
CSE507
Computer-Aided Reasoning for Software

Emina Torlak
emina@cs.washington.edu

courses.cs.washington.edu/courses/cse507/18sp/

Bounded Verification

http://courses.cs.washington.edu/courses/cse507/18sp/index.html

Today

 2

Last lecture
• Full functional verification with Dafny, Boogie, and Z3

Today
• Bounded verification with Kodkod (Forge, Miniatur, TACO)

Announcements
• HW2 is due.

• HW3 is out; start early. to
pi

cs

The spectrum of program verification tools

 3

C
on

fid
en

ce

Cost (programmer effort, time, expertise)

VerificationStatic Analysis

Extended
Static
Checking

Concolic Testing &
Whitebox Fuzzing

Ad-hoc Testing

Bounded Verification
& Symbolic Execution

E.g., Dafny, Coq, Leon:

• support for rich (FOL+)
correctness properties

• high annotation overhead
(pre/post conditions,
loop invariants, etc.)

• total correctness

C
on

fid
en

ce

Cost (programmer effort, time, expertise)

The spectrum of program verification tools

 4

VerificationStatic Analysis

Extended
Static
Checking

Concolic Testing &
Whitebox Fuzzing

Ad-hoc Testing

Bounded Verification
& Symbolic Execution

E.g., Astree:

• small set of fixed
properties (e.g., “no null
dereferences”)

• no annotations but must
deal with false positives

• no false negatives

The spectrum of program verification tools

 5

C
on

fid
en

ce

Cost (programmer effort, time, expertise)

VerificationStatic Analysis

Extended
Static
Checking

Concolic Testing &
Whitebox Fuzzing

Ad-hoc Testing

Bounded Verification
& Symbolic Execution

E.g., Calysto, Saturn:

• user-defined assertions
supported but optional

• no annotations

• some/low false positives

• false negatives

The spectrum of program verification tools

 6

C
on

fid
en

ce

Cost (programmer effort, time, expertise)

VerificationStatic Analysis

Extended
Static
Checking

Concolic Testing &
Whitebox Fuzzing

Ad-hoc Testing

Bounded Verification
& Symbolic Execution

E.g., CBMC, Miniatur, Forge,
TACO, JPF, Klee:

• optional user-defined
harnesses, assertions,
and/or FOL+ properties

• no/low annotations

• no/low false positives

• false negatives

The spectrum of program verification tools

 7

C
on

fid
en

ce

Cost (programmer effort, time, expertise)

VerificationStatic Analysis

Extended
Static
Checking

Concolic Testing &
Whitebox Fuzzing

Ad-hoc Testing

Bounded Verification
& Symbolic Execution

E.g., SAGE, Pex, CUTE,
DART:

• test harnesses and/or
user-defined assertions

• no annotations

• no false positives

• false negatives

The spectrum of program verification tools

 8

C
on

fid
en

ce

Cost (programmer effort, time, expertise)

VerificationStatic Analysis

Extended
Static
Checking

Concolic Testing &
Whitebox Fuzzing

Ad-hoc Testing

Bounded Verification
& Symbolic Execution

VerificationStatic Analysis

Extended
Static
Checking

Ad-hoc Testing

C
on

fid
en

ce

Cost (programmer effort, time, expertise)

Concolic Testing &
Whitebox Fuzzing

Bounded Verification
& Symbolic Execution

The spectrum of program verification tools

 9

Bounded verification

 10

Bound everything

• Execution length

• Bitwidth

• Heap size (number of objects per type)

Sound counterexamples but no proof
• Exhaustive search within bounded scope

Empirical “small-scope hypothesis”

• Bugs usually have small manifestations

Bounded verification by example

 11

class List {
Node head;

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;

}
}

class Node {
Node next;
String data; }

this
n2

data: s1
head null

n1

data: s2
next n0

data: null
next next

this
n0

data: null
headnull

n1

data: s2
nextn2

data: s1
nextnext

Bounded verification by example

 11

class List {
Node head;

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;

}
}

class Node {
Node next;
String data; }

this
n2

data: s1
head null

n1

data: s2
next n0

data: null
next next

this
n0

data: null
headnull

n1

data: s2
nextn2

data: s1
nextnext

Express the property either by writing a test
harness or by providing FOL + contracts.

Specifying contracts: class invariants

 12

class List {
Node head;

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;

}
}

class Node {
Node next;
String data;

}

@invariant
 no ^next ∩ iden

this
n2

data: s1
head null

n1

data: s2
next n0

data: null
next next

this
n0

data: null
headnull

n1

data: s2
nextn2

data: s1
nextnext

Specifying contracts: preconditions

 13

class List {
Node head;

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;

}
}

class Node {
Node next;
String data;

}

@invariant
 no ^next ∩ iden

@requires
 this.head != null and
 this.head.next != null

this
n2

data: s1
head null

n1

data: s2
next n0

data: null
next next

this
n0

data: null
headnull

n1

data: s2
nextn2

data: s1
nextnext

Specifying contracts: postconditions

 14

class List {
Node head;

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;

}
}

class Node {
Node next;
String data;

}

@invariant
 no ^next ∩ iden

@requires
 this.head != null and
 this.head.next != null

@ensures
 this.head.*next = this.old(head).*old(next) and
 let N = this.old(head).*old(next) - null |
 next = old(next) ++
 this.old(head)×null ++
 ~(old(next) ∩ N×N)

this
n2

data: s1
head null

n1

data: s2
next n0

data: null
next next

this
n0

data: null
headnull

n1

data: s2
nextn2

data: s1
nextnext

Specifying contracts: postconditions

 14

class List {
Node head;

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;

}
}

class Node {
Node next;
String data;

}

@invariant Inv(next)

@requires Pre(this, head, next)

@ensures Post(this, old(head), head, old(next), next)

this
n2

data: s1
head null

n1

data: s2
next n0

data: null
next next

this
n0

data: null
headnull

n1

data: s2
nextn2

data: s1
nextnext

A relational model of memory (heap)

 15

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;

}

this
n2

data: s1
head null

n1

data: s2
next n0

data: null
next next

Fields as binary relations
‣ head : { ⟨this, n2⟩ }, next : { ⟨n2, n1⟩, … }

A relational model of memory (heap)

 15

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;

}

this
n2

data: s1
head null

n1

data: s2
next n0

data: null
next next

Fields as binary relations
‣ head : { ⟨this, n2⟩ }, next : { ⟨n2, n1⟩, … }

Types as sets (unary relations)
‣ List : { ⟨this⟩ }, Node : { ⟨n0⟩, ⟨n1⟩, ⟨n2⟩ }

A relational model of memory (heap)

 15

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;

}

this
n2

data: s1
head null

n1

data: s2
next n0

data: null
next next

Fields as binary relations
‣ head : { ⟨this, n2⟩ }, next : { ⟨n2, n1⟩, … }

Types as sets (unary relations)
‣ List : { ⟨this⟩ }, Node : { ⟨n0⟩, ⟨n1⟩, ⟨n2⟩ }

Objects as scalars (singleton sets)
‣ this : { ⟨this⟩ }, null : { ⟨null⟩ }

A relational model of memory (heap)

 15

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;

}

this
n2

data: s1
head null

n1

data: s2
next n0

data: null
next next

Fields as binary relations
‣ head : { ⟨this, n2⟩ }, next : { ⟨n2, n1⟩, … }

Types as sets (unary relations)
‣ List : { ⟨this⟩ }, Node : { ⟨n0⟩, ⟨n1⟩, ⟨n2⟩ }

Objects as scalars (singleton sets)
‣ this : { ⟨this⟩ }, null : { ⟨null⟩ }

Field read as relational join (.)
‣ this.head : { ⟨this⟩ } . { ⟨this, n2⟩ } = { ⟨n2⟩ }

A relational model of memory (heap)

 15

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;

}

this
n2

data: s1
head null

n1

data: s2
next n0

data: null
next next

Fields as binary relations
‣ head : { ⟨this, n2⟩ }, next : { ⟨n2, n1⟩, … }

Types as sets (unary relations)
‣ List : { ⟨this⟩ }, Node : { ⟨n0⟩, ⟨n1⟩, ⟨n2⟩ }

Objects as scalars (singleton sets)
‣ this : { ⟨this⟩ }, null : { ⟨null⟩ }

Field read as relational join (.)
‣ this.head : { ⟨this⟩ } . { ⟨this, n2⟩ } = { ⟨n2⟩ }

Field write as relational override (++)
‣ this.head = null : head ++ (this -> null) =

{ ⟨this, n2⟩ } ++ { ⟨this, null⟩ } = { ⟨this, null⟩ }

A relational model of memory (heap)

 15

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;

}

this
n2

data: s1
head null

n1

data: s2
next n0

data: null
next next

Bounded verification: step 1/4

 16

@invariant Inv(next)

@requires Pre(this, head, next)

@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;

}

@invariant Inv(next)

@requires Pre(this, head, next)

@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
if (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}
assume far == null;

mid.next = near;
head = mid;

}

Bounded verification: step 1/4

 17

Execution finitization
(inlining, unrolling, SSA)

Bounded verification: step 1/4

 18

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

Execution finitization
(inlining, unrolling, SSA)

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

Bounded verification: step 2/4

 19

Forward VCG

Execution finitization
(inlining, unrolling, SSA)

Symbolic interpretation of the
code with respect to the
relational heap model.

this ⊆ List ∧ one this ∧
head ⊆ List ↦ (Node ∪ null) ∧
next ⊆ Node ↦ (Node ∪ null) ∧
data ⊆ Node ↦ (String ∪ null) ∧

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

next0 = next ++ (near0 × far0),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2) |

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
¬ (Inv(next3) ∧ Post(this, head, head0, next, next3))

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

Bounded verification: step 2/4

 20

Bounded verification: step 3/4

 21

this ⊆ List ∧ one this ∧
head ⊆ List ↦ (Node ∪ null) ∧
next ⊆ Node ↦ (Node ∪ null) ∧
data ⊆ Node ↦ (String ∪ null) ∧

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

next0 = next ++ (near0 × far0),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2) |

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
¬ (Inv(next3) ∧ Post(this, head, head0, next, next3))

Forward VCG

Execution finitization
(inlining, unrolling, SSA)

Heap finitization
(bounds for types, fields)

{ this, n0, n1, n2, s0, s1, s2, null }

{ ⟨null⟩ } ⊆ null ⊆ { ⟨null⟩ }

{} ⊆ this ⊆ { ⟨ this ⟩ }
{} ⊆ List ⊆ { ⟨ this ⟩ }
{} ⊆ Node ⊆ { ⟨n0⟩, ⟨n1⟩, ⟨n2⟩ }
{} ⊆ String ⊆ { ⟨s0⟩, ⟨s1⟩, ⟨s2⟩ }

{} ⊆ head ⊆ { this } × { n0, n1, n2, null }
{} ⊆ next ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ data ⊆ { n0, n1, n2 } × { s0, s1, s2, null }

Bounded verification: step 3/4

 22

this ⊆ List ∧ one this ∧
head ⊆ List ↦ (Node ∪ null) ∧
next ⊆ Node ↦ (Node ∪ null) ∧
data ⊆ Node ↦ (String ∪ null) ∧

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

next0 = next ++ (near0 × far0),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2) |

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
¬ (Inv(next3) ∧ Post(this, head, head0, next, next3))

{ this, n0, n1, n2, s0, s1, s2, null }

{ ⟨null⟩ } ⊆ null ⊆ { ⟨null⟩ }

{} ⊆ this ⊆ { ⟨ this ⟩ }
{} ⊆ List ⊆ { ⟨ this ⟩ }
{} ⊆ Node ⊆ { ⟨n0⟩, ⟨n1⟩, ⟨n2⟩ }
{} ⊆ String ⊆ { ⟨s0⟩, ⟨s1⟩, ⟨s2⟩ }

{} ⊆ head ⊆ { this } × { n0, n1, n2, null }
{} ⊆ next ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ data ⊆ { n0, n1, n2 } × { s0, s1, s2, null }

Bounded verification: step 3/4

 22

this ⊆ List ∧ one this ∧
head ⊆ List ↦ (Node ∪ null) ∧
next ⊆ Node ↦ (Node ∪ null) ∧
data ⊆ Node ↦ (String ∪ null) ∧

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

next0 = next ++ (near0 × far0),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2) |

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
¬ (Inv(next3) ∧ Post(this, head, head0, next, next3))

Finite universe of
uninterpreted
symbols.

{ this, n0, n1, n2, s0, s1, s2, null }

{ ⟨null⟩ } ⊆ null ⊆ { ⟨null⟩ }

{} ⊆ this ⊆ { ⟨ this ⟩ }
{} ⊆ List ⊆ { ⟨ this ⟩ }
{} ⊆ Node ⊆ { ⟨n0⟩, ⟨n1⟩, ⟨n2⟩ }
{} ⊆ String ⊆ { ⟨s0⟩, ⟨s1⟩, ⟨s2⟩ }

{} ⊆ head ⊆ { this } × { n0, n1, n2, null }
{} ⊆ next ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ data ⊆ { n0, n1, n2 } × { s0, s1, s2, null }

Bounded verification: step 3/4

 22

this ⊆ List ∧ one this ∧
head ⊆ List ↦ (Node ∪ null) ∧
next ⊆ Node ↦ (Node ∪ null) ∧
data ⊆ Node ↦ (String ∪ null) ∧

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

next0 = next ++ (near0 × far0),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2) |

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
¬ (Inv(next3) ∧ Post(this, head, head0, next, next3))

Finite universe of
uninterpreted
symbols.

Upper bound
on each relation:
tuples it may
contain.

{ this, n0, n1, n2, s0, s1, s2, null }

{ ⟨null⟩ } ⊆ null ⊆ { ⟨null⟩ }

{} ⊆ this ⊆ { ⟨ this ⟩ }
{} ⊆ List ⊆ { ⟨ this ⟩ }
{} ⊆ Node ⊆ { ⟨n0⟩, ⟨n1⟩, ⟨n2⟩ }
{} ⊆ String ⊆ { ⟨s0⟩, ⟨s1⟩, ⟨s2⟩ }

{} ⊆ head ⊆ { this } × { n0, n1, n2, null }
{} ⊆ next ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ data ⊆ { n0, n1, n2 } × { s0, s1, s2, null }

Bounded verification: step 3/4

 22

this ⊆ List ∧ one this ∧
head ⊆ List ↦ (Node ∪ null) ∧
next ⊆ Node ↦ (Node ∪ null) ∧
data ⊆ Node ↦ (String ∪ null) ∧

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

next0 = next ++ (near0 × far0),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2) |

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
¬ (Inv(next3) ∧ Post(this, head, head0, next, next3))

Finite universe of
uninterpreted
symbols.

Upper bound
on each relation:
tuples it may
contain.

Lower bound
on each relation:
tuples it must
contain.

Bounded verification: step 4/4

 23

Forward VCG

Execution finitization
(inlining, unrolling, SSA)

Heap finitization
(bounds for types, fields)

Solver

this ⊆ List ∧ one this ∧
head ⊆ List ↦ (Node ∪ null) ∧
next ⊆ Node ↦ (Node ∪ null) ∧
data ⊆ Node ↦ (String ∪ null) ∧

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

next0 = next ++ (near0 × far0),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2) |

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
¬ (Inv(next3) ∧ Post(this, head, head0, next, next3))

{ this, n0, n1, n2, s0, s1, s2, null }

{ ⟨null⟩ } ⊆ null ⊆ { ⟨null⟩ }

{} ⊆ this ⊆ { ⟨ this ⟩ }
{} ⊆ List ⊆ { ⟨ this ⟩ }
{} ⊆ Node ⊆ { ⟨n0⟩, ⟨n1⟩, ⟨n2⟩ }
{} ⊆ String ⊆ { ⟨s0⟩, ⟨s1⟩, ⟨s2⟩ }

{} ⊆ head ⊆ { this } × { n0, n1, n2, null }
{} ⊆ next ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ data ⊆ { n0, n1, n2 } × { s0, s1, s2, null }

Bounded verification: counterexample

 24

this
n0

data: null
head

n1

data: s2 next
n2

data: s1

next

next

this
n2

data: s1
head null

n1

data: s2
next n0

data: null
next next

Forward VCG

Execution finitization
(inlining, unrolling, SSA)

Heap finitization
(bounds for types, fields)

Solver

Bounded verification: optimization

 25

Finitized program after inlining
may be huge.

Full inlining is rarely needed to
check partial correctness.

Optimization: Counterexample-
Guided Abstraction Refinement
with Unsatisfiable Cores
[Taghdiri, 2004]

From bounded verification to fault localization

 26

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

From bounded verification to fault localization

 26

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

Given a buggy program and a failure-
triggering input, find a minimal subset
of program statements that prevents
the execution on the given input from
producing a correct output.

From bounded verification to fault localization

 26

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

Given a buggy program and a failure-
triggering input, find a minimal subset
of program statements that prevents
the execution on the given input from
producing a correct output.

Introduce additional “indicator”
relations into the encoding.

From bounded verification to fault localization

 26

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

Given a buggy program and a failure-
triggering input, find a minimal subset
of program statements that prevents
the execution on the given input from
producing a correct output.

Introduce additional “indicator”
relations into the encoding.

The resulting formula, together with
the input partial model, is unsatisfiable.

From bounded verification to fault localization

 26

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

Given a buggy program and a failure-
triggering input, find a minimal subset
of program statements that prevents
the execution on the given input from
producing a correct output.

Introduce additional “indicator”
relations into the encoding.

The resulting formula, together with
the input partial model, is unsatisfiable.

A minimal unsatisfiable core of this
formula represents an irreducible
cause of the program’s failure to meet
the specification.

this ⊆ List ∧ one this ∧
head ⊆ List ↦ (Node ∪ null) ∧
next ⊆ Node ↦ (Node ∪ null) ∧
data ⊆ Node ↦ (String ∪ null) ∧

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

next0 = next ++ (near0 × far0),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2) |

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
¬ (Inv(next3) ∧ Post(this, head, head0, next, next3))

Fault localization: encoding

 27

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

Start with the
encoding for bounded
verification.

this ⊆ List ∧ one this ∧
head ⊆ List ↦ (Node ∪ null) ∧
next ⊆ Node ↦ (Node ∪ null) ∧
data ⊆ Node ↦ (String ∪ null) ∧

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

next0 = next ++ (near0 × far0),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2) |

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
¬ (Inv(next3) ∧ Post(this, head, head0, next, next3))

this ⊆ List ∧ one this ∧
head ⊆ List ↦ (Node ∪ null) ∧
next ⊆ Node ↦ (Node ∪ null) ∧
data ⊆ Node ↦ (String ∪ null) ∧

near0 = this.head ∧
mid0 = near0.next ∧
far0 = mid0.next ∧

next0 = next ++ (near0 × far0) ∧
next1 = next0 ++ (mid0 × near0) ∧
near1 = mid0 ∧
mid1 = far0 ∧
far1 = far0.next1 ∧

let guard = (far0 != null),
near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0 |

next3 = next2 ++ (mid2 × near2) ∧
head0 = head ++ (this × mid2) ∧
far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
Inv(next3) ∧ Post(this, head, head0, next, next3)

Fault localization: encoding

 27

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

Introduce fresh
relations for source-
level expressions.

this ⊆ List ∧ one this ∧
head ⊆ List ↦ (Node ∪ null) ∧
next ⊆ Node ↦ (Node ∪ null) ∧
data ⊆ Node ↦ (String ∪ null) ∧

near0 = this.head ∧
mid0 = near0.next ∧
far0 = mid0.next ∧

next0 = next ++ (near0 × far0) ∧
next1 = next0 ++ (mid0 × near0) ∧
near1 = mid0 ∧
mid1 = far0 ∧
far1 = far0.next1 ∧

let guard = (far0 != null),
near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0 |

next3 = next2 ++ (mid2 × near2) ∧
head0 = head ++ (this × mid2) ∧
far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
Inv(next3) ∧ Post(this, head, head0, next, next3)

Fault localization: bounds

 28

{ this, n0, n1, n2, s0, s1, s2, null }

null = { <null> }
this = { <this> }
List = { <this> }
Node = { <n0>, <n1>, <n2> }
String = { <s1>, <s2> }

head = { <this, n2> }
next = { <n2, n1>, <n1, n0>, <n0, null> }
data = { <n2, s1>, <n1, s2>, <n0, null> }

{} ⊆ head0 ⊆ { this } × { n0, n1, n2, null }
{} ⊆ next0 ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ next1 ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ next3 ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ near0 ⊆ { n0, n1, n2, null }
{} ⊆ near1 ⊆ { n0, n1, n2, null }
{} ⊆ mid0 ⊆ { n0, n1, n2, null }
{} ⊆ mid1 ⊆ { n0, n1, n2, null }
{} ⊆ far0 ⊆ { n0, n1, n2, null }
{} ⊆ far1 ⊆ { n0, n1, n2, null }

Input
expressed as a
partial model.

this ⊆ List ∧ one this ∧
head ⊆ List ↦ (Node ∪ null) ∧
next ⊆ Node ↦ (Node ∪ null) ∧
data ⊆ Node ↦ (String ∪ null) ∧

near0 = this.head ∧
mid0 = near0.next ∧
far0 = mid0.next ∧

next0 = next ++ (near0 × far0) ∧
next1 = next0 ++ (mid0 × near0) ∧
near1 = mid0 ∧
mid1 = far0 ∧
far1 = far0.next1 ∧

let guard = (far0 != null),
near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0 |

next3 = next2 ++ (mid2 × near2) ∧
head0 = head ++ (this × mid2) ∧
far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
Inv(next3) ∧ Post(this, head, head0, next, next3)

Fault localization: minimal unsat core

 29

{ this, n0, n1, n2, s0, s1, s2, null }

null = { <null> }
this = { <this> }
List = { <this> }
Node = { <n0>, <n1>, <n2> }
String = { <s1>, <s2> }

head = { <this, n2> }
next = { <n2, n1>, <n1, n0>, <n0, null> }
data = { <n2, s1>, <n1, s2>, <n0, null> }

{} ⊆ head0 ⊆ { this } × { n0, n1, n2, null }
{} ⊆ next0 ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ next1 ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ next3 ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ near0 ⊆ { n0, n1, n2, null }
{} ⊆ near1 ⊆ { n0, n1, n2, null }
{} ⊆ mid0 ⊆ { n0, n1, n2, null }
{} ⊆ mid1 ⊆ { n0, n1, n2, null }
{} ⊆ far0 ⊆ { n0, n1, n2, null }
{} ⊆ far1 ⊆ { n0, n1, n2, null }

Fault localization: minimal unsat core

 30

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

Fault localization: minimal unsat core

 31

@invariant Inv(next)

@requires Pre(this, head, next)

@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;

}

Summary

 32

Today
• Bounded verification

• A relational model of the heap
• CEGAR with unsat cores
• Fault localization

Next lecture
• Symbolic execution and concolic testing

