Computer-Aided Reasoning for Software

Reasoning about Programs II

courses.cs.washington.edu/courses/cse507/18sp/

Emina Torlak

emina@cs.washington.edu

Overview

Last lecture

• Reasoning about (partial) correctness with Hoare Logic

Today

Automating Hoare Logic with verification condition generation

Reminder

• Project proposals due today

Recap: Imperative Programming Language (IMP)

Expression E

• $Z | V | E_1 + E_2 | E_1 * E_2$

Conditional C

- true | false | $E_1 = E_2 | E_1 \le E_2$

Statement S

- skip (Skip)
 V := E (Assignment)
- S₁; S₂ (Composition)
- if C then S_1 else S_2 (lf)
- while C do S (While)

Recap: Inference rules for Hoare logic

$$\vdash$$
 {P} skip {P}

 $\begin{array}{c} \vdash \{P\} \ S_1 \, \{R\} & \vdash \{R\} \ S_2 \, \{Q\} \\ \\ \vdash \{P\} \ S_1; \, S_2 \, \{Q\} \end{array} \end{array}$

 $\vdash \{Q[E/x]\} \times := E\{Q\}$

 $\vdash \{P \land C\} S_1 \{Q\} \vdash \{P \land \neg C\} S_2 \{Q\}$ $\vdash \{P\} \text{ if } C \text{ then } S_1 \text{ else } S_2 \{Q\}$

$\begin{array}{c|c} \vdash \{P_1\} \ S \left\{Q_1\right\} & P \Rightarrow P_1 & Q_1 \Rightarrow Q \\ \\ \vdash \{P\} \ S \left\{Q\right\} \end{array}$

 $\vdash \{P\} \text{ while } C \text{ do } S \{P \land \neg C\}$

loop invariant

Challenge: manual proof construction is tedious!

 $\{x \leq n\}$ while (x < n) do $\{x \leq n \land x < n\}$ $\{x+l \leq n\}$ x := x + l $\{x \leq n\}$ $\{x \leq n \land x \geq n\}$ $\{x \geq n\}$

- // loop invariant
 // consequence
- // assignment
 // while
 // consequence

Hoare Logic proofs are highly manual:

- When to apply the rule of consequence?
- What loop invariants to use?

Challenge: manual proof construction is tedious!

{x ≤ n} while (x < n) do	// precondition	Hoare Logic proofs are highly manual:
$\{x \le n \}$	// loop invariant	 When to apply the rule of consequence?
x := x +		 What loop invariants to use?
{x ≥ n}	// postcondition	We can automate much of the proof process with verification condition generation!
		 But loop invariants still need to be provided

Automating Hoare logic with VC generation

Automating Hoare logic with VC generation

Program annotated with pre/post conditions, loop invariants

Verification Condition Generator (VCG)

> verification condition (VC)

> > **SMT** solver

A formula φ generated automatically from the annotated program.

The program satisfies the specification if ϕ is valid.

Automating Hoare logic with VC generation

Program annotated with pre/post conditions, loop invariants

Verification Condition Generator (VCG)

verification condition (VC)

SMT solver

Forwards computation:

- Starting from the precondition, generate formulas to prove the postcondition.
- Based on computing strongest postconditions (sp).

Backwards computation:

- Starting from the postcondition, generate formulas to prove the precondition.
- Based on computing weakest liberal preconditions (wp).

sp(S, P)

• The strongest predicate that holds after S is executed from a state satisfying P.

sp(S, P)

• The strongest predicate that holds after S is executed from a state satisfying P.

wp(S, Q)

• The weakest predicate that guarantees Q will hold after executing S from a state satisfying that predicate.

sp(S, P)

• The strongest predicate that holds after S is executed from a state satisfying P.

wp(S, Q)

• The weakest predicate that guarantees Q will hold after executing S from a state satisfying that predicate.

{P} S {Q} is valid iff

- $P \Rightarrow wp(S, Q)$ or
- $sp(S, P) \Rightarrow Q$

- wp(S, Q):
 - wp(skip, Q) = Q

- wp(skip, Q) = Q
- wp(x := E, Q) = Q[E / x]

- wp(skip, Q) = Q
- wp(x := E, Q) = Q[E / x]
- $wp(S_1; S_2, Q) = wp(S_1, wp(S_2, Q))$

- wp(skip, Q) = Q
- wp(x := E, Q) = Q[E / x]
- $wp(S_1; S_2, Q) = wp(S_1, wp(S_2, Q))$
- wp(if C then S_1 else S_2, Q) = (C \rightarrow wp(S_1, Q)) $\land (\neg C \rightarrow$ wp(S_2, Q))

- wp(skip, Q) = Q
- wp(x := E, Q) = Q[E / x]
- $wp(S_1; S_2, Q) = wp(S_1, wp(S_2, Q))$
- wp(if C then S_1 else S_2, Q) = (C \rightarrow wp(S_1, Q)) $\land (\neg C \rightarrow$ wp(S_2, Q))
- wp(while C do S, Q) = ?

wp(S, Q):

- wp(skip, Q) = Q
- wp(x := E, Q) = Q[E / x]
- $wp(S_1; S_2, Q) = wp(S_1, wp(S_2, Q))$
- wp(if C then S_1 else S_2, Q) = (C \rightarrow wp(S_1, Q)) $\land (\neg C \rightarrow$ wp(S_2, Q))
- wp(while C do S, Q) = X

A fixpoint: in general, cannot be expressed as a syntactic construction in terms of the postcondition.

wp(S, Q):

- wp(skip, Q) = Q
- wp(x := E, Q) = Q[E / x]
- $wp(S_1; S_2, Q) = wp(S_1, wp(S_2, Q))$
- wp(if C then S_1 else S_2, Q) = (C \rightarrow wp(S_1, Q)) $\land (\neg C \rightarrow$ wp(S_2, Q))
- wp(while C do S, Q) = X

Approximate wp(S, Q)with awp(S, Q).

- awp(skip, Q) = Q
- awp(x := E, Q) = Q[E / x]
- $\operatorname{awp}(S_1; S_2, Q) = \operatorname{awp}(S_1, \operatorname{awp}(S_2, Q))$
- $awp(if C then S_1 else S_2, Q) = (C \rightarrow awp(S_1, Q)) \land (\neg C \rightarrow awp(S_2, Q))$
- awp(while C do {I} S, Q) = I

awp(S, Q):

- awp(skip, Q) = Q
- awp(x := E, Q) = Q[E / x]
- $\operatorname{awp}(S_1; S_2, Q) = \operatorname{awp}(S_1, \operatorname{awp}(S_2, Q))$
- $awp(if C then S_1 else S_2, Q) = (C \rightarrow awp(S_1, Q)) \land (\neg C \rightarrow awp(S_2, Q))$
- awp(while C do {I} S, Q) = I

Loop invariant provided by an oracle (e.g., programmer).

awp(S, Q):

- awp(skip, Q) = Q
- awp(x := E, Q) = Q[E / x]
- $\operatorname{awp}(S_1; S_2, Q) = \operatorname{awp}(S_1, \operatorname{awp}(S_2, Q))$
- $awp(if C then S_1 else S_2, Q) = (C \rightarrow awp(S_1, Q)) \land (\neg C \rightarrow awp(S_2, Q))$
- awp(while C do {I} S, Q) = I

For each statement S, also define VC(S,Q) that encodes additional conditions that must be checked.

- **VC(S, Q):**
 - VC(skip, Q) = true

- VC(skip, Q) = true
- VC(x := E, Q) = true

- VC(skip, Q) = true
- VC(x := E, Q) = true
- $VC(S_1; S_2, Q) = VC(S_2, Q) \land VC(S_1, awp(S_2, Q))$

- VC(skip, Q) = true
- VC(x := E, Q) = true
- $VC(S_1; S_2, Q) = VC(S_2, Q) \land VC(S_1, awp(S_2, Q))$
- VC(if C then S_1 else S_2, Q) = VC(S_1, Q) \land VC(S_2, Q)

VC(S, Q):

- VC(skip, Q) = true
- VC(x := E, Q) = true
- $VC(S_1; S_2, Q) = VC(S_2, Q) \land VC(S_1, awp(S_2, Q))$
- VC(if C then S_1 else S_2, Q) = VC(S_1, Q) \land VC(S_2, Q)
- VC(while C do {I} S, Q) = (I \land C \rightarrow awp(S,I)) \land VC(S,I) \land (I \land \neg C \rightarrow Q)

l is an invariant.

I is strong enough.

Verifying a Hoare triple

Theorem: {P} S {Q} is valid if the following formula is valid

 $VC(S, Q) \land (P \rightarrow awp(S, Q))$

Verifying a Hoare triple

Theorem: {P} S {Q} is valid if the following formula is valid

 $VC(S, Q) \land (P \rightarrow awp(S, Q))$

The other direction doesn't hold because loop invariants may not be strong enough or they may be incorrect.

Might get false alarms.

Summary

Today

• Automating Hoare Logic with VCG

Next Wednesday

- Guest lecture by Rustan Leino!
- Verification with Dafny, Boogie, and Z3.

