
CSE507
Computer-Aided Reasoning for Software

Emina Torlak
emina@cs.washington.edu

courses.cs.washington.edu/courses/cse507/18sp/

Reasoning about Programs II

http://courses.cs.washington.edu/courses/cse507/18sp/index.html

Overview

 2

Last lecture
• Reasoning about (partial) correctness with Hoare Logic

Today
• Automating Hoare Logic with verification condition

generation

Reminder
• Project proposals due today

to
pi

cs
Based on lectures by Isil Dillig, Daniel Jackson, and Viktor Kuncak

Recap: Imperative Programming Language (IMP)

 3

Expression E

• Z | V | E1 + E2 | E1 * E2

Conditional C

• true | false | E1 = E2 | E1 ≤ E2

Statement S

• skip (Skip)

• V := E (Assignment)

• S1; S2 (Composition)

• if C then S1 else S2 (If)

• while C do S (While)

⊢ {P1} S {Q1} P⇒ P1 Q1 ⇒ Q

⊢ {P} S {Q}

Recap: Inference rules for Hoare logic

 4

⊢ {P} skip {P}

⊢ {Q[E∕x]} x := E {Q}

⊢ {P} S1 {R} ⊢ {R} S2 {Q}

⊢ {P} S1; S2 {Q}

⊢ {P∧C} S1 {Q} ⊢ {P∧¬C} S2 {Q}

⊢ {P} if C then S1 else S2 {Q}

⊢ {P∧C} S {P}

⊢ {P} while C do S {P∧¬C}

loop invariant

Challenge: manual proof construction is tedious!

 5

{x ≤ n}
while (x < n) do

{x ≤ n ∧ x < n} // loop invariant
{x+1≤ n} // consequence
x := x + 1
{x ≤ n} // assignment

{x ≤ n ∧ x ≥ n} // while
{x ≥ n} // consequence

Hoare Logic proofs are highly
manual:

• When to apply the rule of
consequence?

• What loop invariants to use?

Challenge: manual proof construction is tedious!

 6

{x ≤ n} // precondition
while (x < n) do

{x ≤ n ∧ x < n} // loop invariant
{x+1≤ n} // consequence
x := x + 1
{x ≤ n} // assignment

{x ≤ n ∧ x ≥ n} // while
{x ≥ n} // postcondition

Hoare Logic proofs are highly
manual:

• When to apply the rule of
consequence?

• What loop invariants to use?

We can automate much of the
proof process with verification
condition generation!

• But loop invariants still need to
be provided …

Automating Hoare logic with VC generation

 7

Program annotated
with pre/post conditions,

loop invariants

Verification Condition
Generator (VCG)

SMT solver

verification
condition (VC)

Automating Hoare logic with VC generation

 7

Program annotated
with pre/post conditions,

loop invariants

Verification Condition
Generator (VCG)

SMT solver

verification
condition (VC)

A formula φ generated
automatically from the
annotated program.

The program satisfies the
specification if φ is valid.

Automating Hoare logic with VC generation

 8

Forwards computation:

• Starting from the precondition, generate
formulas to prove the postcondition.

• Based on computing strongest
postconditions (sp).

Backwards computation:

• Starting from the postcondition,
generate formulas to prove the
precondition.

• Based on computing weakest liberal
preconditions (wp).

Program annotated
with pre/post conditions,

loop invariants

Verification Condition
Generator (VCG)

SMT solver

verification
condition (VC)

VC generation with WP and SP

 9

VC generation with WP and SP

 9

sp(S, P)
• The strongest predicate that holds after S is executed

from a state satisfying P.

VC generation with WP and SP

 9

sp(S, P)
• The strongest predicate that holds after S is executed

from a state satisfying P.

wp(S, Q)
• The weakest predicate that guarantees Q will hold

after executing S from a state satisfying that predicate.

VC generation with WP and SP

 9

sp(S, P)
• The strongest predicate that holds after S is executed

from a state satisfying P.

wp(S, Q)
• The weakest predicate that guarantees Q will hold

after executing S from a state satisfying that predicate.

{P} S {Q} is valid iff
• P ⇒ wp(S, Q) or

• sp(S, P) ⇒ Q

Computing wp(S, Q)

 10

Computing wp(S, Q)

 10

wp(S, Q):

Computing wp(S, Q)

 10

wp(S, Q):
• wp(skip, Q) = Q

Computing wp(S, Q)

 10

wp(S, Q):
• wp(skip, Q) = Q

• wp(x := E, Q) = Q[E / x]

Computing wp(S, Q)

 10

wp(S, Q):
• wp(skip, Q) = Q

• wp(x := E, Q) = Q[E / x]

• wp(S1; S2, Q) = wp(S1, wp(S2, Q))

Computing wp(S, Q)

 10

wp(S, Q):
• wp(skip, Q) = Q

• wp(x := E, Q) = Q[E / x]

• wp(S1; S2, Q) = wp(S1, wp(S2, Q))

• wp(if C then S1 else S2, Q) = (C → wp(S1, Q)) ∧ (¬C → wp(S2, Q))

Computing wp(S, Q)

 10

wp(S, Q):
• wp(skip, Q) = Q

• wp(x := E, Q) = Q[E / x]

• wp(S1; S2, Q) = wp(S1, wp(S2, Q))

• wp(if C then S1 else S2, Q) = (C → wp(S1, Q)) ∧ (¬C → wp(S2, Q))

• wp(while C do S, Q) = ?

Computing wp(S, Q)

 10

wp(S, Q):
• wp(skip, Q) = Q

• wp(x := E, Q) = Q[E / x]

• wp(S1; S2, Q) = wp(S1, wp(S2, Q))

• wp(if C then S1 else S2, Q) = (C → wp(S1, Q)) ∧ (¬C → wp(S2, Q))

• wp(while C do S, Q) = ?✗

A fixpoint: in general,
cannot be expressed as a
syntactic construction in
terms of the postcondition.

Computing wp(S, Q)

 10

wp(S, Q):
• wp(skip, Q) = Q

• wp(x := E, Q) = Q[E / x]

• wp(S1; S2, Q) = wp(S1, wp(S2, Q))

• wp(if C then S1 else S2, Q) = (C → wp(S1, Q)) ∧ (¬C → wp(S2, Q))

• wp(while C do S, Q) = ?✗

Approximate wp(S, Q)
with awp(S, Q).

Computing awp(S, Q)

 11

awp(S, Q):
• awp(skip, Q) = Q

• awp(x := E, Q) = Q[E / x]

• awp(S1; S2, Q) = awp(S1, awp(S2, Q))

• awp(if C then S1 else S2, Q) = (C → awp(S1, Q)) ∧ (¬C → awp(S2, Q))

• awp(while C do {I} S, Q) = I

Computing awp(S, Q)

 11

awp(S, Q):
• awp(skip, Q) = Q

• awp(x := E, Q) = Q[E / x]

• awp(S1; S2, Q) = awp(S1, awp(S2, Q))

• awp(if C then S1 else S2, Q) = (C → awp(S1, Q)) ∧ (¬C → awp(S2, Q))

• awp(while C do {I} S, Q) = I

Loop invariant provided by an
oracle (e.g., programmer).

Computing awp(S, Q)

 11

awp(S, Q):
• awp(skip, Q) = Q

• awp(x := E, Q) = Q[E / x]

• awp(S1; S2, Q) = awp(S1, awp(S2, Q))

• awp(if C then S1 else S2, Q) = (C → awp(S1, Q)) ∧ (¬C → awp(S2, Q))

• awp(while C do {I} S, Q) = I

For each statement S, also define
VC(S,Q) that encodes additional
conditions that must be checked.

Computing VC(S, Q)

 12

Computing VC(S, Q)

 12

VC(S, Q):

Computing VC(S, Q)

 12

VC(S, Q):
• VC(skip, Q) = true

Computing VC(S, Q)

 12

VC(S, Q):
• VC(skip, Q) = true

• VC(x := E, Q) = true

Computing VC(S, Q)

 12

VC(S, Q):
• VC(skip, Q) = true

• VC(x := E, Q) = true

• VC(S1; S2, Q) = VC(S2, Q) ∧ VC(S1, awp(S2, Q))

Computing VC(S, Q)

 12

VC(S, Q):
• VC(skip, Q) = true

• VC(x := E, Q) = true

• VC(S1; S2, Q) = VC(S2, Q) ∧ VC(S1, awp(S2, Q))

• VC(if C then S1 else S2, Q) = VC(S1, Q) ∧ VC(S2, Q)

Computing VC(S, Q)

 12

VC(S, Q):
• VC(skip, Q) = true

• VC(x := E, Q) = true

• VC(S1; S2, Q) = VC(S2, Q) ∧ VC(S1, awp(S2, Q))

• VC(if C then S1 else S2, Q) = VC(S1, Q) ∧ VC(S2, Q)

• VC(while C do {I} S, Q) = (I∧C → awp(S,I)) ∧ VC(S,I) ∧ (I∧¬C → Q)

I is an invariant. I is strong enough.

Verifying a Hoare triple

 13

Theorem: {P} S {Q} is valid if the
following formula is valid

VC(S, Q) ∧ (P → awp(S, Q))

Verifying a Hoare triple

 13

Theorem: {P} S {Q} is valid if the
following formula is valid

VC(S, Q) ∧ (P → awp(S, Q))

The other direction doesn’t
hold because loop invariants
may not be strong enough or
they may be incorrect.

Might get false alarms.

Summary

 14

Today
• Automating Hoare Logic with VCG

Next Wednesday
• Guest lecture by Rustan Leino!

• Verification with Dafny, Boogie, and Z3.

