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Last lecture
• Program synthesis

Today  
• Solver-aided languages 

Announcements 
• Next Wednesday:  guest lecture by James Bornholt

• Project presentations next Friday in class
• 13 min per team:  10 min presentation + 3 min questions

• Project reports and prototypes due next Friday at 11:00pm to
pi

cs



How to build your own solver-aided tool

The classic (hard) way to build a tool
What is hard about building a solver-aided tool?

An easier way: tools as languages
How to build tools by stacking layers of languages.

Behind the scenes: symbolic virtual machine
How Rosette works so you don’t have to.

A last look: a few recent applications
Cool tools built with Rosette!

SDSL

SVM

SMT

The classic (hard) way to build a tool
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The classic (hard) way to build a tool

SMT solversolver-aided tool

assert safe(x, P(x))
?

P(x) {
…
…

}

Recall the solver-aided programming tool 
chain: the tool reduces a query about 
program behavior to an SMT problem.

specification



Find an input on which the program fails.P(x) {
…
…

}
assert safe(x, P(x))

∃x . ¬safe(x, P(x))

42

SMT solver

verify
debug
solve
synthesize

The classic (hard) way to build a tool

solver-aided tool



Find an input on which the program fails.

Localize bad parts of the program.

assert safe(x, P(x))

∃x . ¬safe(x, P(x))

x = 42 ⋀ safe(x, P(x))

42

SMT solver

verify
debug
solve
synthesize

P(x) {
v = x + 2
…

}

The classic (hard) way to build a tool

solver-aided tool



Find an input on which the program fails.

Localize bad parts of the program.

Find values that repair the failing run.

assert safe(x, P(x))

∃x . ¬safe(x, P(x))

x = 42 ⋀ safe(x, P(x))

∃v . safe(42, Pv(42))

42

SMT solver

verify
debug
solve
synthesize

P(x) {
v = choice() 
…

}

40

The classic (hard) way to build a tool

solver-aided tool



Find an input on which the program fails.

Localize bad parts of the program.

Find values that repair the failing run.

Find code that repairs the program.assert safe(x, P(x))

∃x . ¬safe(x, P(x))

x = 42 ⋀ safe(x, P(x))

∃v . safe(42, Pv(42))

∃e.∀x. safe(x, Pe(x))

SMT solver

verify
debug
solve
synthesize

P(x) {
v = ??
…

}

x-2

The classic (hard) way to build a tool

solver-aided tool



SMT solver

The classic (hard) way to build a tool

solver-aided tool

P(x)

symbolic 
compiler

assert safe(x, P(x))

verify
debug
solve
synthesize

P(x) {
…
…

}

What all queries have in common: they 
need to translate programs to constraints!
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SMT solver

The classic (hard) way to build a tool
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P(x)

expertise in PL, FM, SE

symbolic 
compiler

assert safe(x, P(x))

verify
debug
solve
synthesize

P(x) {
…
…

}



SDSL

programming

Wanted: an easier way to build tools
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an interpreter 
for the source 

language

assert safe(x, P(x))

verify
debug
solve
synthesize

P(x) {
…
…

}



SMTSVM

ROSETTE

SMT solversymbolic virtual 
machine

programming

Wanted: an easier way to build tools
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assert safe(x, P(x))

verify
debug
solve
synthesize

P(x) {
…
…

}

SDSLan interpreter 
for the source 

language



SMTSVM

ROSETTE

SMT solversymbolic virtual 
machine

Wanted: an easier way to build tools
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[Torlak & Bodik, PLDI’14]

Technical challenge:  
how to efficiently 
translate a program 
and its interpreter?assert safe(x, P(x))

verify
debug
solve
synthesize

P(x) {
…
…

}

SDSLan interpreter 
for the source 

language



How to build your own solver-aided tool

The classic (hard) way to build a tool
What is hard about building a solver-aided tool?

An easier way: tools as languages
How to build tools by stacking layers of languages.

Behind the scenes: symbolic virtual machine
How Rosette works so you don’t have to.

A last look: a few recent applications
Cool tools built with Rosette!

SVM

SMT

The classic (hard) way to build a tool

SDSL



domain-specific language 
(DSL)

Layers of classic languages: DSLs and hosts 
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host language

A formal language that is 
specialized to a particular 
application domain and often 
limited in capability.

A high-level language for 
implementing DSLs, usually 
with meta-programming 
features.



domain-specific language 
(DSL)

Layers of classic languages: DSLs and hosts 
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host language

library
(shallow)
embedding

interpreter
(deep)
embedding

A formal language that is 
specialized to a particular 
application domain and often 
limited in capability.

A high-level language for 
implementing DSLs, usually 
with meta-programming 
features.



domain-specific language 
(DSL)

Layers of classic languages: many DSLs and hosts 
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host language

library
(shallow)
embedding

interpreter
(deep)
embedding

artificial intelligence
Church, BLOG

databases
SQL, Datalog

hardware design
Bluespec, Chisel, Verilog, VHDL

math and statistics
Eigen, Matlab, R

layout and visualization
LaTex, dot, dygraphs, D3

Racket, Scala, JavaScript, …



C = A * Bdomain-specific language 
(DSL)

Layers of classic languages: why DSLs?
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host language

library
(shallow)
embedding

interpreter
(deep)
embedding C / Java

Eigen / Matlab

for (i = 0; i < n; i++)  
 for (j = 0; j < m; j++) 
  for (k = 0; k < p; k++) 
   C[i][k] += A[i][j] * B[j][k]



C = A * Bdomain-specific language 
(DSL)

Layers of classic languages: why DSLs?
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host language

library
(shallow)
embedding

interpreter
(deep)
embedding C / Java

Eigen / Matlab

[associativity]C = A * B

for (i = 0; i < n; i++)  
 for (j = 0; j < m; j++) 
  for (k = 0; k < p; k++) 
   C[i][k] += A[i][j] * B[j][k]

Easier for people to read, 
write, and get right.

Easier for tools to analyze.



solver-aided domain-
specific language (SDSL)

Layers of solver-aided languages
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solver-aided host language

library
(shallow)
embedding

interpreter
(deep)
embedding



solver-aided domain-
specific language (SDSL)

Layers of solver-aided languages: tools as SDSLs
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library
(shallow)
embedding

interpreter
(deep)
embedding

education and games
Enlearn, RuleSy (VMCAI’18), 
Nonograms (FDG’17), UCB feedback 
generator (ITiCSE'17)

synthesis-aided compilation
LinkiTools, Chlorophyll (PLDI’14), 
GreenThumb (ASPLOS’16)

type system soundness
Bonsai (POPL’18)

computer architecture 
MemSynth (PLDI’17)

databases
Cosette (CIDR’17)

radiation therapy control
Neutrons (CAV’16)

… and more

ROSETTE
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The anatomy of a solver-aided host language

assertions

symbolic 
values

queries
= +

(define-symbolic id type) 
(define-symbolic* id type) 

(assert expr) 

(verify expr)  
(debug [type ...+] expr) 
(solve expr) 
(synthesize  
  #:forall expr  
  #:guarantee expr)



A tiny example SDSL

BV:  A tiny assembly-like 
language for writing fast, low-
level library functions.
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def bvmax(r0, r1) : 
  r2 = bvsge(r0, r1) 
  r3 = bvneg(r2) 
  r4 = bvxor(r0, r2) 
  r5 = bvand(r3, r4) 
  r6 = bvxor(r1, r5) 
  return r6 
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We want to test, verify, 
debug, and synthesize 
programs in the BV SDSL.



A tiny example SDSL

BV:  A tiny assembly-like 
language for writing fast, low-
level library functions.

 20

def bvmax(r0, r1) : 
  r2 = bvsge(r0, r1) 
  r3 = bvneg(r2) 
  r4 = bvxor(r0, r2) 
  r5 = bvand(r3, r4) 
  r6 = bvxor(r1, r5) 
  return r6 

We want to test, verify, 
debug, and synthesize 
programs in the BV SDSL.

1. interpreter       [10 LOC]

2. verifier                   [free]

3. debugger                [free]

4. synthesizer             [free]
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def bvmax(r0, r1) : 
  r2 = bvsge(r0, r1) 
  r3 = bvneg(r2) 
  r4 = bvxor(r0, r2) 
  r5 = bvand(r3, r4) 
  r6 = bvxor(r1, r5) 
  return r6 

> bvmax(-2, -1) 

A tiny example SDSL ROSETTE



(define bvmax 
 `((2 bvsge 0 1) 
   (3 bvneg 2) 
   (4 bvxor 0 2) 
   (5 bvand 3 4) 
   (6 bvxor 1 5)))
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def bvmax(r0, r1) : 
  r2 = bvsge(r0, r1) 
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ROSETTE

(out opcode in ...)
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(define bvmax 
 `((2 bvsge 0 1) 
   (3 bvneg 2) 
   (4 bvxor 0 2) 
   (5 bvand 3 4) 
   (6 bvxor 1 5)))

A tiny example SDSL ROSETTE

def bvmax(r0, r1) : 
  r2 = bvsge(r0, r1) 
  r3 = bvneg(r2) 
  r4 = bvxor(r0, r2) 
  r5 = bvand(r3, r4) 
  r6 = bvxor(r1, r5) 
  return r6 

> bvmax(-2, -1) 
-1 

(define (interpret prog inputs) 
  (make-registers prog inputs) 
  (for ([stmt prog]) 
    (match stmt 
      [(list out opcode in ...) 
       (define op (eval opcode)) 
       (define args (map load in)) 
       (store out (apply op args))])) 
  (load (last)))

interpret

`(-2 -1)
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A tiny example SDSL ROSETTE

def bvmax(r0, r1) : 
  r2 = bvsge(r0, r1) 
  r3 = bvneg(r2) 
  r4 = bvxor(r0, r2) 
  r5 = bvand(r3, r4) 
  r6 = bvxor(r1, r5) 
  return r6 

> bvmax(-2, -1) 
-1 

(define bvmax 
 `((2 bvsge 0 1) 
   (3 bvneg 2) 
   (4 bvxor 0 2) 
   (5 bvand 3 4) 
   (6 bvxor 1 5)))

‣ pattern matching
‣ dynamic evaluation
‣ first-class & higher-

order procedures
‣ side effects

(define (interpret prog inputs) 
  (make-registers prog inputs) 
  (for ([stmt prog]) 
    (match stmt 
      [(list out opcode in ...) 
       (define op (eval opcode)) 
       (define args (map load in)) 
       (store out (apply op args))])) 
  (load (last)))
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A tiny example SDSL ROSETTE

(define-symbolic* in (bitvector 32) [2]) 
(verify  
  (assert (equal? (interpret bvmax in)  
                  (interpret max in))))

def bvmax(r0, r1) : 
  r2 = bvsge(r0, r1) 
  r3 = bvneg(r2) 
  r4 = bvxor(r0, r2) 
  r5 = bvand(r3, r4) 
  r6 = bvxor(r1, r5) 
  return r6 

> verify(bvmax, max) 
(0, -2) 

> bvmax(0, -2) 
-1

query
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def bvmax(r0, r1) : 
  r2 = bvsge(r0, r1) 
  r3 = bvneg(r2) 
  r4 = bvxor(r0, r2) 
  r5 = bvand(r3, r4) 
  r6 = bvxor(r1, r5) 
  return r6 

> debug(bvmax, max,‘(0, -2)) 

A tiny example SDSL ROSETTE

(define in (list (bv 0 32) (bv -2 32))) 
(debug [integer?]  
  (assert (equal? (interpret bvmax in)  
                  (interpret max in))))

query
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def bvmax(r0, r1) : 
  r2 = bvsge(r0, r1) 
  r3 = bvneg(r2) 
  r4 = bvxor(??, ??) 
  r5 = bvand(r3, ??) 
  r6 = bvxor(??, ??) 
  return r6 

> synthesize(bvmax, max) 

A tiny example SDSL ROSETTE

(define-symbolic* in (bitvector 32) [2]) 
(synthesize  
  #:forall in 
  #:guarantee 
  (assert (equal? (interpret bvmax in)  
                  (interpret max in)))))

query
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solve: 
  ps = () 
  for v in vs: 
    if v > 0: 
      ps = insert(v, ps) 
  assert len(ps) == len(vs)

reverse and filter, keeping 
only positive numbers 

vs ps
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symbolic execution

bounded model checkingsolve: 
  ps = () 
  for v in vs: 
    if v > 0: 
      ps = insert(v, ps) 
  assert len(ps) == len(vs)
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A new design:  type-driven state merging
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{  }a > 0
b > 0
true

solve: 
  ps = () 
  for v in vs: 
    if v > 0: 
      ps = insert(v, ps) 
  assert len(ps) == len(vs)
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solve: 
  ps = () 
  for v in vs: 
    if v > 0: 
      ps = insert(v, ps) 
  assert len(ps) == len(vs)

A new design:  type-driven state merging

 32
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solve: 
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a > 0a ≤ 0

A new design:  type-driven state merging
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symbolic virtual machine



Symbolic union:  a set of 
guarded values, with 
disjoint guards.
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g0 = a > 0
g1 = b > 0 
g2 = g0 ∧ g1

g3 = ¬(g0 ⇔ g1)
g4 = ¬g0 ∧ ¬g1

c = ite(g1, b, a)
assert g2

a > 0a ≤ 0 g0¬ g0
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ps ↦ { g0 ⊦ (a), 
        ¬g0 ⊦ ( ) } 



Execute insert 
concretely on all 
lists in the union.
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Chlorophyll:  ultra low-power computing

  DB003 Evaluation Board Reference for EVB001 

Copyright© 2010-2011 GreenArrays, Inc.  9/26/11 5 

2. Basic Architecture 
The purpose of this board is to facilitate evaluation and application prototyping using GreenArrays chips.  Because no 
single I/O complement would be suitable for all likely uses, this board has two GA144 chips:  One (called "Host") 
configured with sufficient I/O for intensive software development, and the other (called "Target") with as little I/O 
committed as possible so that pure, dedicated applications may be prototyped. 

 

2.1 Highlights 
Three FTDI USB to serial chips provide high speed (960 kBaud) communications for interactive software development 
and general-purpose host communications. 

An onboard switching regulator takes power from the USB connectors and/or a conventional "wall wart" power supply.  
Whichever of these is offering the highest voltage is used by the regulator. 

A barrier strip provides for connection of bench power supplies.  Each of the power buses of the two GA144 chips may 
selectively be run from external power in lieu of the onboard regulator, allowing you to run either chip from any 
desired VDD voltage and also facilitating current measurements. 

The Host chip is supplied with an SPI boot flash holding 1 MByte of nonvolatile data, an external SRAM with 1 MWord 
(2 MBytes) of memory; and may optionally use a dual voltage MMC card such as the 2 Gigabyte unit we have selected 
for in-house use.  These memory resources may be used in conjunction with Virtual Machines such as eForth and 
polyFORTH, or for direct use by your own F18 code. 

The Target chip is committed to as few I/O connections as possible.  The sources for its reset signal are fully 
configurable, and with the exception of a SERDES line connecting it with the Host chip, all other communications (two 
2-wire serial interfaces) may be disconnected so that the chip is fully isolated and thus all practical I/O is available for 
any desired use. 

Roughly half the board is prototyping area, mainly populated with a grid of plated through holes on 0.1 inch centers.  
By soldering suitable headers to this grid, you can provide for expansion using various prototyping fixtures such as 
those made by SchmartBoard.  The grid is intentionally large enough to support an 8- or 16-bit PC-104 socket. 

The periphery of the prototyping area is provided with hole patterns for many popular connectors, and there are six 8-
bit bidirectional level shifters for interfacing with external circuits that may not run on 1.8v.  In addition, one 1.8v 2-
input OR and three NANDs are available for use in external circuitry.  

 

Figure by Per Ljung 

Instructions/Second vs Power

~100x

GreenArrays GA144 Processor
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desired VDD voltage and also facilitating current measurements. 

The Host chip is supplied with an SPI boot flash holding 1 MByte of nonvolatile data, an external SRAM with 1 MWord 
(2 MBytes) of memory; and may optionally use a dual voltage MMC card such as the 2 Gigabyte unit we have selected 
for in-house use.  These memory resources may be used in conjunction with Virtual Machines such as eForth and 
polyFORTH, or for direct use by your own F18 code. 

The Target chip is committed to as few I/O connections as possible.  The sources for its reset signal are fully 
configurable, and with the exception of a SERDES line connecting it with the Host chip, all other communications (two 
2-wire serial interfaces) may be disconnected so that the chip is fully isolated and thus all practical I/O is available for 
any desired use. 

Roughly half the board is prototyping area, mainly populated with a grid of plated through holes on 0.1 inch centers.  
By soldering suitable headers to this grid, you can provide for expansion using various prototyping fixtures such as 
those made by SchmartBoard.  The grid is intentionally large enough to support an 8- or 16-bit PC-104 socket. 

The periphery of the prototyping area is provided with hole patterns for many popular connectors, and there are six 8-
bit bidirectional level shifters for interfacing with external circuits that may not run on 1.8v.  In addition, one 1.8v 2-
input OR and three NANDs are available for use in external circuitry.  

 

Manual program partitioning:  
break programs up into a pipeline 
with a few operations per core.

Drawing by Mangpo Phothilimthana

GreenArrays GA144 Processor

‣ Stack-based 18-bit architecture
‣ 32 instructions 
‣ 8 x 18 array of asynchronous cores
‣ No shared resources (cache, memory)
‣ Limited communication, neighbors only
‣ < 300 byte memory per core
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GreenArrays GA144 Processor
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‣ 32 instructions 
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code and data onto cores, by 
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int c = a * b;
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int@1 a, b; 
int@3 c = a *@2 b;
int@?? a, b; 
int@?? c = a *@?? b;

Phitchaya Mangpo Phothilimthana

Built by a first-year 
grad in a few weeks

Chlorophyll:  ultra low-power computing
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int a, b; 
int c = a * b;
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int@1 a, b; 
int@3 c = a *@2 b;
int@?? a, b; 
int@?? c = a *@?? b;

[Phothilimthana et al., 
PLDI’14]

Chlorophyll:  ultra low-power computing
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With Chlorophyll, it took one  
afternoon to build a set of apps that 
took 3 months to build manually.



• 30 years of incident-free service. 
• Controlled by custom software, built 

by CNTS engineering staff. 
• Third generation of Therapy Control 

software built recently.

Clinical Neutron 
Therapy System 
(CNTS) at UW

Neutrons:  verifying a radiotherapy system
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Sensors

Beam, motors, etc.

Prescription

Therapy Control Software

Clinical Neutron 
Therapy System 
(CNTS) at UW

Neutrons:  verifying a radiotherapy system
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Experimental Physics and  
Industrial Control System 
(EPICS) Dataflow Language

Neutrons:  verifying a radiotherapy system
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Sensors
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Prescription

Therapy Control Software



The Maximize Severity attribute is one of NMS 
(Non-Maximize Severity), MS (Maximize 
Severity), MSS (Maximize Status and Severity) or 
MSI (Maximize Severity if Invalid). It determines 
whether alarm severity is propagated across 
links. If the attribute is MSI only a severity of 
INVALID_ALARM is propagated; settings of MS 
or MSS propagate all alarms that are more 
severe than the record's current severity. For 
input links the alarm severity of the record 
referred to by the link is propagated to the 
record containing the link. For output links the 
alarm severity of the record containing the link 
is propagated to the record referred to by the 
link. If the severity is changed the associated 
alarm status is set to LINK_ALARM, except if 
the attribute is MSS when the alarm status will 
be copied along with the severity.

EPICS documentation / semantics

Neutrons:  verifying a radiotherapy system

 37

Sensors

Beam, motors, etc.

Prescription

Therapy Control Software



bug report

Built by a 2nd year 
grad in a few days

Calvin Loncaric

EPICS Verifier

safety property
EPICS 

program

Neutrons:  verifying a radiotherapy system
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Found a bug in the EPICS runtime! 
Therapy Control depended on this 
bug for correct operation.

Neutrons:  verifying a radiotherapy system

 39

[Pernsteiner et al., CAV’16]

EPICS Verifier

safety property
EPICS 

program
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MemSynth: synthesizing memory models

x = y = 0
a = x b = y
y = 1 x = 1
a ≡ b ≡ 1 

Memory consistency models 
define memory reordering 
behaviors on multiprocessors.
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define memory reordering 
behaviors on multiprocessors.

Forbidden by sequential 
consistency. 

Allowed by x86 and other 
hardware memory models.

Formalizing memory models is hard: 
e.g., PowerPC formalized over 7 
publications in 2009-2015.
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sketch

Built by a 2nd year 
grad in a few weeks

James Bornholt
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Memory model specification

Relational logic

A set of litmus 
tests

A framework 
sketch

[Bornholt and Torlak, PLDI’17]

Synthesized PowerPC in 12 seconds 
from 768 previously published tests.
Synthesized x86 in 2 seconds from 
Intel’s litmus tests.  Discovered 4 
tests are missing from the Intel 
manual.





Thanks for a great quarter!


