
CSE507
Computer-Aided Reasoning for Software

Emina Torlak
emina@cs.washington.edu

courses.cs.washington.edu/courses/cse507/18sp/

Solver-Aided Languages

http://courses.cs.washington.edu/courses/cse507/18sp/index.html

Today

 2

Last lecture
• Program synthesis

Today
• Solver-aided languages

Announcements
• Next Wednesday: guest lecture by James Bornholt

• Project presentations next Friday in class
• 13 min per team: 10 min presentation + 3 min questions

• Project reports and prototypes due next Friday at 11:00pm to
pi

cs

How to build your own solver-aided tool

The classic (hard) way to build a tool
What is hard about building a solver-aided tool?

An easier way: tools as languages
How to build tools by stacking layers of languages.

Behind the scenes: symbolic virtual machine
How Rosette works so you don’t have to.

A last look: a few recent applications
Cool tools built with Rosette!

SDSL

SVM

SMT

The classic (hard) way to build a tool

How to build your own solver-aided tool

The classic (hard) way to build a tool
What is hard about building a solver-aided tool?

An easier way: tools as languages
How to build tools by stacking layers of languages.

Behind the scenes: symbolic virtual machine
How Rosette works so you don’t have to.

A last look: a few recent applications
Cool tools built with Rosette!

SDSL

SVM

SMT

The classic (hard) way to build a tool

The classic (hard) way to build a tool

SMT solversolver-aided tool

assert safe(x, P(x))
?

P(x) {
…
…

}

Recall the solver-aided programming tool
chain: the tool reduces a query about
program behavior to an SMT problem.

specification

Find an input on which the program fails.P(x) {
…
…

}
assert safe(x, P(x))

∃x . ¬safe(x, P(x))

42

SMT solver

verify
debug
solve
synthesize

The classic (hard) way to build a tool

solver-aided tool

Find an input on which the program fails.

Localize bad parts of the program.

assert safe(x, P(x))

∃x . ¬safe(x, P(x))

x = 42 ⋀ safe(x, P(x))

42

SMT solver

verify
debug
solve
synthesize

P(x) {
v = x + 2
…

}

The classic (hard) way to build a tool

solver-aided tool

Find an input on which the program fails.

Localize bad parts of the program.

Find values that repair the failing run.

assert safe(x, P(x))

∃x . ¬safe(x, P(x))

x = 42 ⋀ safe(x, P(x))

∃v . safe(42, Pv(42))

42

SMT solver

verify
debug
solve
synthesize

P(x) {
v = choice()
…

}

40

The classic (hard) way to build a tool

solver-aided tool

Find an input on which the program fails.

Localize bad parts of the program.

Find values that repair the failing run.

Find code that repairs the program.assert safe(x, P(x))

∃x . ¬safe(x, P(x))

x = 42 ⋀ safe(x, P(x))

∃v . safe(42, Pv(42))

∃e.∀x. safe(x, Pe(x))

SMT solver

verify
debug
solve
synthesize

P(x) {
v = ??
…

}

x-2

The classic (hard) way to build a tool

solver-aided tool

SMT solver

The classic (hard) way to build a tool

solver-aided tool

P(x)

symbolic
compiler

assert safe(x, P(x))

verify
debug
solve
synthesize

P(x) {
…
…

}

What all queries have in common: they
need to translate programs to constraints!

 9

SMT solver

The classic (hard) way to build a tool

 10

P(x)

expertise in PL, FM, SE

symbolic
compiler

assert safe(x, P(x))

verify
debug
solve
synthesize

P(x) {
…
…

}

SDSL

programming

Wanted: an easier way to build tools

 11

an interpreter
for the source

language

assert safe(x, P(x))

verify
debug
solve
synthesize

P(x) {
…
…

}

SMTSVM

ROSETTE

SMT solversymbolic virtual
machine

programming

Wanted: an easier way to build tools

 12

assert safe(x, P(x))

verify
debug
solve
synthesize

P(x) {
…
…

}

SDSLan interpreter
for the source

language

SMTSVM

ROSETTE

SMT solversymbolic virtual
machine

Wanted: an easier way to build tools

 12

[Torlak & Bodik, PLDI’14]

Technical challenge:
how to efficiently
translate a program
and its interpreter?assert safe(x, P(x))

verify
debug
solve
synthesize

P(x) {
…
…

}

SDSLan interpreter
for the source

language

How to build your own solver-aided tool

The classic (hard) way to build a tool
What is hard about building a solver-aided tool?

An easier way: tools as languages
How to build tools by stacking layers of languages.

Behind the scenes: symbolic virtual machine
How Rosette works so you don’t have to.

A last look: a few recent applications
Cool tools built with Rosette!

SVM

SMT

The classic (hard) way to build a tool

SDSL

domain-specific language
(DSL)

Layers of classic languages: DSLs and hosts

 14

host language

A formal language that is
specialized to a particular
application domain and often
limited in capability.

A high-level language for
implementing DSLs, usually
with meta-programming
features.

domain-specific language
(DSL)

Layers of classic languages: DSLs and hosts

 14

host language

library
(shallow)
embedding

interpreter
(deep)
embedding

A formal language that is
specialized to a particular
application domain and often
limited in capability.

A high-level language for
implementing DSLs, usually
with meta-programming
features.

domain-specific language
(DSL)

Layers of classic languages: many DSLs and hosts

 15

host language

library
(shallow)
embedding

interpreter
(deep)
embedding

artificial intelligence
Church, BLOG

databases
SQL, Datalog

hardware design
Bluespec, Chisel, Verilog, VHDL

math and statistics
Eigen, Matlab, R

layout and visualization
LaTex, dot, dygraphs, D3

Racket, Scala, JavaScript, …

C = A * Bdomain-specific language
(DSL)

Layers of classic languages: why DSLs?

 16

host language

library
(shallow)
embedding

interpreter
(deep)
embedding C / Java

Eigen / Matlab

for (i = 0; i < n; i++)
 for (j = 0; j < m; j++)
 for (k = 0; k < p; k++)
 C[i][k] += A[i][j] * B[j][k]

C = A * Bdomain-specific language
(DSL)

Layers of classic languages: why DSLs?

 16

host language

library
(shallow)
embedding

interpreter
(deep)
embedding C / Java

Eigen / Matlab

[associativity]C = A * B

for (i = 0; i < n; i++)
 for (j = 0; j < m; j++)
 for (k = 0; k < p; k++)
 C[i][k] += A[i][j] * B[j][k]

Easier for people to read,
write, and get right.

Easier for tools to analyze.

solver-aided domain-
specific language (SDSL)

Layers of solver-aided languages

 17

solver-aided host language

library
(shallow)
embedding

interpreter
(deep)
embedding

solver-aided domain-
specific language (SDSL)

Layers of solver-aided languages: tools as SDSLs

 18

library
(shallow)
embedding

interpreter
(deep)
embedding

education and games
Enlearn, RuleSy (VMCAI’18),
Nonograms (FDG’17), UCB feedback
generator (ITiCSE'17)

synthesis-aided compilation
LinkiTools, Chlorophyll (PLDI’14),
GreenThumb (ASPLOS’16)

type system soundness
Bonsai (POPL’18)

computer architecture
MemSynth (PLDI’17)

databases
Cosette (CIDR’17)

radiation therapy control
Neutrons (CAV’16)

… and more

ROSETTE

solver-aided domain-
specific language (SDSL)

Layers of solver-aided languages: tools as SDSLs

 18

library
(shallow)
embedding

interpreter
(deep)
embedding

education and games
Enlearn, RuleSy (VMCAI’18),
Nonograms (FDG’17), UCB feedback
generator (ITiCSE'17)

synthesis-aided compilation
LinkiTools, Chlorophyll (PLDI’14),
GreenThumb (ASPLOS’16)

type system soundness
Bonsai (POPL’18)

computer architecture
MemSynth (PLDI’17)

databases
Cosette (CIDR’17)

radiation therapy control
Neutrons (CAV’16)

… and more

ROSETTE

education and games
Enlearn, RuleSy (VMCAI’18),
Nonograms (FDG’17), UCB feedback
generator (ITiCSE'17)

synthesis-aided compilation
LinkiTools, Chlorophyll (PLDI’14),
GreenThumb (ASPLOS’16)

type system soundness
Bonsai (POPL’18)

computer architecture
MemSynth (PLDI’17)

databases
Cosette (CIDR’17)

radiation therapy control
Neutrons (CAV’16)

… and more

The anatomy of a solver-aided host language

assertions

symbolic
values

queries
= +

(define-symbolic id type)
(define-symbolic* id type)

(assert expr)

(verify expr)
(debug [type ...+] expr)
(solve expr)
(synthesize
 #:forall expr
 #:guarantee expr)

A tiny example SDSL

BV: A tiny assembly-like
language for writing fast, low-
level library functions.

 20

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

A tiny example SDSL

BV: A tiny assembly-like
language for writing fast, low-
level library functions.

 20

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

We want to test, verify,
debug, and synthesize
programs in the BV SDSL.

A tiny example SDSL

BV: A tiny assembly-like
language for writing fast, low-
level library functions.

 20

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

We want to test, verify,
debug, and synthesize
programs in the BV SDSL.

1. interpreter [10 LOC]

2. verifier [free]

3. debugger [free]

4. synthesizer [free]

 21

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> bvmax(-2, -1)

A tiny example SDSL ROSETTE

(define bvmax
 `((2 bvsge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

 21

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> bvmax(-2, -1)

A tiny example SDSL

parse

ROSETTE

(define bvmax
 `((2 bvsge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

(define bvmax
 `((2 bvsge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

 21

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> bvmax(-2, -1)

A tiny example SDSL

parse

ROSETTE

(out opcode in ...)

 22

(define bvmax
 `((2 bvsge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

A tiny example SDSL ROSETTE

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> bvmax(-2, -1)
-1

(define (interpret prog inputs)
 (make-registers prog inputs)
 (for ([stmt prog])
 (match stmt
 [(list out opcode in ...)
 (define op (eval opcode))
 (define args (map load in))
 (store out (apply op args))]))
 (load (last)))

interpret

`(-2 -1)

 22

(define bvmax
 `((2 bvsge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

A tiny example SDSL ROSETTE

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> bvmax(-2, -1)
-1

(define (interpret prog inputs)
 (make-registers prog inputs)
 (for ([stmt prog])
 (match stmt
 [(list out opcode in ...)
 (define op (eval opcode))
 (define args (map load in))
 (store out (apply op args))]))
 (load (last)))

interpret

0 -2
1 -1
2 0
3 0
4 -2
5 0
6 -1

 22

(define bvmax
 `((2 bvsge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

A tiny example SDSL ROSETTE

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> bvmax(-2, -1)
-1

(define (interpret prog inputs)
 (make-registers prog inputs)
 (for ([stmt prog])
 (match stmt
 [(list out opcode in ...)
 (define op (eval opcode))
 (define args (map load in))
 (store out (apply op args))]))
 (load (last)))

interpret

0 -2
1 -1
2 0
3 0
4 -2
5 0
6 -1

(2 bvsge 0 1)

 22

(define bvmax
 `((2 bvsge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

A tiny example SDSL ROSETTE

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> bvmax(-2, -1)
-1

(define (interpret prog inputs)
 (make-registers prog inputs)
 (for ([stmt prog])
 (match stmt
 [(list out opcode in ...)
 (define op (eval opcode))
 (define args (map load in))
 (store out (apply op args))]))
 (load (last)))

interpret

0 -2
1 -1
2 0
3 0
4 -2
5 0
6 -1

(2 bvsge 0 1)

 22

(define bvmax
 `((2 bvsge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

A tiny example SDSL ROSETTE

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> bvmax(-2, -1)
-1

(define (interpret prog inputs)
 (make-registers prog inputs)
 (for ([stmt prog])
 (match stmt
 [(list out opcode in ...)
 (define op (eval opcode))
 (define args (map load in))
 (store out (apply op args))]))
 (load (last)))

interpret

0 -2
1 -1
2 0
3 0
4 -2
5 0
6 -1

(2 bvsge 0 1)

 22

(define bvmax
 `((2 bvsge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

A tiny example SDSL ROSETTE

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> bvmax(-2, -1)
-1

(define (interpret prog inputs)
 (make-registers prog inputs)
 (for ([stmt prog])
 (match stmt
 [(list out opcode in ...)
 (define op (eval opcode))
 (define args (map load in))
 (store out (apply op args))]))
 (load (last)))

interpret

0 -2
1 -1
2 0
3 0
4 -2
5 0
6 -1

(2 bvsge 0 1)

 22

(define bvmax
 `((2 bvsge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

A tiny example SDSL ROSETTE

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> bvmax(-2, -1)
-1

(define (interpret prog inputs)
 (make-registers prog inputs)
 (for ([stmt prog])
 (match stmt
 [(list out opcode in ...)
 (define op (eval opcode))
 (define args (map load in))
 (store out (apply op args))]))
 (load (last)))

interpret

0 -2
1 -1
2 0
3 0
4 -2
5 0
6 -1

(define bvmax
 `((2 bvsge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

(2 bvsge 0 1)

 22

(define bvmax
 `((2 bvsge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

A tiny example SDSL ROSETTE

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> bvmax(-2, -1)
-1

(define (interpret prog inputs)
 (make-registers prog inputs)
 (for ([stmt prog])
 (match stmt
 [(list out opcode in ...)
 (define op (eval opcode))
 (define args (map load in))
 (store out (apply op args))]))
 (load (last)))

interpret

0 -2
1 -1
2 0
3 0
4 -2
5 0
6 -1

(define bvmax
 `((2 bvsge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

(2 bvsge 0 1)

 23

A tiny example SDSL ROSETTE

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> bvmax(-2, -1)
-1

(define bvmax
 `((2 bvsge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

‣ pattern matching
‣ dynamic evaluation
‣ first-class & higher-

order procedures
‣ side effects

(define (interpret prog inputs)
 (make-registers prog inputs)
 (for ([stmt prog])
 (match stmt
 [(list out opcode in ...)
 (define op (eval opcode))
 (define args (map load in))
 (store out (apply op args))]))
 (load (last)))

 24

A tiny example SDSL ROSETTE

(define-symbolic* in (bitvector 32) [2])
(verify
 (assert (equal? (interpret bvmax in)
 (interpret max in))))

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> verify(bvmax, max)
(0, -2)

> bvmax(0, -2)
-1

query

 24

A tiny example SDSL ROSETTE

(define-symbolic* in (bitvector 32) [2])
(verify
 (assert (equal? (interpret bvmax in)
 (interpret max in))))

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> verify(bvmax, max)
(0, -2)

> bvmax(0, -2)
-1

query

 24

A tiny example SDSL ROSETTE

(define-symbolic* in (bitvector 32) [2])
(verify
 (assert (equal? (interpret bvmax in)
 (interpret max in))))

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> verify(bvmax, max)
(0, -2)

> bvmax(0, -2)
-1

query

 25

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> debug(bvmax, max,‘(0, -2))

A tiny example SDSL ROSETTE

(define in (list (bv 0 32) (bv -2 32)))
(debug [integer?]
 (assert (equal? (interpret bvmax in)
 (interpret max in))))

query

 25

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> debug(bvmax, max,‘(0, -2))

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

A tiny example SDSL ROSETTE

(define in (list (bv 0 32) (bv -2 32)))
(debug [integer?]
 (assert (equal? (interpret bvmax in)
 (interpret max in))))

query

 26

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(??, ??)
 r5 = bvand(r3, ??)
 r6 = bvxor(??, ??)
 return r6

> synthesize(bvmax, max)

A tiny example SDSL ROSETTE

(define-symbolic* in (bitvector 32) [2])
(synthesize
 #:forall in
 #:guarantee
 (assert (equal? (interpret bvmax in)
 (interpret max in)))))

query

 26

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(??, ??)
 r5 = bvand(r3, ??)
 r6 = bvxor(??, ??)
 return r6

> synthesize(bvmax, max)

def bvmax(r0, r1) :
 r2 = bvsge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r1)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

A tiny example SDSL ROSETTE

(define-symbolic* in (bitvector 32) [2])
(synthesize
 #:forall in
 #:guarantee
 (assert (equal? (interpret bvmax in)
 (interpret max in)))))

query

How to build your own solver-aided tool

The classic (hard) way to build a tool
What is hard about building a solver-aided tool?

An easier way: tools as languages
How to build tools by stacking layers of languages.

Behind the scenes: symbolic virtual machine
How Rosette works so you don’t have to.

A last look: a few recent applications
Cool tools built with Rosette!

SVM

SMT

The classic (hard) way to build a tool

SDSL

SMT solver
Z3

ROSETTE

How it all works: a big picture view

 28

SDSL

program

query

Symbolic
Virtual

Machine

SMT solver
Z3

ROSETTE

How it all works: a big picture view

 28

SDSL

program

query result

Symbolic
Virtual

Machine

SMT solver
Z3

ROSETTE

How it all works: a big picture view

 28

SDSL

program

query result

‣ pattern matching
‣ dynamic evaluation
‣ first-class procedures
‣ higher-order procedures
‣ side effects
‣ macros

theories of bitvectors,
integers, reals, and
uninterpreted functions

Symbolic
Virtual

Machine

(3, 1, -2) (1, 3)

Translation to constraints by example

 29

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

reverse and filter, keeping
only positive numbers

vs ps

(3, 1, -2) (1, 3)

Translation to constraints by example

 29

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

vs ps

Translation to constraints by example

 29

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

vs psconstraints

 (a, b)

Translation to constraints by example

 29

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

vs psconstraints

a>0 ∧ b>0 (a, b)

Translation to constraints by example

 29

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

vs psconstraints

Design space of precise symbolic encodings

 30

symbolic execution

bounded model checkingsolve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

{ }a > 0
b ≤ 0
false

Design space of precise symbolic encodings

 30

a > 0

b ≤ 0

ps ↦ (a)

ps ↦ (a)

vs ↦ (a, b)
ps ↦ ()

symbolic execution

bounded model checkingsolve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

{ }a > 0
b ≤ 0
false

∨ ∨ ∨

Design space of precise symbolic encodings

 30

a > 0

b ≤ 0

ps ↦ (a)

ps ↦ (a)

vs ↦ (a, b)
ps ↦ ()

b > 0b > 0

ps ↦ (b) ps ↦ (b, a)

{ }a ≤ 0
b > 0
false

{ }a > 0
b > 0
true

a ≤ 0

b ≤ 0

ps ↦ ()

ps ↦ ()

{ }a ≤ 0
b ≤ 0
false

symbolic execution

bounded model checkingsolve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

vs ↦ (a, b)
ps ↦ ()

ps ↦ (a)

ps ↦ ps0

ps ↦ ()

{ }a > 0
b ≤ 0
false

∨ ∨ ∨

Design space of precise symbolic encodings

 30

a > 0a ≤ 0

ps0 = ite(a > 0, (a), ())
ps1 = insert(b, ps0)
ps2 = ite(b > 0, ps0, ps1)
assert len(ps2) = 2

a > 0

b ≤ 0

ps ↦ (a)

ps ↦ (a)

vs ↦ (a, b)
ps ↦ ()

b > 0b > 0

ps ↦ (b) ps ↦ (b, a)

{ }a ≤ 0
b > 0
false

{ }a > 0
b > 0
true

a ≤ 0

b ≤ 0

ps ↦ ()

ps ↦ ()

{ }a ≤ 0
b ≤ 0
false

symbolic execution

bounded model checkingsolve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

vs ↦ (a, b)
ps ↦ ()

ps ↦ (a)

ps ↦ ps0

ps ↦ ()

ps ↦ ps1

{ }a > 0
b ≤ 0
false

∨ ∨ ∨

Design space of precise symbolic encodings

 30

a > 0a ≤ 0

ps0 = ite(a > 0, (a), ())
ps1 = insert(b, ps0)
ps2 = ite(b > 0, ps0, ps1)
assert len(ps2) = 2

a > 0

b ≤ 0

ps ↦ (a)

ps ↦ (a)

vs ↦ (a, b)
ps ↦ ()

b > 0b > 0

ps ↦ (b) ps ↦ (b, a)

{ }a ≤ 0
b > 0
false

{ }a > 0
b > 0
true

a ≤ 0

b ≤ 0

ps ↦ ()

ps ↦ ()

{ }a ≤ 0
b ≤ 0
false

symbolic execution

bounded model checking

b > 0

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

vs ↦ (a, b)
ps ↦ ()

ps ↦ (a)

ps ↦ ps0

ps ↦ ()

ps ↦ ps1

ps ↦ ps2

ps ↦ ps0

{ }a > 0
b ≤ 0
false

∨ ∨ ∨

Design space of precise symbolic encodings

 30

a > 0a ≤ 0

ps0 = ite(a > 0, (a), ())
ps1 = insert(b, ps0)
ps2 = ite(b > 0, ps0, ps1)
assert len(ps2) = 2

a > 0

b ≤ 0

ps ↦ (a)

ps ↦ (a)

vs ↦ (a, b)
ps ↦ ()

b > 0b > 0

ps ↦ (b) ps ↦ (b, a)

{ }a ≤ 0
b > 0
false

{ }a > 0
b > 0
true

a ≤ 0

b ≤ 0

ps ↦ ()

ps ↦ ()

{ }a ≤ 0
b ≤ 0
false

symbolic execution

bounded model checking

b > 0b ≤ 0

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

A new design: type-driven state merging

 31

{ }a > 0
b > 0
true

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

Merge values of
‣ primitive types: symbolically
‣ immutable types: structurally
‣ all other types: via unions

A new design: type-driven state merging

 31

{ }a > 0
b > 0
true

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

Merge values of
‣ primitive types: symbolically
‣ immutable types: structurally
‣ all other types: via unions

ba

A new design: type-driven state merging

 31

{ }a > 0
b > 0
true

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

⁊g g

c

Merge values of
‣ primitive types: symbolically
‣ immutable types: structurally
‣ all other types: via unions

ba (c, d)(a, b)

A new design: type-driven state merging

 31

{ }a > 0
b > 0
true

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

⁊g g

c(e, f)

Merge values of
‣ primitive types: symbolically
‣ immutable types: structurally
‣ all other types: via unions

ba (c, d)

A new design: type-driven state merging

 31

{ }a > 0
b > 0
true

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

⁊g g

c(e, f){ ¬g ⊦ a, g ⊦ () }

()

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

A new design: type-driven state merging

 32

symbolic virtual machine

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

a > 0a ≤ 0

A new design: type-driven state merging

 32

vs ↦ (a, b)
ps ↦ ()

ps ↦ (a)ps ↦ ()

symbolic virtual machine

Symbolic union: a set of
guarded values, with
disjoint guards.

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

g0 = a > 0
g1 = b > 0
g2 = g0 ∧ g1

g3 = ¬(g0 ⇔ g1)
g4 = ¬g0 ∧ ¬g1

c = ite(g1, b, a)
assert g2

a > 0a ≤ 0 g0¬ g0

A new design: type-driven state merging

 32

vs ↦ (a, b)
ps ↦ ()

ps ↦ (a)ps ↦ ()

symbolic virtual machine

ps ↦ { g0 ⊦ (a),
 ¬g0 ⊦ () }

Execute insert
concretely on all
lists in the union.

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

g0 = a > 0
g1 = b > 0
g2 = g0 ∧ g1

g3 = ¬(g0 ⇔ g1)
g4 = ¬g0 ∧ ¬g1

c = ite(g1, b, a)
assert g2

a > 0a ≤ 0

g1

g0¬ g0

A new design: type-driven state merging

 32

vs ↦ (a, b)
ps ↦ ()

ps ↦ (a)ps ↦ ()

symbolic virtual machine

ps ↦ { g0 ⊦ (a),
 ¬g0 ⊦ () }

ps ↦ { g0 ⊦ (b, a),
 ¬g0 ⊦ (b) }

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

g0 = a > 0
g1 = b > 0
g2 = g0 ∧ g1

g3 = ¬(g0 ⇔ g1)
g4 = ¬g0 ∧ ¬g1

c = ite(g1, b, a)
assert g2

a > 0a ≤ 0

¬ g1 g1

g0¬ g0

A new design: type-driven state merging

 32

vs ↦ (a, b)
ps ↦ ()

ps ↦ (a)ps ↦ ()

symbolic virtual machine

ps ↦ { g0 ⊦ (a),
 ¬g0 ⊦ () }

ps ↦ { g0 ⊦ (b, a),
 ¬g0 ⊦ (b) }

ps ↦ { g0 ⊦ (a),
 ¬g0 ⊦ () }

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

Evaluate len concretely
on all lists in the union;
assertion true only on
the list guarded by g2.

g0 = a > 0
g1 = b > 0
g2 = g0 ∧ g1

g3 = ¬(g0 ⇔ g1)
g4 = ¬g0 ∧ ¬g1

c = ite(g1, b, a)
assert g2

a > 0a ≤ 0

¬ g1 g1

g0¬ g0

A new design: type-driven state merging

 32

vs ↦ (a, b)
ps ↦ ()

ps ↦ (a)ps ↦ ()

symbolic virtual machine

ps ↦ { g0 ⊦ (a),
 ¬g0 ⊦ () }

ps ↦ { g0 ⊦ (b, a),
 ¬g0 ⊦ (b) }

ps ↦ { g0 ⊦ (a),
 ¬g0 ⊦ () }

ps ↦ { g2 ⊦ (b, a),
 g3 ⊦ (c),
 g4 ⊦ () }

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

g0 = a > 0
g1 = b > 0
g2 = g0 ∧ g1

g3 = ¬(g0 ⇔ g1)
g4 = ¬g0 ∧ ¬g1

c = ite(g1, b, a)
assert g2

a > 0a ≤ 0

¬ g1 g1

g0¬ g0

A new design: type-driven state merging

 32

vs ↦ (a, b)
ps ↦ ()

ps ↦ (a)ps ↦ ()

symbolic virtual machine

ps ↦ { g0 ⊦ (a),
 ¬g0 ⊦ () }

ps ↦ { g0 ⊦ (b, a),
 ¬g0 ⊦ (b) }

ps ↦ { g0 ⊦ (a),
 ¬g0 ⊦ () }

ps ↦ { g2 ⊦ (b, a),
 g3 ⊦ (c),
 g4 ⊦ () }

concrete evaluation

polynomial encoding

How to build your own solver-aided tool

The classic (hard) way to build a tool
What is hard about building a solver-aided tool?

An easier way: tools as languages
How to build tools by stacking layers of languages.

Behind the scenes: symbolic virtual machine
How Rosette works so you don’t have to.

A last look: a few recent applications
Cool tools built with Rosette!

SVM

SMT

The classic (hard) way to build a tool

SDSL

Chlorophyll: ultra low-power computing

 DB003 Evaluation Board Reference for EVB001

Copyright© 2010-2011 GreenArrays, Inc. 9/26/11 5

2. Basic Architecture
The purpose of this board is to facilitate evaluation and application prototyping using GreenArrays chips. Because no
single I/O complement would be suitable for all likely uses, this board has two GA144 chips: One (called "Host")
configured with sufficient I/O for intensive software development, and the other (called "Target") with as little I/O
committed as possible so that pure, dedicated applications may be prototyped.

2.1 Highlights
Three FTDI USB to serial chips provide high speed (960 kBaud) communications for interactive software development
and general-purpose host communications.

An onboard switching regulator takes power from the USB connectors and/or a conventional "wall wart" power supply.
Whichever of these is offering the highest voltage is used by the regulator.

A barrier strip provides for connection of bench power supplies. Each of the power buses of the two GA144 chips may
selectively be run from external power in lieu of the onboard regulator, allowing you to run either chip from any
desired VDD voltage and also facilitating current measurements.

The Host chip is supplied with an SPI boot flash holding 1 MByte of nonvolatile data, an external SRAM with 1 MWord
(2 MBytes) of memory; and may optionally use a dual voltage MMC card such as the 2 Gigabyte unit we have selected
for in-house use. These memory resources may be used in conjunction with Virtual Machines such as eForth and
polyFORTH, or for direct use by your own F18 code.

The Target chip is committed to as few I/O connections as possible. The sources for its reset signal are fully
configurable, and with the exception of a SERDES line connecting it with the Host chip, all other communications (two
2-wire serial interfaces) may be disconnected so that the chip is fully isolated and thus all practical I/O is available for
any desired use.

Roughly half the board is prototyping area, mainly populated with a grid of plated through holes on 0.1 inch centers.
By soldering suitable headers to this grid, you can provide for expansion using various prototyping fixtures such as
those made by SchmartBoard. The grid is intentionally large enough to support an 8- or 16-bit PC-104 socket.

The periphery of the prototyping area is provided with hole patterns for many popular connectors, and there are six 8-
bit bidirectional level shifters for interfacing with external circuits that may not run on 1.8v. In addition, one 1.8v 2-
input OR and three NANDs are available for use in external circuitry.

Figure by Per Ljung

Instructions/Second vs Power

~100x

GreenArrays GA144 Processor

 34

Chlorophyll: ultra low-power computing

 DB003 Evaluation Board Reference for EVB001

Copyright© 2010-2011 GreenArrays, Inc. 9/26/11 5

2. Basic Architecture
The purpose of this board is to facilitate evaluation and application prototyping using GreenArrays chips. Because no
single I/O complement would be suitable for all likely uses, this board has two GA144 chips: One (called "Host")
configured with sufficient I/O for intensive software development, and the other (called "Target") with as little I/O
committed as possible so that pure, dedicated applications may be prototyped.

2.1 Highlights
Three FTDI USB to serial chips provide high speed (960 kBaud) communications for interactive software development
and general-purpose host communications.

An onboard switching regulator takes power from the USB connectors and/or a conventional "wall wart" power supply.
Whichever of these is offering the highest voltage is used by the regulator.

A barrier strip provides for connection of bench power supplies. Each of the power buses of the two GA144 chips may
selectively be run from external power in lieu of the onboard regulator, allowing you to run either chip from any
desired VDD voltage and also facilitating current measurements.

The Host chip is supplied with an SPI boot flash holding 1 MByte of nonvolatile data, an external SRAM with 1 MWord
(2 MBytes) of memory; and may optionally use a dual voltage MMC card such as the 2 Gigabyte unit we have selected
for in-house use. These memory resources may be used in conjunction with Virtual Machines such as eForth and
polyFORTH, or for direct use by your own F18 code.

The Target chip is committed to as few I/O connections as possible. The sources for its reset signal are fully
configurable, and with the exception of a SERDES line connecting it with the Host chip, all other communications (two
2-wire serial interfaces) may be disconnected so that the chip is fully isolated and thus all practical I/O is available for
any desired use.

Roughly half the board is prototyping area, mainly populated with a grid of plated through holes on 0.1 inch centers.
By soldering suitable headers to this grid, you can provide for expansion using various prototyping fixtures such as
those made by SchmartBoard. The grid is intentionally large enough to support an 8- or 16-bit PC-104 socket.

The periphery of the prototyping area is provided with hole patterns for many popular connectors, and there are six 8-
bit bidirectional level shifters for interfacing with external circuits that may not run on 1.8v. In addition, one 1.8v 2-
input OR and three NANDs are available for use in external circuitry.

Manual program partitioning:
break programs up into a pipeline
with a few operations per core.

Drawing by Mangpo Phothilimthana

GreenArrays GA144 Processor

‣ Stack-based 18-bit architecture
‣ 32 instructions
‣ 8 x 18 array of asynchronous cores
‣ No shared resources (cache, memory)
‣ Limited communication, neighbors only
‣ < 300 byte memory per core

 34

Chlorophyll: ultra low-power computing

 DB003 Evaluation Board Reference for EVB001

Copyright© 2010-2011 GreenArrays, Inc. 9/26/11 5

2. Basic Architecture
The purpose of this board is to facilitate evaluation and application prototyping using GreenArrays chips. Because no
single I/O complement would be suitable for all likely uses, this board has two GA144 chips: One (called "Host")
configured with sufficient I/O for intensive software development, and the other (called "Target") with as little I/O
committed as possible so that pure, dedicated applications may be prototyped.

2.1 Highlights
Three FTDI USB to serial chips provide high speed (960 kBaud) communications for interactive software development
and general-purpose host communications.

An onboard switching regulator takes power from the USB connectors and/or a conventional "wall wart" power supply.
Whichever of these is offering the highest voltage is used by the regulator.

A barrier strip provides for connection of bench power supplies. Each of the power buses of the two GA144 chips may
selectively be run from external power in lieu of the onboard regulator, allowing you to run either chip from any
desired VDD voltage and also facilitating current measurements.

The Host chip is supplied with an SPI boot flash holding 1 MByte of nonvolatile data, an external SRAM with 1 MWord
(2 MBytes) of memory; and may optionally use a dual voltage MMC card such as the 2 Gigabyte unit we have selected
for in-house use. These memory resources may be used in conjunction with Virtual Machines such as eForth and
polyFORTH, or for direct use by your own F18 code.

The Target chip is committed to as few I/O connections as possible. The sources for its reset signal are fully
configurable, and with the exception of a SERDES line connecting it with the Host chip, all other communications (two
2-wire serial interfaces) may be disconnected so that the chip is fully isolated and thus all practical I/O is available for
any desired use.

Roughly half the board is prototyping area, mainly populated with a grid of plated through holes on 0.1 inch centers.
By soldering suitable headers to this grid, you can provide for expansion using various prototyping fixtures such as
those made by SchmartBoard. The grid is intentionally large enough to support an 8- or 16-bit PC-104 socket.

The periphery of the prototyping area is provided with hole patterns for many popular connectors, and there are six 8-
bit bidirectional level shifters for interfacing with external circuits that may not run on 1.8v. In addition, one 1.8v 2-
input OR and three NANDs are available for use in external circuitry.

Drawing by Mangpo Phothilimthana

GreenArrays GA144 Processor

‣ Stack-based 18-bit architecture
‣ 32 instructions
‣ 8 x 18 array of asynchronous cores
‣ No shared resources (cache, memory)
‣ Limited communication, neighbors only
‣ < 300 byte memory per core

 34

a
b

1

*

2

c

3

c = a * b

Synthesizes placement of
code and data onto cores, by
type-checking a program
sketch in a C-like DSL.

int a, b;
int c = a * b;

a
b

1

*

2

c

3

Chlorophyll: ultra low-power computing

 35

Synthesizes placement of
code and data onto cores, by
type-checking a program
sketch in a C-like DSL.

int a, b;
int c = a * b;

a
b

1

*

2

c

3

int@1 a, b;
int@3 c = a *@2 b;

type-checking a program

Chlorophyll: ultra low-power computing

 35

Synthesizes placement of
code and data onto cores, by
type-checking a program
sketch in a C-like DSL.

int a, b;
int c = a * b;

a
b

1

*

2

c

3

int@1 a, b;
int@3 c = a *@2 b;
int@?? a, b;
int@?? c = a *@?? b;

sketch

Chlorophyll: ultra low-power computing

 35

int a, b;
int c = a * b;

a
b

1

*

2

c

3

int@1 a, b;
int@3 c = a *@2 b;
int@?? a, b;
int@?? c = a *@?? b;

Phitchaya Mangpo Phothilimthana

Built by a first-year
grad in a few weeks

Chlorophyll: ultra low-power computing

 35

int a, b;
int c = a * b;

a
b

1

*

2

c

3

int@1 a, b;
int@3 c = a *@2 b;
int@?? a, b;
int@?? c = a *@?? b;

[Phothilimthana et al.,
PLDI’14]

Chlorophyll: ultra low-power computing

 35

With Chlorophyll, it took one
afternoon to build a set of apps that
took 3 months to build manually.

• 30 years of incident-free service.
• Controlled by custom software, built

by CNTS engineering staff.
• Third generation of Therapy Control

software built recently.

Clinical Neutron
Therapy System
(CNTS) at UW

Neutrons: verifying a radiotherapy system

 36

Sensors

Beam, motors, etc.

Prescription

Therapy Control Software

Clinical Neutron
Therapy System
(CNTS) at UW

Neutrons: verifying a radiotherapy system

 36

Experimental Physics and
Industrial Control System
(EPICS) Dataflow Language

Neutrons: verifying a radiotherapy system

 37

Sensors

Beam, motors, etc.

Prescription

Therapy Control Software

The Maximize Severity attribute is one of NMS
(Non-Maximize Severity), MS (Maximize
Severity), MSS (Maximize Status and Severity) or
MSI (Maximize Severity if Invalid). It determines
whether alarm severity is propagated across
links. If the attribute is MSI only a severity of
INVALID_ALARM is propagated; settings of MS
or MSS propagate all alarms that are more
severe than the record's current severity. For
input links the alarm severity of the record
referred to by the link is propagated to the
record containing the link. For output links the
alarm severity of the record containing the link
is propagated to the record referred to by the
link. If the severity is changed the associated
alarm status is set to LINK_ALARM, except if
the attribute is MSS when the alarm status will
be copied along with the severity.

EPICS documentation / semantics

Neutrons: verifying a radiotherapy system

 37

Sensors

Beam, motors, etc.

Prescription

Therapy Control Software

bug report

Built by a 2nd year
grad in a few days

Calvin Loncaric

EPICS Verifier

safety property
EPICS

program

Neutrons: verifying a radiotherapy system

 38

Found a bug in the EPICS runtime!
Therapy Control depended on this
bug for correct operation.

Neutrons: verifying a radiotherapy system

 39

[Pernsteiner et al., CAV’16]

EPICS Verifier

safety property
EPICS

program

 40

MemSynth: synthesizing memory models

x = y = 0
a = x b = y
y = 1 x = 1
a ≡ b ≡ 1

Memory consistency models
define memory reordering
behaviors on multiprocessors.

 40

MemSynth: synthesizing memory models

x = y = 0
a = x b = y
y = 1 x = 1
a ≡ b ≡ 1

Memory consistency models
define memory reordering
behaviors on multiprocessors.

Forbidden by sequential
consistency.

Allowed by x86 and other
hardware memory models.

 40

MemSynth: synthesizing memory models

x = y = 0
a = x b = y
y = 1 x = 1
a ≡ b ≡ 1

Memory consistency models
define memory reordering
behaviors on multiprocessors.

Forbidden by sequential
consistency.

Allowed by x86 and other
hardware memory models.

Formalizing memory models is hard:
e.g., PowerPC formalized over 7
publications in 2009-2015.

 40

MemSynth: synthesizing memory models

x = y = 0
a = x b = y
y = 1 x = 1
a ≡ b ≡ 1

Memory consistency models
define memory reordering
behaviors on multiprocessors.

Forbidden by sequential
consistency.

Allowed by x86 and other
hardware memory models.

Memory model specification

Relational logic

A set of litmus
tests

A framework
sketch

 41

MemSynth: synthesizing memory models

Memory model specification

Relational logic

A set of litmus
tests

A framework
sketch

Built by a 2nd year
grad in a few weeks

James Bornholt

 42

MemSynth: synthesizing memory models

Memory model specification

Relational logic

A set of litmus
tests

A framework
sketch

[Bornholt and Torlak, PLDI’17]

Synthesized PowerPC in 12 seconds
from 768 previously published tests.
Synthesized x86 in 2 seconds from
Intel’s litmus tests. Discovered 4
tests are missing from the Intel
manual.

Thanks for a great quarter!

