
https://gitlab.cs.washington.edu/cse507/hw18sp/blob/master/hw2/simple-verifier/solver.rkt

CSE 507: Computer-Aided Reasoning for Software
Spring 2018

Homework Assignment 2
Due: May 04, 2018 at 11:00pm

equivalent, the verifier should return ’EQUIVALENT; otherwise it should return an input, expressed as
a list of integers, on which the fragments produce a different output.

Inputs to the two programs should be the only unknowns (i.e., bitvector constants) in the QF_BV formula
produced by your verifier. This means that the verifier cannot use additional constants to represent
the values of program expressions and statements. But it should also not inline the translations of
individual expressions. For example, consider the following BV fragment:

(define-fragment (toy b c)
(define a (bvmul b c))
(return (bvadd a a)))

The encoding may introduce two unknowns to represent the input variables b and c. But it may not
translate the first statement by emitting an SMT-LIB equality assertion such as (assert (= a (bvmul b c))),
where a is a fresh unknown. Similarly, it may not translate the return statement by inlining the en-
coding of the first statement, i.e., (bvadd (bvmul b c) (bvmul b c)).

(Hint: Your encoding may use SMT-LIB definitions, introduced by define-fun.)

Your entire encoding should fit into the verifier.rkt file. In particular, the verify-all procedure
in tests.rkt (see Problem 13) should be executable just by placing your verifier.rkt into the
simple-verifier directory, without modifying any supporting files. Your encoding will be tested and
graded automatically, so it is important for the implementation to be self-contained, and to adhere to
the input/output specification given above.

13. (5 points) Run your verifier on the benchmarks in tests.rkt and record the outcomes in table format:

Benchmark Outcome Time (ms)
max1 ≡ max2 EQUIVALENT or counterexample (57, 42) k
...

...
...

(Note: We will also test your code on additional benchmarks that are not included in tests.rkt.
To make sure that your verifier works correctly, you will need to write additional tests of your own,
especially for corner cases.)

5 of 5

https://gitlab.cs.washington.edu/cse507/hw18sp/blob/master/hw2/simple-verifier/verifier.rkt
https://gitlab.cs.washington.edu/cse507/hw18sp/blob/master/hw2/simple-verifier/tests.rkt
https://gitlab.cs.washington.edu/cse507/hw18sp/blob/master/hw2/simple-verifier/verifier.rkt
https://gitlab.cs.washington.edu/cse507/hw18sp/blob/master/hw2/simple-verifier
https://gitlab.cs.washington.edu/cse507/hw18sp/blob/master/hw2/simple-verifier/tests.rkt
https://gitlab.cs.washington.edu/cse507/hw18sp/blob/master/hw2/simple-verifier/tests.rkt

	Theory of Equality and Uninterpreted Functions (15 points)
	Combining Theories with Nelson-Oppen (35 points)
	Finite Model Finding with Alloy (20 points)
	A Verifier for Superoptimization (30 points)

