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Overview
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Last lecture
• Reasoning about (partial) correctness with Hoare Logic

Today  
• Automating Hoare Logic with verification condition 

generation

Reminder  
• Project proposals due today

to
pi

cs
Based on lectures by Isil Dillig, Daniel Jackson, and Viktor Kuncak



Recap: Imperative Programming Language (IMP)
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Expression E 

• Z | V | E1 + E2 | E1 * E2

Conditional C 

• true | false | E1 = E2 | E1 ≤ E2

Statement S 

• skip  (Skip)

• V := E   (Assignment)

• S1; S2   (Composition)

• if C then S1 else S2 (If)

• while C do S  (While)



⊢ {P1} S {Q1} P⇒ P1 Q1 ⇒ Q

⊢ {P} S {Q}

Recap: Inference rules for Hoare logic
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⊢ {P} skip {P}

             

⊢ {Q[E∕x]} x := E {Q}

⊢ {P} S1 {R} ⊢ {R} S2 {Q}  

⊢ {P} S1; S2 {Q}

⊢ {P∧C} S1 {Q} ⊢ {P∧¬C} S2 {Q}

⊢ {P} if C then S1 else S2 {Q}

⊢ {P∧C} S {P}   

⊢ {P} while C do S {P∧¬C}

loop invariant



Challenge: manual proof construction is tedious!
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{x ≤ n}
while (x < n) do

{x ≤ n ∧ x < n} // loop invariant 
{x+1≤ n} // consequence
x := x + 1
{x ≤ n} // assignment

{x ≤ n ∧ x ≥ n} // while
{x ≥ n} // consequence

Hoare Logic proofs are highly 
manual: 

• When to apply the rule of 
consequence?

• What loop invariants to use?



Challenge: manual proof construction is tedious!
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{x ≤ n} // precondition
while (x < n) do

{x ≤ n ∧ x < n} // loop invariant 
{x+1≤ n} // consequence
x := x + 1
{x ≤ n} // assignment

{x ≤ n ∧ x ≥ n} // while
{x ≥ n} // postcondition

Hoare Logic proofs are highly 
manual: 

• When to apply the rule of 
consequence?

• What loop invariants to use?

We can automate much of the 
proof process with verification 
condition generation! 

• But loop invariants still need to 
be provided …



Automating Hoare logic with VC generation
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Program annotated 
with pre/post conditions, 

loop invariants

Verification Condition 
Generator (VCG)

SMT solver

verification 
condition (VC)
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Program annotated 
with pre/post conditions, 

loop invariants

Verification Condition 
Generator (VCG)

SMT solver

verification 
condition (VC)

A formula φ generated 
automatically from the 
annotated program.

The program satisfies the 
specification if φ is valid.



Automating Hoare logic with VC generation
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Forwards computation: 

• Starting from the precondition, generate 
formulas to prove the postcondition.

• Based on computing strongest 
postconditions (sp).

Backwards computation: 

• Starting from the postcondition, 
generate formulas to prove the 
precondition.

• Based on computing weakest liberal 
preconditions  (wp).

Program annotated 
with pre/post conditions, 

loop invariants

Verification Condition 
Generator (VCG)

SMT solver

verification 
condition (VC)



VC generation with WP and SP
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sp(S, P)
• The strongest predicate that holds after S is executed 

from a state satisfying P.
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sp(S, P)
• The strongest predicate that holds after S is executed 

from a state satisfying P.

wp(S, Q)
• The weakest predicate that guarantees Q will hold 

after executing S from a state satisfying that predicate.

{P} S {Q} is valid iff
• P ⇒ wp(S, Q) or

• sp(S, P) ⇒ Q



Computing wp(S, Q)
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wp(S, Q):
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Computing wp(S, Q)
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wp(S, Q):
• wp(skip, Q) = Q

• wp(x := E, Q) = Q[E / x] 

• wp(S1; S2, Q) = wp(S1, wp(S2, Q)) 

• wp(if C then S1 else S2, Q) = (C → wp(S1, Q)) ∧ (¬C → wp(S2, Q)) 

• wp(while C do S, Q) = ?✗

A fixpoint:  in general, 
cannot be expressed as a 
syntactic construction in 
terms of the postcondition.



Computing wp(S, Q)
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wp(S, Q):
• wp(skip, Q) = Q

• wp(x := E, Q) = Q[E / x] 

• wp(S1; S2, Q) = wp(S1, wp(S2, Q)) 

• wp(if C then S1 else S2, Q) = (C → wp(S1, Q)) ∧ (¬C → wp(S2, Q)) 

• wp(while C do S, Q) = ?✗

Approximate wp(S, Q) 
with awp(S, Q).



Computing awp(S, Q)
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awp(S, Q):
• awp(skip, Q) = Q

• awp(x := E, Q) = Q[E / x] 

• awp(S1; S2, Q) = awp(S1, awp(S2, Q)) 

• awp(if C then S1 else S2, Q) = (C → awp(S1, Q)) ∧ (¬C → awp(S2, Q)) 

• awp(while C do {I} S, Q) = I
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awp(S, Q):
• awp(skip, Q) = Q

• awp(x := E, Q) = Q[E / x] 

• awp(S1; S2, Q) = awp(S1, awp(S2, Q)) 

• awp(if C then S1 else S2, Q) = (C → awp(S1, Q)) ∧ (¬C → awp(S2, Q)) 

• awp(while C do {I} S, Q) = I

Loop invariant provided by an 
oracle (e.g., programmer).



Computing awp(S, Q)
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awp(S, Q):
• awp(skip, Q) = Q

• awp(x := E, Q) = Q[E / x] 

• awp(S1; S2, Q) = awp(S1, awp(S2, Q)) 

• awp(if C then S1 else S2, Q) = (C → awp(S1, Q)) ∧ (¬C → awp(S2, Q)) 

• awp(while C do {I} S, Q) = I

For each statement S, also define 
VC(S,Q) that encodes additional 
conditions that must be checked.
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Computing VC(S, Q)
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VC(S, Q):
• VC(skip, Q) = true

• VC(x := E, Q) = true 

• VC(S1; S2, Q) = VC(S2, Q) ∧ VC(S1, awp(S2, Q)) 

• VC(if C then S1 else S2, Q) = VC(S1, Q) ∧ VC(S2, Q) 

• VC(while C do {I} S, Q) = (I∧C → awp(S,I)) ∧ VC(S,I) ∧ (I∧¬C → Q)

I is an invariant. I is strong enough.



Verifying a Hoare triple
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Theorem: {P} S {Q} is valid if the 
following formula is valid

VC(S, Q) ∧ (P → awp(S, Q))
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Theorem: {P} S {Q} is valid if the 
following formula is valid

VC(S, Q) ∧ (P → awp(S, Q))

The other direction doesn’t 
hold because loop invariants 
may not be strong enough or 
they may be incorrect.

Might get false alarms.



Summary
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Today
• Automating Hoare Logic with VCG

Next Wednesday
• Guest lecture by Rustan Leino!

• Verification with Dafny, Boogie, and Z3.


