Computer-Aided Reasoning for Software

A Survey of Theory Solvers

courses.cs.washington.edu/courses/cse507/18sp/

Emina Torlak

emina@cs.washington.edu

Today

Last lecture

Introduction to Satisfiability Modulo Theories (SMT)

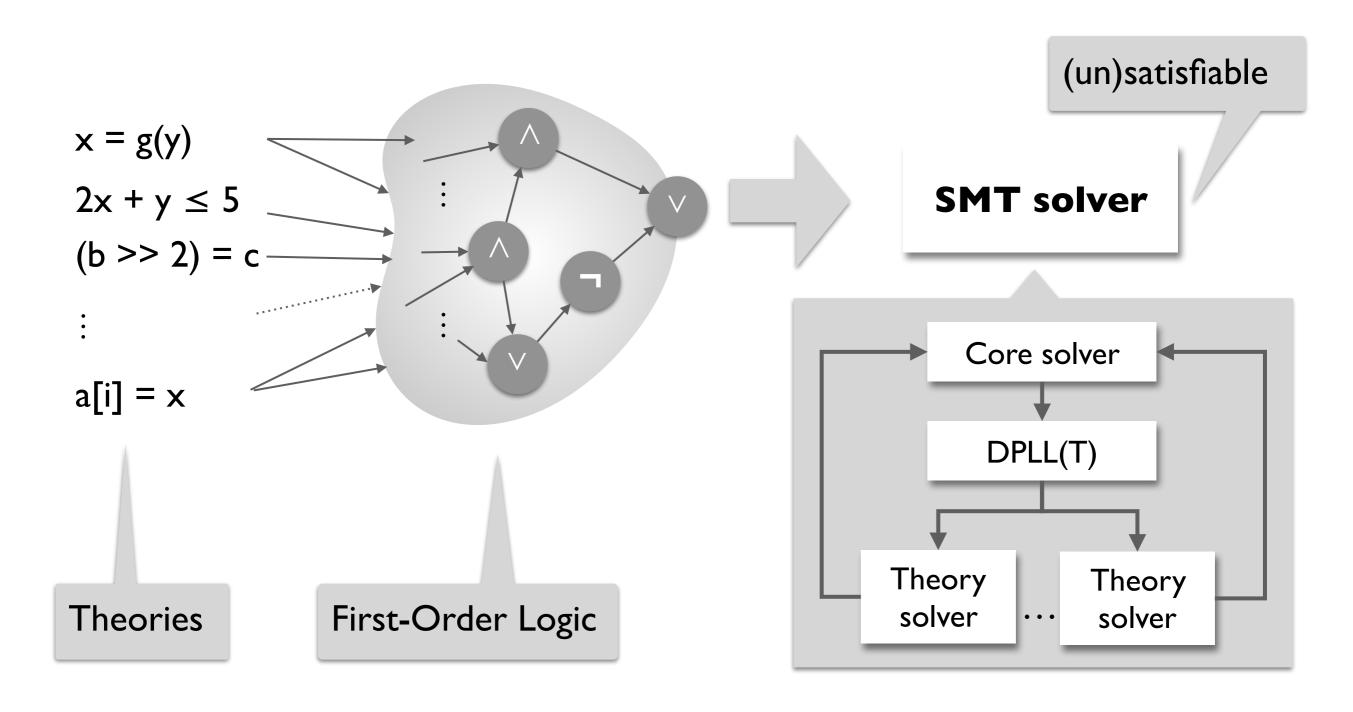
Today

- A quick survey of theory solvers
- An in-depth look at the core theory solver (theory of equality and uninterpreted functions)

Reminder

Start thinking about your project & find a partner

Recall: Satisfiability Modulo Theories (SMT)



$$x = g(y)$$

Core solver

$$2x + y \le 5$$

Theory solver

$$2i + j \leq 5$$

Theory solver

$$(b >> 2) = c$$

Theory solver

$$a[i] = x$$

Theory solver

$$x = g(y)$$

Equality and UF

$$x = g(y)$$

Equality and UF

$$a[i] = x$$
Arrays

- Conjunctions of linear constraints over R
 - Can be decided in polynomial time, but in practice solved with the **General Simplex** method (worst case exponential)
 - Can also be decided with Fourier-Motzkin elimination (exponential)

$$x = g(y)$$

Equality and UF

$$a[i] = x$$
Arrays

- Conjunctions of linear constraints over Z
 - Branch-and-cut (based on Simplex)
 - Omega Test (extension of Fourier-Motzkin)
- **Small-Domain Encoding** used for arbitrary combinations of linear constraints over Z
- NP-complete

$$x = g(y)$$

Equality and UF

$$2x + y \le 5$$
Linear Real
Arithmetic

$$a[i] = x$$
Arrays

- Arbitrary combination of constraints over bitvectors
 - Bit blasting (reduction to SAT)
 - NP-complete

$$x = g(y)$$

Equality and UF

$$2x + y \leq 5$$
Linear Real
Arithmetic

$$a[i] = x$$
Arrays

- Conjunctions of constraints over read/write terms in the theory of arrays
 - Reduce to T= satisfiability
 - NP-complete (because the reduction introduces disjunctions)

$$x = g(y)$$

Equality and UF

- Conjunctions of equality constraints over uninterpreted functions
 - Congruence closure
 - Polynomial time

$$2x + y \le 5$$
Linear Real
Arithmetic

$$a[i] = x$$
Arrays

Theory of equality and UF (T₌)

Signature (all symbols)

• $\{=, a, b, c, ..., f, g, ..., p, q, ...\}$

Axioms

- reflexivity: $\forall x. \ x = x$
- symmetry: $\forall x, y. x = y \rightarrow y = x$
- transitivity: $\forall x, y, z. \ x = y \land y = z \rightarrow x = z$
- congruence: $\forall x_1, ..., x_n, y_1, ..., y_n. (\land_{1 \le i \le n} x_i = y_i) \rightarrow f(x_1, ..., x_n) = f(y_1, ..., y_n)$
- congruence: $\forall x_1, ..., x_n, y_1, ..., y_n. (\land_{1 \le i \le n} x_i = y_i) \rightarrow p(x_1, ..., x_n) \leftrightarrow p(y_1, ..., y_n)$

Theory of equality and UF (T₌)

Signature (all symbols)

• {=, a, b, c, ..., f, g, ..., X, ...}

Axioms

- reflexivity: $\forall x. \ x = x$
- symmetry: $\forall x, y. \ x = y \rightarrow y = x$
- transitivity: $\forall x, y, z. \ x = y \land y = z \rightarrow x = z$
- congruence: $\forall x_1, ..., x_n, y_1, ..., y_n. (\land_{1 \le i \le n} x_i = y_i) \rightarrow f(x_1, ..., x_n) = f(y_1, ..., y_n)$



Replace predicates with equality constraints over functions:

- introduce a fresh constant T
- for each predicate p, introduce a fresh function f_p
- $p(x_1, ..., x_n) \rightsquigarrow f_p(x_1, ..., x_n) = T$

Theory of equality and UF (T=)

Signature (all function symbols)

• {=, a, b, c, ..., f, g, ...}

Axioms

- reflexivity: $\forall x. \ x = x$
- symmetry: $\forall x, y. \ x = y \rightarrow y = x$
- transitivity: $\forall x, y, z. \ x = y \land y = z \rightarrow x = z$
- congruence: $\forall \overline{x}, \overline{y}$. $\land (x_i = y_i) \rightarrow f(\overline{x}) = f(\overline{y})$

T₌ models

• all structures $\langle U, I \rangle$ that satisfy the axioms of $T_=$

Theory of equality and UF (T₌)

Signature (all function symbols)

• $\{=, a, b, c, ..., f, g, ...\}$

Axioms

- reflexivity: $\forall x. \ x = x$
- symmetry: $\forall x, y. x = y \rightarrow y = x$
- transitivity: $\forall x, y, z. \ x = y \land y = z \rightarrow x = z$
- congruence: $\forall \overline{x}, \overline{y}$. $\land (x_i = y_i) \rightarrow f(\overline{x}) = f(\overline{y})$

T₌ models

• all structures $\langle U, I \rangle$ that satisfy the axioms of $T_=$

T₌ models?

$$U = \{ \cancel{-}, \clubsuit \}$$

$$I_1[=] : \{ \langle \cancel{-}, \clubsuit \rangle, \langle \spadesuit, \cancel{-}, \lozenge \rangle \}$$

$$I_2[=] : \{ \langle \cancel{-}, \cancel{-}, \lozenge \rangle, \langle \spadesuit, \clubsuit \rangle \}$$

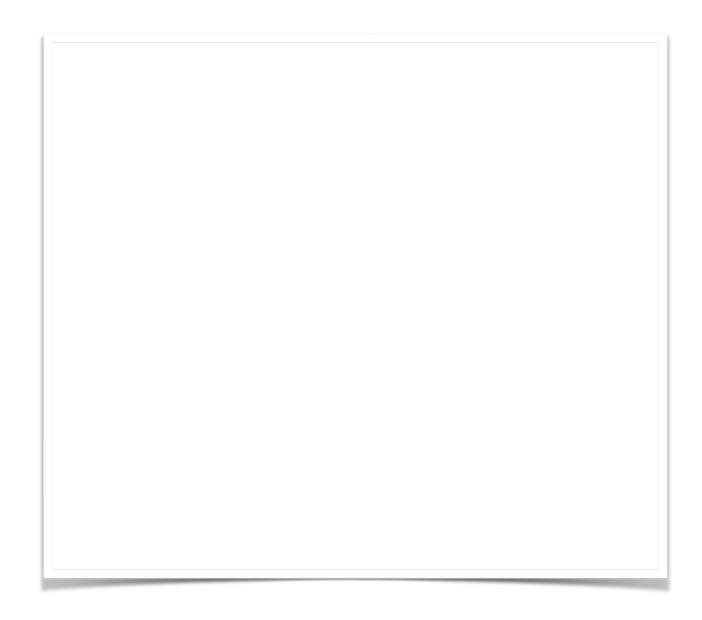
$$I_3[=] : \{ \langle \cancel{-}, \cancel{-}, \diamondsuit \rangle, \langle \spadesuit, \clubsuit \rangle, \langle \diamondsuit, \diamondsuit \rangle \}$$

Is a conjunction of T= literals satisfiable?

$$f(f(f(a))) = a \wedge f(f(f(f(f(a))))) = a \wedge f(a) \neq a$$

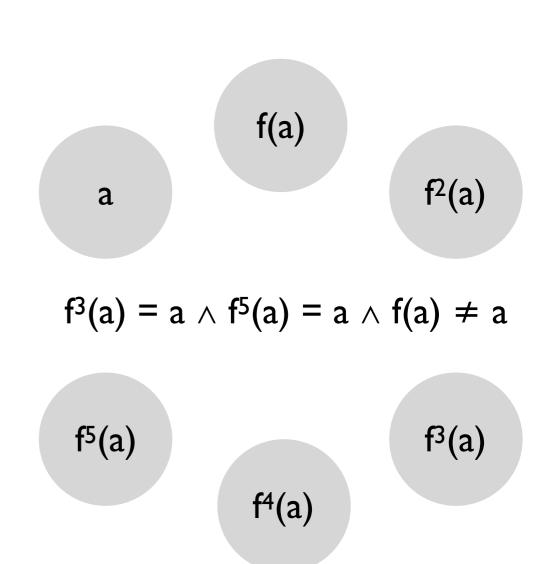
Is a conjunction of T= literals satisfiable?

$$f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$$

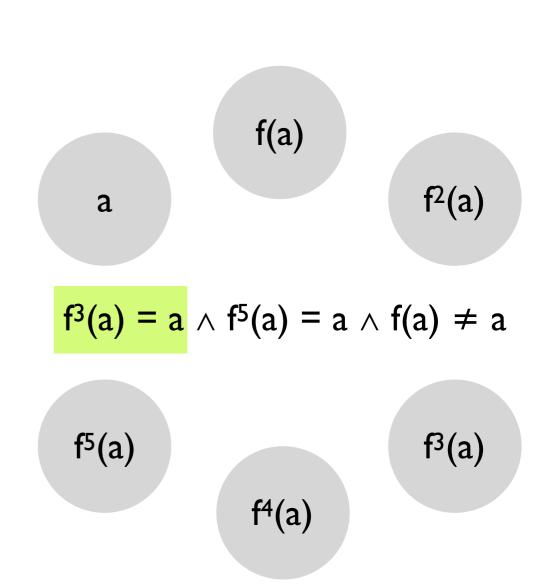


$$f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$$

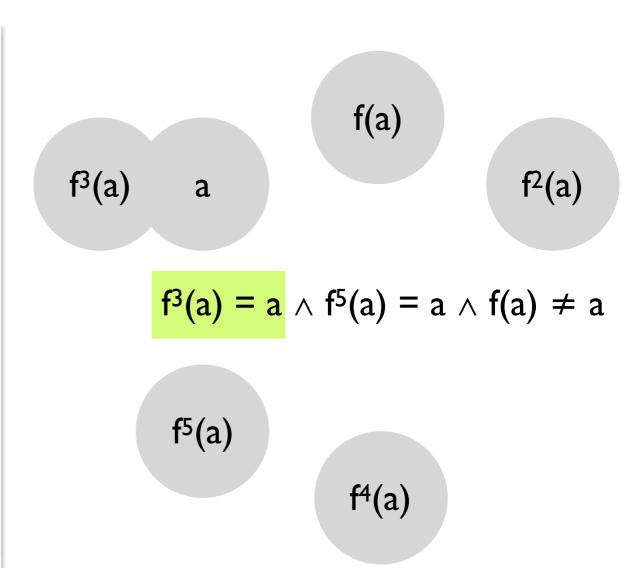
 Place each subterm of F into its own congruence class



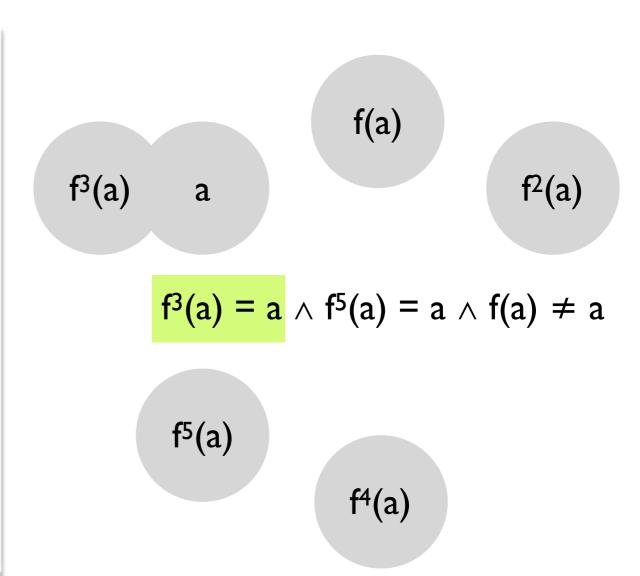
- Place each subterm of F into its own congruence class
- For each positive literal $t_1 = t_2$ in F



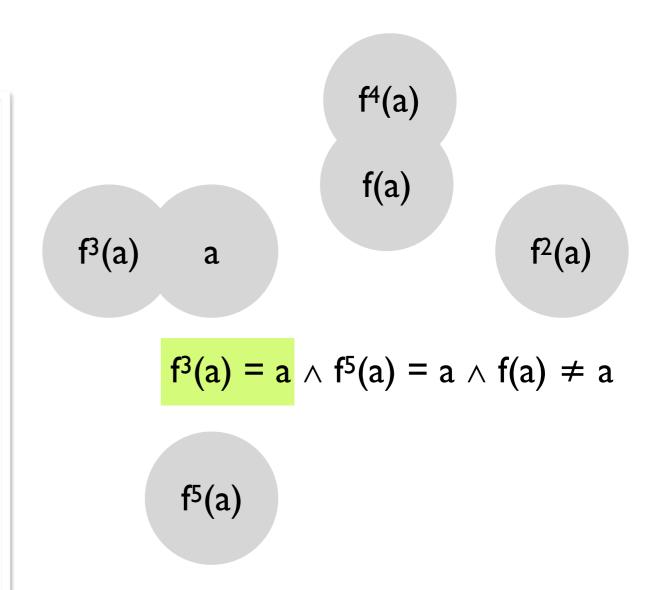
- Place each subterm of F into its own congruence class
- For each positive literal $t_1 = t_2$ in F
 - Merge the classes for t₁ and t₂



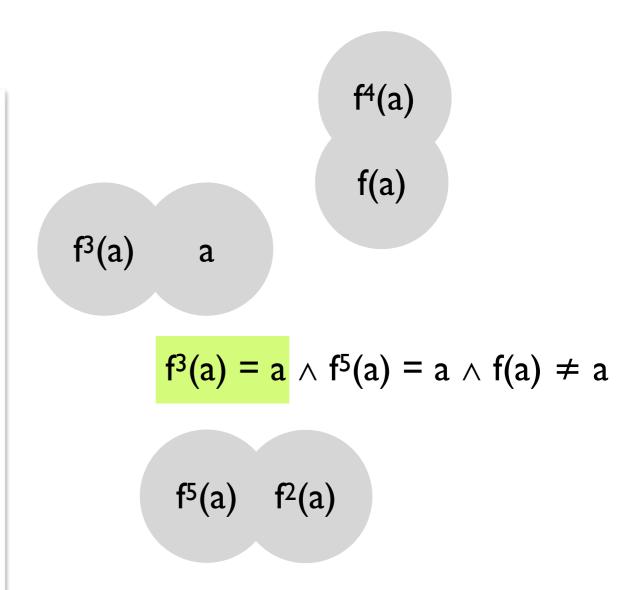
- Place each subterm of F into its own congruence class
- For each positive literal $t_1 = t_2$ in F
 - Merge the classes for t₁ and t₂
 - Propagate the resulting congruences



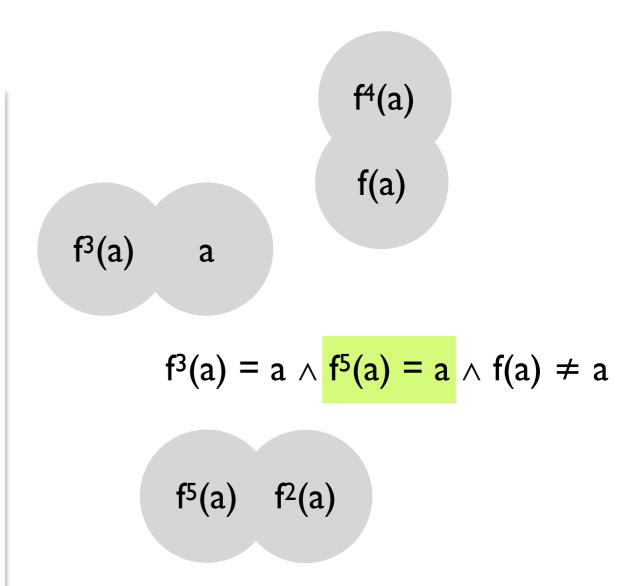
- Place each subterm of F into its own congruence class
- For each positive literal $t_1 = t_2$ in F
 - Merge the classes for t₁ and t₂
 - Propagate the resulting congruences



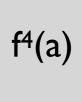
- Place each subterm of F into its own congruence class
- For each positive literal $t_1 = t_2$ in F
 - Merge the classes for t₁ and t₂
 - Propagate the resulting congruences



- Place each subterm of F into its own congruence class
- For each positive literal $t_1 = t_2$ in F
 - Merge the classes for t₁ and t₂
 - Propagate the resulting congruences



- Place each subterm of F into its own congruence class
- For each positive literal $t_1 = t_2$ in F
 - Merge the classes for t₁ and t₂
 - Propagate the resulting congruences



f(a)

$$f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$$

$$f^{5}(a)$$
 $f^{2}(a)$

$$f^3(a)$$
 a

- Place each subterm of F into its own congruence class
- For each positive literal $t_1 = t_2$ in F
 - Merge the classes for t₁ and t₂
 - Propagate the resulting congruences

$$f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$$

$$f^{5}(a)$$
 $f^{2}(a)$ $f(a)$

$$f^{3}(a)$$
 a $f^{4}(a)$

- Place each subterm of F into its own congruence class
- For each positive literal $t_1 = t_2$ in F
 - Merge the classes for t₁ and t₂
 - Propagate the resulting congruences
- If F has a negative literal t₁ ≠ t₂ with both terms in the same congruence class, output UNSAT
- Otherwise, output SAT

$$f^{3}(a) = a \wedge f^{5}(a) = a \wedge f(a) \neq a$$

$$f^{5}(a) \quad f^{2}(a) \quad f(a)$$

$$f^{3}(a) \quad a \quad f^{4}(a)$$

- Place each subterm of F into its own congruence class
- For each positive literal $t_1 = t_2$ in F
 - Merge the classes for t₁ and t₂
 - Propagate the resulting congruences
- If F has a negative literal t₁ ≠ t₂ with both terms in the same congruence class, output UNSAT
- Otherwise, output SAT

UNSAT

$$f^3(a) = a \wedge f^5(a) = a \wedge f(a) \neq a$$

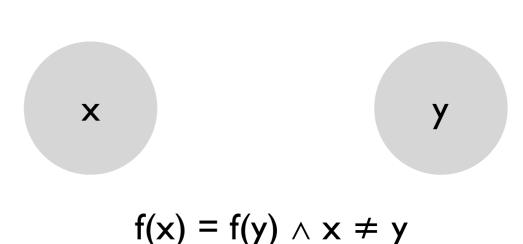
$$f^{5}(a)$$
 $f^{2}(a)$ $f(a)$

$$f^{3}(a)$$
 a $f^{4}(a)$

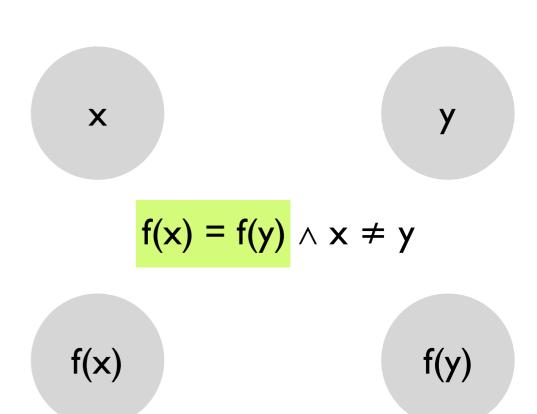
- Place each subterm of F into its own congruence class
- For each positive literal $t_1 = t_2$ in F
 - Merge the classes for t₁ and t₂
 - Propagate the resulting congruences
- If F has a negative literal t₁ ≠ t₂ with both terms in the same congruence class, output UNSAT
- Otherwise, output SAT

$$f(x) = f(y) \land x \neq y$$

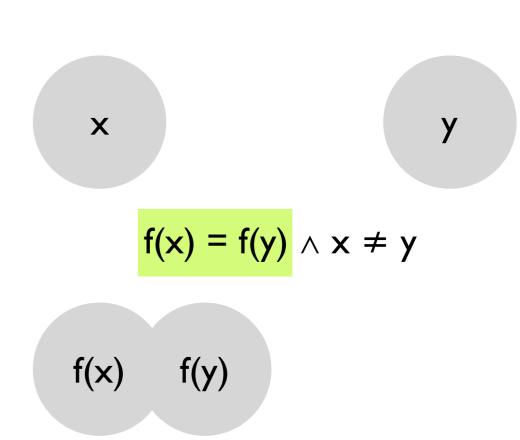
- Place each subterm of F into its own congruence class
- For each positive literal $t_1 = t_2$ in F
 - Merge the classes for t₁ and t₂
 - Propagate the resulting congruences
- If F has a negative literal t₁ ≠ t₂ with both terms in the same congruence class, output UNSAT
- Otherwise, output SAT



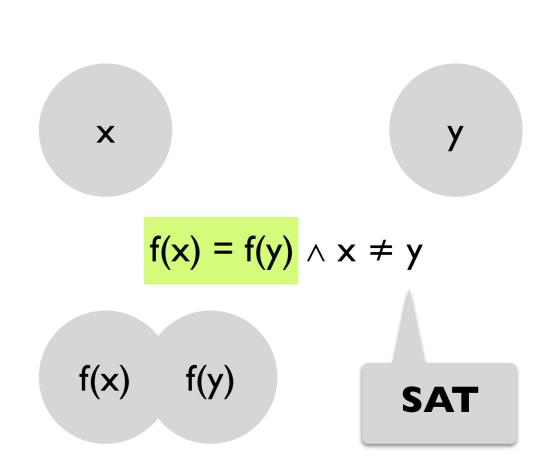
- Place each subterm of F into its own congruence class
- For each positive literal $t_1 = t_2$ in F
 - Merge the classes for t₁ and t₂
 - Propagate the resulting congruences
- If F has a negative literal t₁ ≠ t₂ with both terms in the same congruence class, output UNSAT
- Otherwise, output SAT



- Place each subterm of F into its own congruence class
- For each positive literal $t_1 = t_2$ in F
 - Merge the classes for t₁ and t₂
 - Propagate the resulting congruences
- If F has a negative literal t₁ ≠ t₂ with both terms in the same congruence class, output UNSAT
- Otherwise, output SAT



- Place each subterm of F into its own congruence class
- For each positive literal $t_1 = t_2$ in F
 - Merge the classes for t₁ and t₂
 - Propagate the resulting congruences
- If F has a negative literal t₁ ≠ t₂ with both terms in the same congruence class, output UNSAT
- Otherwise, output SAT



Congruence closure algorithm: definitions

A binary relation R is an **equivalence relation** if it is reflexive, symmetric, and transitive.

Congruence closure algorithm: definitions

A binary relation R is an **equivalence relation** if it is reflexive, symmetric, and transitive.

An equivalence relation R is a congruence relation if for every n-ary function f

$$\forall \overline{x}, \overline{y}. \land R(x_i, y_i) \rightarrow R(f(\overline{x}), f(\overline{y}))$$

Congruence closure algorithm: definitions

A binary relation R is an **equivalence relation** if it is reflexive, symmetric, and transitive.

An equivalence relation R is a congruence relation if for every n-ary function f

$$\forall \overline{x}, \overline{y}. \land R(x_i, y_i) \rightarrow R(f(\overline{x}), f(\overline{y}))$$

The **equivalence class** of an element $s \in S$ under an equivalence relation R:

$$\{ s' \in S \mid R(s, s') \}$$

What is the equivalence class of 9 under \equiv_3 ?

A binary relation R is an **equivalence relation** if it is reflexive, symmetric, and transitive.

An equivalence relation R is a congruence relation if for every n-ary function f

$$\forall \overline{x}, \overline{y}. \land R(x_i, y_i) \rightarrow R(f(\overline{x}), f(\overline{y}))$$

The **equivalence class** of an element $s \in S$ under an equivalence relation R:

$$\{ s' \in S \mid R(s, s') \}$$

An equivalence class is called a **congruence class** if R is a congruence relation.

The **equivalence closure** R^E of a binary relation R is the smallest equivalence relation that contains R.

What is the equivalence closure of $R = \{\langle a, b \rangle, \langle b, c \rangle, \langle d, d \rangle\}$?

The **equivalence closure** R^E of a binary relation R is the smallest equivalence relation that contains R.

What is the equivalence closure of $R = \{\langle a, b \rangle, \langle b, c \rangle, \langle d, d \rangle\}$? $R^{E} = \{\langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle, \langle d, d \rangle$ $\langle a, b \rangle, \langle b, a \rangle, \langle b, c \rangle, \langle c, b \rangle,$ $\langle a, c \rangle, \langle c, a \rangle\}$

The **equivalence closure** R^E of a binary relation R is the smallest equivalence relation that contains R.

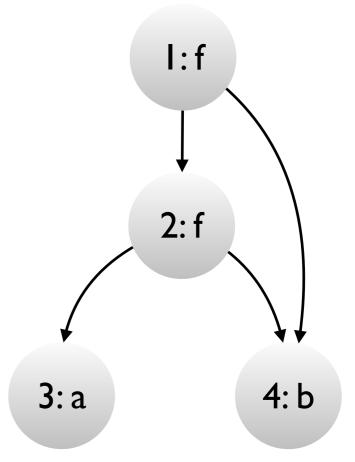
The **congruence closure** R^C of a binary relation R is the smallest congruence relation that contains R.

The congruence closure algorithm computes the congruence closure of the equality relation over terms asserted by a conjunctive quantifier-free formula in $T_{=}$.

$$f(a, b) = a \wedge f(f(a, b), b) \neq a$$

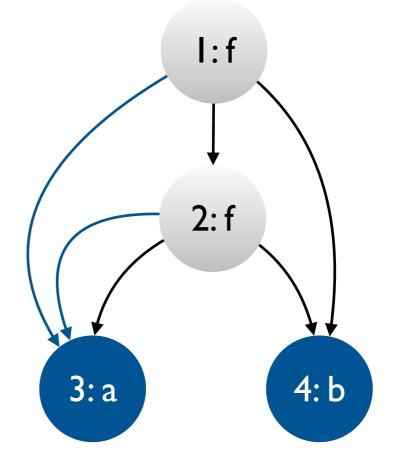
Represent subterms with a DAG

$$f(a, b) = a \wedge f(f(a, b), b) \neq a$$



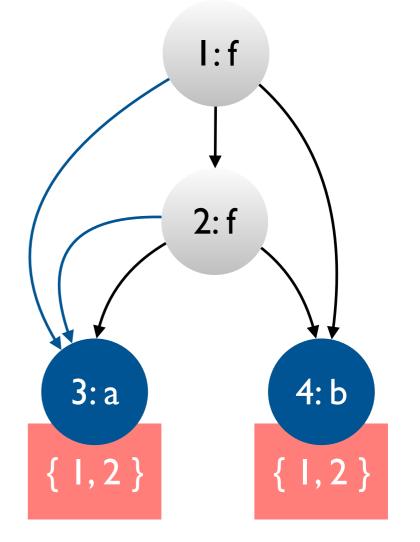
- Represent subterms with a DAG
- Each node has a find pointer to another node in its congruence class (or to itself if it is the representative)

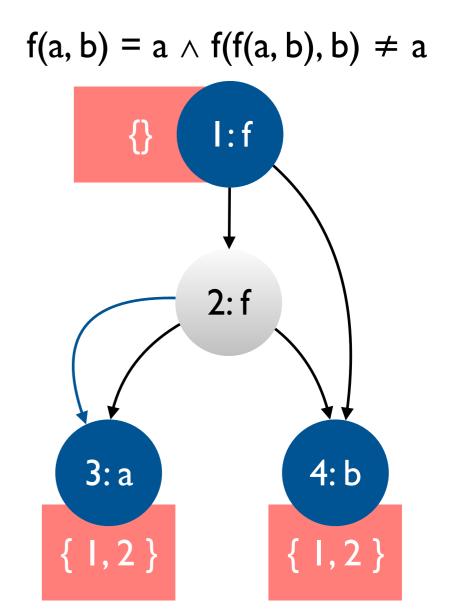
$$f(a, b) = a \wedge f(f(a, b), b) \neq a$$



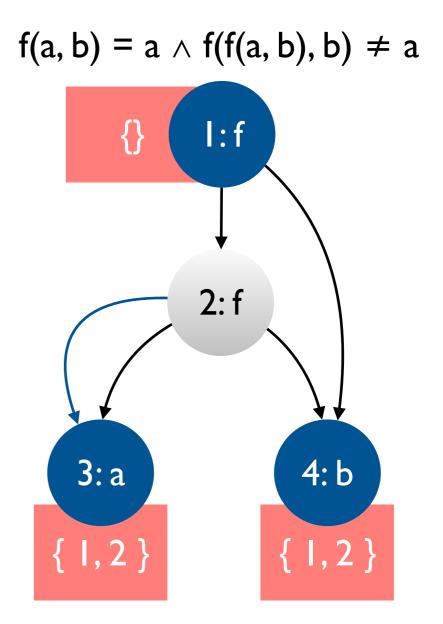
- Represent subterms with a DAG
- Each node has a **find** pointer to another node in its congruence class (or to itself if it is the **representative**)
- Each representative has a ccp field that stores all parents of all nodes in its congruence class.

$$f(a, b) = a \wedge f(f(a, b), b) \neq a$$

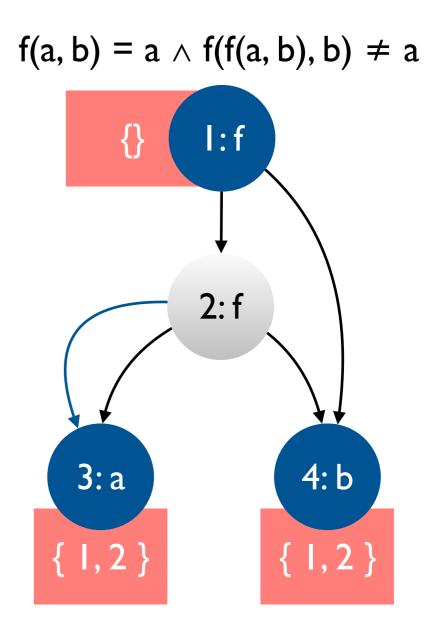




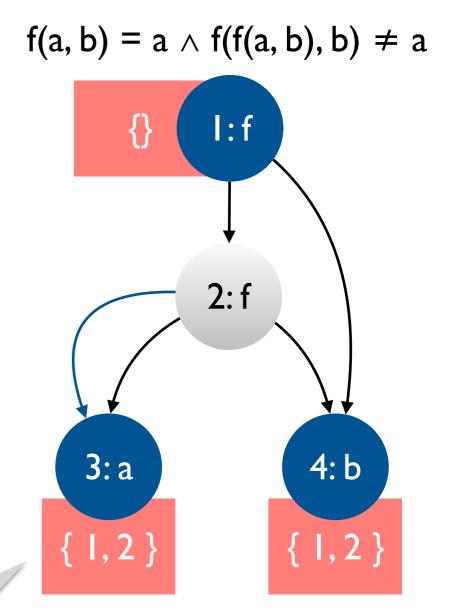
 FIND returns the representative of a node's equivalence class by following find pointers until it finds a self-loop.



- FIND returns the representative of a node's equivalence class by following **find** pointers until it finds a self-loop.
- UNION combines equivalence classes for nodes i₁ and i₂:
 - $n_1, n_2 \leftarrow FIND(i_1), FIND(i_2)$
 - n_1 .find $\leftarrow n_2$
 - $n_2.ccp \leftarrow n_1.ccp \cup n_2.ccp$
 - $n_1.ccp \leftarrow \emptyset$



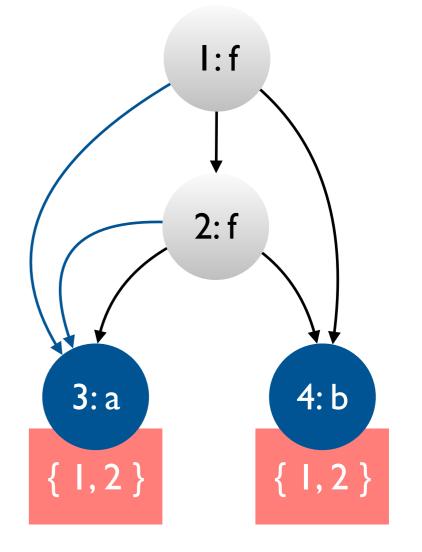
- FIND returns the representative of a node's equivalence class by following **find** pointers until it finds a self-loop.
- UNION combines equivalence classes for nodes i₁ and i₂:
 - $n_1, n_2 \leftarrow FIND(i_1), FIND(i_2)$
 - n_1 .find $\leftarrow n_2$
 - $n_2.ccp \leftarrow n_1.ccp \cup n_2.ccp$
 - n₁.ccp ← Ø



What is UNION(1, 2)?

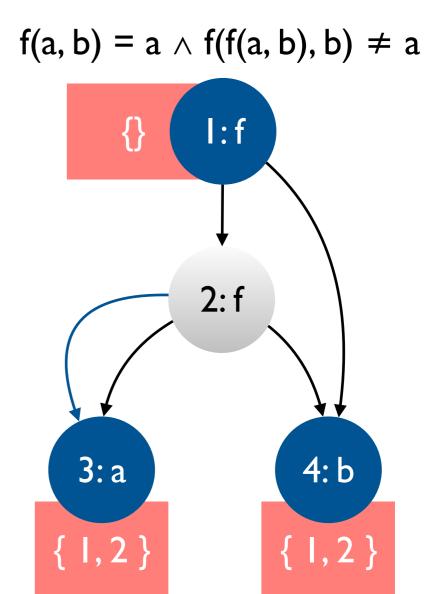
- FIND returns the representative of a node's equivalence class by following find pointers until it finds a self-loop.
- UNION combines equivalence classes for nodes i₁ and i₂:
 - $n_1, n_2 \leftarrow FIND(i_1), FIND(i_2)$
 - n_1 .find $\leftarrow n_2$
 - $n_2.ccp \leftarrow n_1.ccp \cup n_2.ccp$
 - $n_1.ccp \leftarrow \emptyset$

$$f(a, b) = a \wedge f(f(a, b), b) \neq a$$



Congruence closure algorithm: congruent

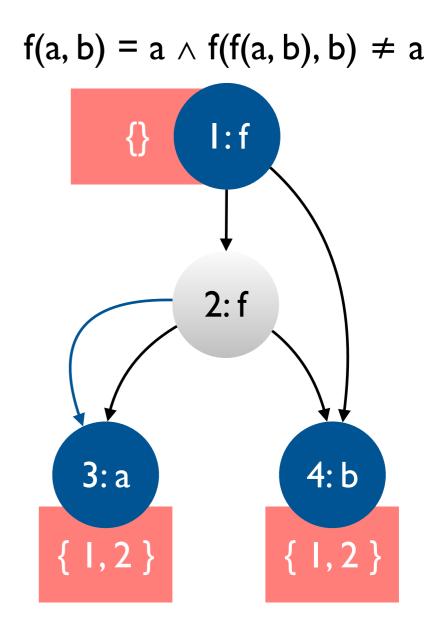
- CONGRUENT takes as input two nodes and returns true iff their
 - functions are the same
 - corresponding arguments are in the same congruence class



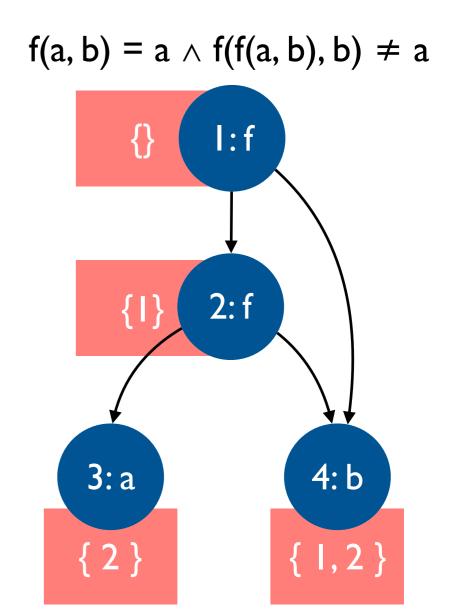
Congruence closure algorithm: congruent

- CONGRUENT takes as input two nodes and returns true iff their
 - functions are the same
 - corresponding arguments are in the same congruence class

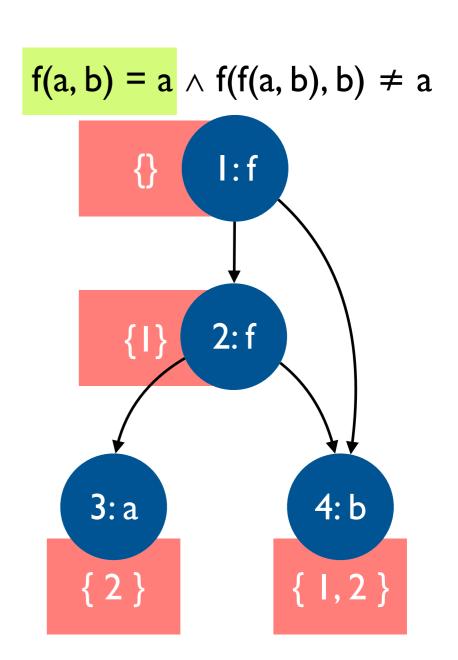
CONGRUENT(1, 2)?



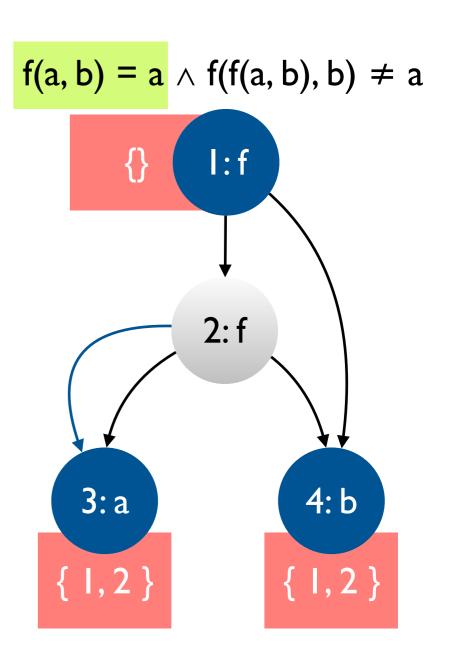
```
MERGE (i<sub>1</sub>, i<sub>2</sub>)
n_1, n_2 \leftarrow FIND(i_1), FIND(i_2)
if n_1 = n_2 then return
p_1, p_2 \leftarrow n_1.ccp, n_2.ccp
UNION(n_1, n_2)
for each t_1, t_2 \in p_1 \times p_2
if FIND(t_1) \neq FIND(t_2) \wedge CONGRUENT(t_1, t_2)
then MERGE(t_1, t_2)
```



```
\begin{aligned} &\text{Merge } (i_1 \ , i_2) \\ &n_1, n_2 \leftarrow \text{FIND}(i_1), \text{FIND}(i_2) \\ &\text{if } n_1 = n_2 \text{ then return} \\ &p_1, p_2 \leftarrow n_1.\text{ccp}, n_2.\text{ccp} \\ &\text{UNION}(n_1, n_2) \\ &\text{for } \text{each } t_1, t_2 \in p_1 \times p_2 \\ &\text{if } \text{FIND}(t_1) \neq \text{FIND}(t_2) \wedge \text{CONGRUENT}(t_1, t_2) \\ &\text{then } \text{Merge}(t_1, t_2) \end{aligned}
```



```
MERGE (i<sub>1</sub>, i<sub>2</sub>)
n_1, n_2 \leftarrow FIND(i_1), FIND(i_2)
if n_1 = n_2 then return
p_1, p_2 \leftarrow n_1.ccp, n_2.ccp
UNION(n_1, n_2)
for each t_1, t_2 \in p_1 \times p_2
if FIND(t_1) \neq FIND(t_2) \wedge CONGRUENT(t_1, t_2)
then MERGE(t_1, t_2)
```



```
MERGE (i_1, i_2)

n_1, n_2 \leftarrow FIND(i_1), FIND(i_2)

if n_1 = n_2 then return

p_1, p_2 \leftarrow n_1.ccp, n_2.ccp

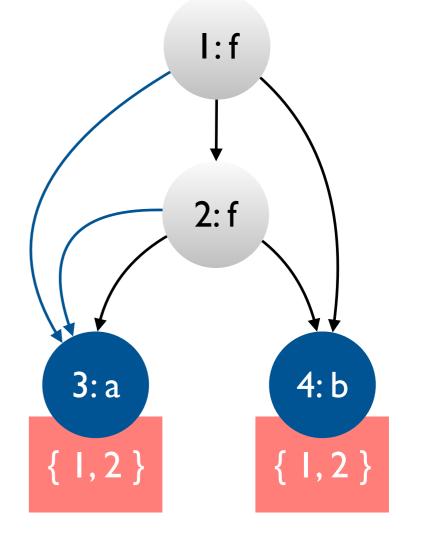
UNION(n_1, n_2)

for each t_1, t_2 \in p_1 \times p_2

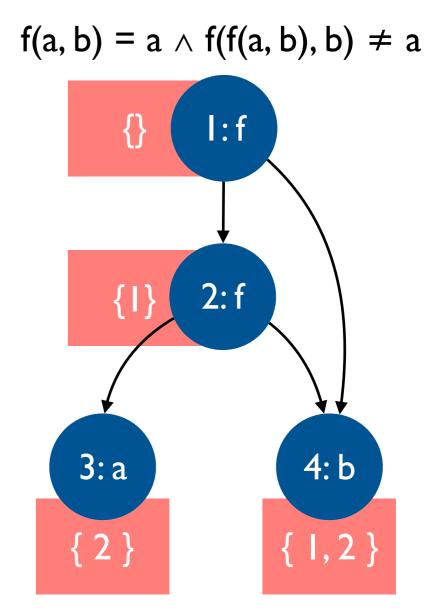
if FIND(t_1) \neq FIND(t_2) \wedge CONGRUENT(t_1, t_2)

then MERGE(t_1, t_2)
```

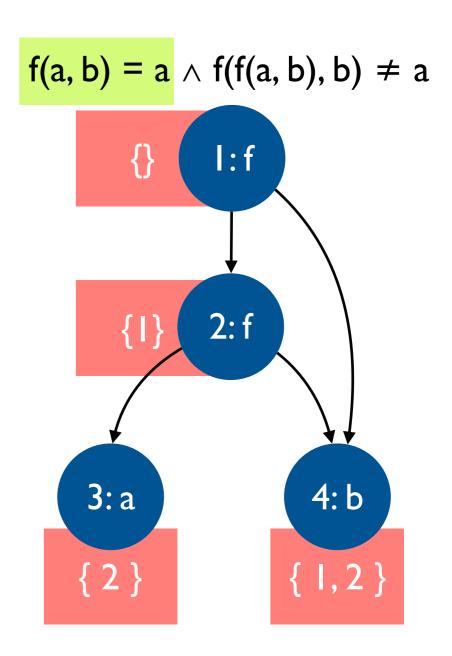
 $f(a, b) = a \land f(f(a, b), b) \neq a$



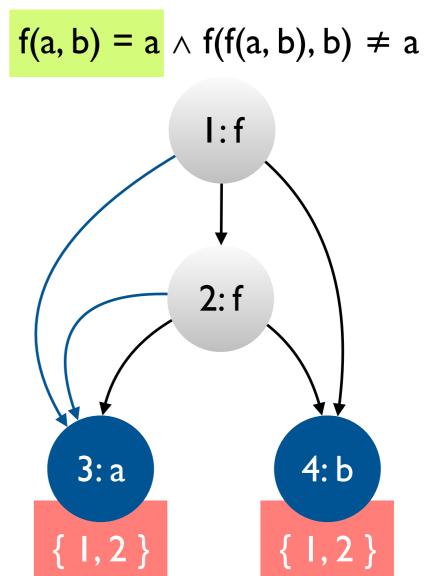
```
DECIDE (F)  \begin{array}{l} \text{construct the DAG for F's subterms} \\ \textbf{for } s_i = t_i \in F \\ \text{MERGE}(s_i, t_i) \\ \textbf{for } s_i \neq t_i \in F \\ \textbf{if } FIND(s_i) = FIND(t_i) \textbf{ then return UNSAT} \\ \textbf{return SAT} \end{array}
```



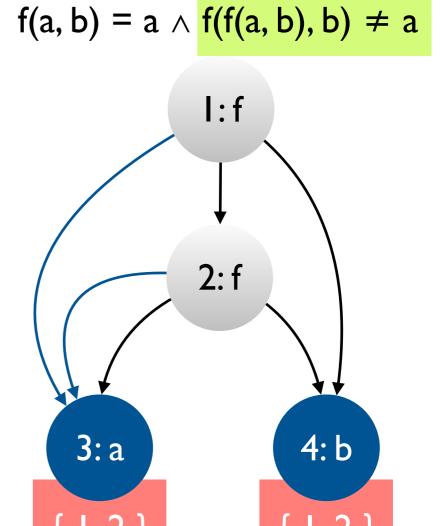
```
DECIDE (F)  \begin{array}{l} \text{construct the DAG for F's subterms} \\ \textbf{for } s_i = t_i \in F \\ \text{MERGE}(s_i, t_i) \\ \textbf{for } s_i \neq t_i \in F \\ \textbf{if } FIND(s_i) = FIND(t_i) \textbf{ then return UNSAT} \\ \textbf{return SAT} \end{array}
```



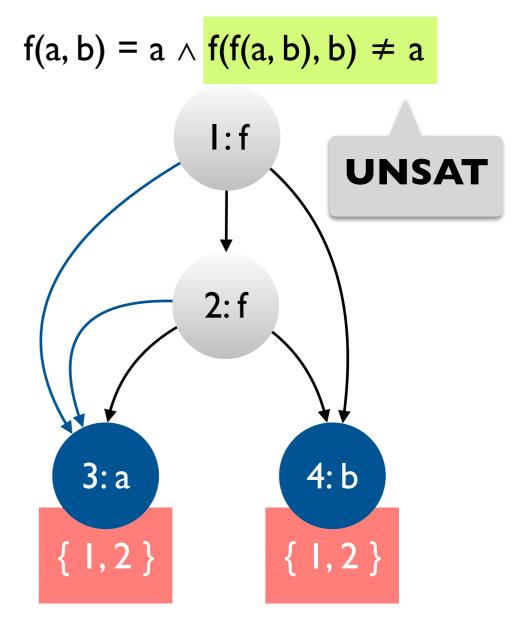
```
DECIDE (F)  \begin{array}{l} \text{construct the DAG for F's subterms} \\ \textbf{for } s_i = t_i \in F \\ \text{MERGE}(s_i, t_i) \\ \textbf{for } s_i \neq t_i \in F \\ \textbf{if } FIND(s_i) = FIND(t_i) \textbf{ then return UNSAT} \\ \textbf{return SAT} \end{array}
```



```
DECIDE (F)  \begin{array}{l} \text{construct the DAG for F's subterms} \\ \textbf{for } s_i = t_i \in F \\ \text{MERGE}(s_i, t_i) \\ \textbf{for } s_i \neq t_i \in F \\ \textbf{if } FIND(s_i) = FIND(t_i) \textbf{ then return } UNSAT \\ \textbf{return } SAT \\ \end{array}
```



```
DECIDE (F)  \begin{array}{l} \text{construct the DAG for F's subterms} \\ \textbf{for } s_i = t_i \in F \\ \text{MERGE}(s_i, t_i) \\ \textbf{for } s_i \neq t_i \in F \\ \textbf{if } FIND(s_i) = FIND(t_i) \textbf{ then return UNSAT} \\ \textbf{return SAT} \end{array}
```



Summary

Today

- A brief survey of theory solvers
- Congruence closure algorithm for deciding conjunctive $T_=$ formulas

Next lecture

Combining (decision procedures for different) theories