Satisfiability Modulo Theories

Emina Torlak

emina@cs.washington.edu

http://courses.cs.washington.edu/courses/cse507/18sp/index.html

Today

Last lecture

* Practical applications of SAT and the need for a richer logic

Today
* Introduction to Satisfiability Modulo Theories (SMT)
* Syntax and semantics of (quantifier-free) first-order logic

* Overview of key theories

Satisfiability Modulo Theories (SMT)

X = g(y)
2x+y <5
(b>>2)=c

SMT solver

Satisfiability Modulo Theories (SMT)

SMT solver

First-Order Logic

Satisfiability Modulo Theories (SMT)

X = g(y)
2x+y <5
(b>>2)=c

SMT solver

Theories First-Order Logic

Satisfiability Modulo Theories (SMT)

(un)satisfiable

SMT solver

Theories First-Order Logic

Satisfiability Modulo Theories (SMT)

(un)satisfiable

SMT solver

—» Core solver €——

e T

DPLL(T)
B

__ Theory Theory
Theories First-Order Logic solver [-++ solver

Syntax of First-Order Logic (FOL)

Logical symbols
- Connectives: 7, A, V, =, <
* Parentheses: ()

« Quantifiers: Vv, 3

Non-logical symbols
+ Constants: X,Y,z
+ N-ary functions: f, g
* N-ary predicates: p, q

* Variables: u,v,w

Syntax of First-Order Logic (FOL)

Logical symbols
- Connectives: 7, A, V, 2, &

* Parentheses: () We will only consider the

X Quantifiers: V, 3 quantifier-free fragment of

FOL.
Non-logical symbols

+ Constants: X,Y,z
+ N-ary functions: f, g
* N-ary predicates: p, q

* Variables: u,v,w

Syntax of First-Order Logic (FOL)

Logical symbols
- Connectives: 7, A, V, 2, &

* Parentheses: () We will only consider the

X Quantifiers: V, 3 quantifier-free fragment of

. FOL.
Non-logical symbols

+ Constants: X,Y,z
+ N-ary functions: f, g
* N-ary predicates: p, q

Xvariables; U, v, W In particular, we will consider
quantifier-free ground

formulas.

Syntax of quantifier-free ground FOL formulas

Logical symbols

C , ., A term is a constant, or an n-ary
onnectives: =, A, V, 7, € function applied to n termes.

- Parentheses: () An atom is T, L, or an n-ary

predicate applied to n terms.

Non-logical symbols A literal is an atom or its

negation.
+ Constants: X,Y,z &

A (quantifier-free ground)
formula is a literal or the

* N-ary predicates: p,q application of logical connectives to
formulas.

» N-ary functions: f, g

A quantifier-free ground FOL formula: example

Logical symbols
- Connectives: 7, A, V, 2, &

* Parentheses: ()

isPrime(x) — - isInteger(sqrt(x))

Non-logical symbols
+ Constants: X,Y,z
+ N-ary functions: f, g
* N-ary predicates: p, q

Semantics of FOL: first-order structures (U, I)

Universe

Interpretation

Semantics of FOL: universe

Universe

- A non-empty set of values
» Finite or (un)countably infinite

Interpretation

Semantics of FOL: interpretation

Universe

* A non-empty set of values

» Finite or (un)countably infinite
Interpretation

« Maps a constant symbol c to an
element of U: l[c] € U

+ Maps an n-ary function symbol f
to a function fj: Un = U

- Maps an n-ary predicate symbol
p to an n-ary relation p; € Un

Semantics of FOL: inductive definition

Universe

* A non-empty set of values

» Finite or (un)countably infinite
Interpretation

+ Maps a constant symbol ¢ to an
element of U: I[c] e U

+ Maps an n-ary function symbol f
to a function fj: Un = U

+ Maps an n-ary predicate symbol
p to an n-ary relation p; € Un

I[f(t1, ..., ta)] = I[f]([ti], ..., I[tn])
Ip(t1, ..., ta)] = (U[t1], ..., I[t]) € I[p])

UDET
U D EL
U, D = p(t, ..., tn) iff I[p(ti, ..., ta)] = true

WU, D EFiff Y) # F

Semantics of FOL: example

Universe

* A non-empty set of values

» Finite or (un)countably infinite
Interpretation

« Maps a constant symbol c to an
element of U: l[c] € U

+ Maps an n-ary function symbol f
to a function fj: Un = U

- Maps an n-ary predicate symbol
p to an n-ary relation p; € Un

U={e,®
X] = o
y] = ®

f] — {‘é‘ > ., » - ‘é‘}
p] = {9, 90), (o, 48)}
WU, 1) = pf(y), f(f(x))) ?

Satisfiability and validity of FOL

F is satisfiable iff M = F for some
structure M = U, |).

F is valid iff M = F for all structures
M= WU, D.

Duality of satisfiability and validity:

F is valid iff =F is unsatisfiable.

First-order theories

Signature 2t

Set of T-models

First-order theories

Signature 2t

* Set of constant, predicate, and
function symbols

Set of T-models

First-order theories

Signature 2t

* Set of constant, predicate, and
function symbols

Set of T-models

* One or more (possibly infinitely
many) models that fix the
interpretation of the symbols in 27

+ Can also view a theory as a set of

axioms over 21 (and T-models are
the models of the theory axioms)

First-order theories

Signature 2t

* Set of constant, predicate, and
function symbols

Set of T-models

* One or more (possibly infinitely
many) models that fix the
interpretation of the symbols in 27

»+ Can also view a theory as a set of

axioms over 21 (and T-models are
the models of the theory axioms)

A formula F is satisfiable
modulo T iff M = F for some T-

model M.

A formula F is valid modulo T
iff M = F for all T-models M.

Common theories

Equality (and uninterpreted functions)

© X =g(y)
Fixed-width bitvectors
- (b>1)=c

Linear arithmetic (over R and Z)
- 2x+y <5

Arrays

- afi] =x

Theory of equality with uninterpreted functions

Sighature: a binary = predicate, plus all other symbols
- = xvz...,g...pq,...}
Axioms
© UX. X =X
* VX, Y. X=Yy ?y=X
* VX, VZ. XEYAY=Z ?PX=Z
* VXl ooy Xny Yy ooy Yo (XTI = Y1 A voo AXn = Yn) = (F(X1, ...y Xn) = (Y1, ..., ¥n))
* VXl ooy Xy Yy ee o Yoo (XIS YT A ooo A Xn =Yn) = (P(XIy ...y Xn) < P(YI, --+, Yn))

Conjunctions of ground formulas modulo T- decidable in
polynomial time

T= example: checking program equivalence

int funl(int y) {
int x, z;
z Y;
y = Xj
X Z;
return Xxxx;

¥

int fun2(int y) {
return yxy;

}

Example from Sanjit Seshia

A formula that is unsatisfiable iff programs
are equivalent:

T= example: checking program equivalence

int funl(int y) { A formula that is unsatisfiable iff programs are
int x, z; equivalent:
Z = Y;
y = X;
X = Z; =YoAYI=XoAXI =ZI A =X*X) A
eturn i (ZI =yo AYlI =Xo AXI =ZI A= XI™X1)

} (r2 = yo*yo) A

int fun2(int y) { ~(r2 =)
return yxy;

}

Example from Sanjit Seshia

T= example: checking program equivalence

int funl(int y) {
int x, z;
z Y;
y = Xj
X Z;
return Xxxx;

¥

int fun2(int y) {
return yxy;

}

Example from Sanjit Seshia

A formula that is unsatisfiable iff programs are
equivalent:

(ZI= Yo AYI =Xo AXI =Z AT =X%X) A

(r2 = yo™yo) A

A(r2 =ry)

Using 32-bit integers, a SAT
solver fails to return an answer in
5 min.

T= example: checking program equivalence

int funl(int y) {
int x, z;
z Y;
y = Xj
X Z;
return Xxxx;

¥

int fun2(int y) {
return yxy;

}

Example from Sanjit Seshia

A formula that is unsatisfiable iff programs are
equivalent:

(ZI =yo Ayl =X AXI =2z A =mul(xi, X)) A

(r2 = mul(yo, yo)) A

A(r2 =ry)

Using T=, an SMT solver proves
unsatisfiability in a fraction of a
second.

20

T= example: checking program equivalence

int funl(int y) {
int Xx;
X =X 7y;
y =X 7Y,
X =X7Y,;
return Xxxx;

¥

int fun2(int y) {
return yxy,

¥

—— ——

Example from Sanjit Seshia

21

T= example: checking program equivalence

int funl(int y) { Is the uninterpreted function abstraction
int Xx; going to work in this case!?
X =X ™ y;
y = ~Ys
X =X ™ y;
return X*X;
}

int fun2(int y) {
return yxy;

}

Example from Sanjit Seshia

21

T= example: checking program equivalence

int funl(int y) { Is the uninterpreted function abstraction
int Xx; going to work in this case!?
X =X 7y; .
y = x y; No, we need the theory of fixed-width
X = X ™ y; bitvectors to reason about * (xor).
return Xxxx;

}

int fun2(int y) {
return yxy,

¥

—— —

Example from Sanjit Seshia 21

Theory of fixed-width bitvectors

Signature
* constants
» fixed-width words (modeling machine ints, longs, etc.)
- arithmetic operations (+, -, *, /, etc.)
* bitwise operations (&, |, *, etc.)

* comparison operators (<, >, etc.)

* equality (=)

Satisfiability problem: NP-complete.

22

Theories of linear integer and real arithmetic

Signature
- {..,-1,0,1,..,-2,2,..,+,- = 5,X,V,Z...}

- Constants, integers (or reals), multiplication by an integer (or real)
value, addition, subtraction, equality, greater-than.

Satisfiability problem:
* NP-complete for linear integer arithmetic (LIA).
» Polynomial time for linear real arithmetic (LRA).

» Polynomial time for difference logic (conjunctions of the form x -y
< ¢, where c is an integer constant).

23

LIA example: compiler optimization

for (i=1; i<=10; i++) {
alj+i] = aljl;
} A LIA formula that is unsatisfiable iff
- - this transformation is valid:

int v = aljl;

for (i=1; i<=10; i++) {
alj+i]l = v;

s

C— —

24

LIA example: compiler optimization

for (i=1; i<=10; i++) {
alj+i] = aljl;

} A LIA formula that is unsatisfiable iff
S this transformation is valid:
i=D)A(i=<10)A
(+i=j)
int v = aljl; Polyhedral model

for (i=1; i<=10; i++) {
alj+i]l = v;
¥

25

Theory of arrays

Signature

* {read, write, =,X%,Y,2, ...}
Axioms
* Vi.read(write(a, i, v),i) = v
* Vi,j. (i =) = (read(write(a, i, Vv),) = read(a, j))
* (Vi.read(a, i) = read(b,i)) > a=b

Satisfiability problem: NP-complete.

Used in many software verification tools to
model memory.

26

sSummary

Today
* Introduction to SMT
* Quantifier-free FOL (syntax & semantics)

« Qverview of common theories

NeXxt lecture

* Survey of theory solvers

27

