Computer-Aided Reasoning for Software

Introduction

courses.cs.washington.edu/courses/cse507/18sp/

Emina Torlak

emina@cs.washington.edu

Today

What is this course about?

Course logistics

Review of propositional logic

A basic SAT solver!

more reliable, efficient, secure

Tools for building better software, more easily automatic verification, debugging & synthesis


```
Node head;
  void reverse() {
    Node near = head;
    Node mid = near.next;
    Node far = mid.next;
     near.next = ??;
     while (far != null) {
       mid.next = near;
       near = mid;
       mid = far;
       far = far.next;
     }
     mid.next = near;
    head = mid;
  }
}
class Node {
  Node next; String data;
}
```

class List {

Is there a way to complete this code so that it is correct?

By the end of this course, you'll be able to build computer-aided tools for any domain!

By the end of this course, you'll be able to build computer-aided tools for any domain!

Topics, structure, people

[,]نا/a/د

Grading

3 individual homework assignments (75%)

- conceptual problems & proofs (TeX)
- implementations (Racket)
- completed on your own (may discuss HWs with course staff only)

Course project (25%)

- build a computer-aided reasoning tool for a domain of your choice
- teams of 2-3 people
- see the course web page for timeline, deliverables and other details

Reading and references

Required readings posted on the course web page

- Complete each reading before the lecture for which it is assigned
- If multiple papers are listed, only the first is required reading

Recommended text books

- Bradley & Manna, The Calculus of Computation
- Kroening & Strichman, Decision Procedures

Related courses

- Isil Dillig: Automated Logical Reasoning (2013)
- Viktor Kuncak: Synthesis, Analysis, and Verification (2013)
- Sanjit Seshia: Computer-Aided Verification (2016)

Advice for doing well in 507

Come to class (prepared)

• Lecture slides are enough to teach from, but not enough to learn from

Participate

Ask and answer questions

Meet deadlines

- Turn homework in on time
- Start homework and project sooner than you think you need to
- Follow instructions for submitting code (we have to be able to run it)
- No proof should be longer than a page (most are ~I paragraph)

People

Emina Torlak PLSE CSE 596 Wed 2-3pm

Eric Butler Game Science & PLSE CSE 324 Thu 2-3pm

People

Your name Research area

Emina Torlak PLSE CSE 596 Thursdays 9-10

Eric Butler Game Science & PLSE CSE 324 Thu 2-3pm

Let's get started! A review of propositional logic

- Syntax
- Semantics
- Satisfiability and validity
- Proof methods
- Semantic judgments
- Normal forms (NNF, DNF, CNF)

(ראך) $(\textbf{q} \rightarrow \bot)$

Atom

truth symbols: \top ("true"), \perp ("false") **propositional variables**: p, q, r, ...

Atomtruth symbols: \top ("true"), \perp ("false")propositional variables: p, q, r, ...

Literal an atom α or its negation $\neg \alpha$

Atomtruth symbols: \top ("true"), \perp ("false")propositional variables: p, q, r, ...

Literal an atom α or its negation $\neg \alpha$

Formula a literal or the application of a **logical connective** to formulas F, F_1, F_2 :

¬F	"not"	(negation)
$F_1 \wedge F_2$	"and"	(conjunction)
$F_1 \vee F_2$	"or"	(disjunction)
$F_1 \rightarrow F_2$	"implies"	(implication)
$F_1 \leftrightarrow F_2$	"if and only if"	(iff)

Semantics of propositional logic: interpretations

An **interpretation** *I* for a propositional formula *F* maps every variable in *F* to a truth value:

 $I : \{ p \mapsto \text{true}, q \mapsto \text{false}, \ldots \}$

Semantics of propositional logic: interpretations

An **interpretation** *I* for a propositional formula *F* maps every variable in *F* to a truth value:

 $I : \{ p \mapsto \text{true}, q \mapsto \text{false}, \ldots \}$

I is a **satisfying interpretation** of *F*, written as $I \models F$, if *F* evaluates to true under *I*.

I is a **falsifying interpretation** of *F*, written as $I \nvDash F$, if *F* evaluates to false under *I*.

Base cases:

- *I* ⊨ ⊤
- *I* ⊭ ⊥
- $l \models p$ iff l[p] = true
- $l \not\models p$ iff l[p] = false

Inductive cases:

- $I \models \neg F$ iff $I \not\models F$
- $I \models F_1 \land F_2$ iff $I \models F_1$ and $I \models F_2$

Base cases:

- *I* ⊨ ⊤
- *I* ⊭ ⊥
- $l \models p$ iff l[p] = true
- $l \not\models p$ iff l[p] = false

Inductive cases:

- $I \models \neg F$ iff $I \not\models F$
- $I \models F_1 \land F_2$ iff $I \models F_1$ and $I \models F_2$
- $I \models F_1 \lor F_2$ iff $I \models F_1$ or $I \models F_2$
- $I \models F_1 \rightarrow F_2$ iff $I \nvDash F_1$ or $I \models F_2$
- $I \vDash F_1 \leftrightarrow F_2$ iff $I \vDash F_1$ and $I \vDash F_2$, or $I \nvDash F_1$ and $I \nvDash F_2$
Semantics of propositional logic: example

$$F: (p \land q) \rightarrow (p \lor \neg q)$$
$$I: \{p \mapsto true, q \mapsto false\}$$

Semantics of propositional logic: example

$$F: (p \land q) \rightarrow (p \lor \neg q)$$
$$I: \{p \mapsto \text{true}, q \mapsto \text{false}\}$$
$$I \models F$$

Satisfiability & validity of propositional formulas

F is **satisfiable** iff $I \models F$ for some *I*.

F is **valid** iff $I \models F$ for all *I*.

Satisfiability & validity of propositional formulas

F is **satisfiable** iff $I \models F$ for some *I*.

F is **valid** iff $I \models F$ for all *I*.

Duality of satisfiability and validity:

F is valid iff $\neg F$ is unsatisfiable.

Satisfiability & validity of propositional formulas

F is **satisfiable** iff $I \models F$ for some *I*.

F is **valid** iff $I \models F$ for all *I*.

Duality of satisfiability and validity:

F is valid iff $\neg F$ is unsatisfiable.

If we have a procedure for checking satisfiability, then we can also check validity of propositional formulas, and vice versa.

Techniques for deciding satisfiability & validity

Techniques for deciding satisfiability & validity

SAT solver

Techniques for deciding satisfiability & validity

Search

Enumerate all interpretations (i.e., build a truth table), and check that they satisfy the formula.

Deduction

Assume the formula is invalid, apply proof rules, and check for contradiction in every branch of the proof tree.

SAT solver

Proof by search (truth tables)

$$F: (p \land q) \rightarrow (p \lor \neg q)$$

Þ	q	þ ^ q	٦q	$\not p \lor \neg q$	F
0	0	0	I	I	I
0	I	0	0	0	I
I	0	0	I	I	I
1	I	I	0	I	I

Proof by search (truth tables)

$$F: (p \land q) \rightarrow (p \lor \neg q)$$

Example proof rules:		
<u>I⊨ ¬F</u> I⊭ F	$I \models F_1 \land F_2$ $I \models F_1$ $I \models F_2$	
$\frac{I \nvDash \neg F}{I \vDash F}$	$ \begin{array}{c c} I \nvDash F_1 \land F_2 \\ \hline I \nvDash F_1 & I \nvDash F_2 \end{array} $	

I. $I \nvDash p \land \neg q$ (assumption)

Example proof rules:		
<u>I ⊨ ¬F</u> I ⊭ F	$ \frac{I \vDash F_1 \land F_2}{I \vDash F_1} \\ I \vDash F_2 $	
<u>I ⊭¬F</u> I⊨ F	$ \begin{array}{c c} I \nvDash F_1 \land F_2 \\ \hline I \nvDash F_1 & I \nvDash F_2 \end{array} $	

ı. I ⊭ p ∧ ¬q	(assumption)	
a. 1 ⊭ Þ	(Ⅰ, ∧)	
b. I ⊭ ¬q	(Ⅰ, ∧)	

Example	proof rules:	F:
<u>I ⊨ ¬F</u> I ⊭ F	$ \frac{I \vDash F_1 \land F_2}{I \vDash F_1} \\ I \vDash F_2 $	I. I ⊭ Þ ∧ ¬q a. I ⊭ Þ b. I ⊭ ¬q i. I ⊨ q
<u>I ⊭¬F</u> I ⊨ F	$ \begin{array}{c c} I \nvDash F_1 \land F_2 \\ \hline I \nvDash F_1 & I \nvDash F_2 \end{array} $	

F: p ∧ ¬q

(assumption)
(Ⅰ, ∧)
(Ⅰ, ∧)
(Ib, ¬)

Semantic judgements

Formulas F_1 and F_2 are **equivalent**, written $F_1 \iff F_2$, iff $F_1 \leftrightarrow F_2$ is valid.

Formula F_1 **implies** F_2 , written $F_1 \implies$ F_2 , iff $F_1 \longrightarrow F_2$ is valid.

> $F_1 \iff F_2$ and $F_1 \implies F_2$ are not propositional formulas (not part of syntax). They are properties of formulas, just like validity or satisfiability.

Semantic judgements

Formulas F_1 and F_2 are **equivalent**, written $F_1 \iff F_2$, iff $F_1 \leftrightarrow F_2$ is valid.

Formula F_1 **implies** F_2 , written $F_1 \implies$ F_2 , iff $F_1 \longrightarrow F_2$ is valid.

> If we have a procedure for checking satisfiability, then we can also check for equivalence and implication of propositional formulas.

Semantic judgements

Formulas F_1 and F_2 are **equivalent**, written $F_1 \iff F_2$, iff $F_1 \leftrightarrow F_2$ is valid.

Formula F_1 **implies** F_2 , written $F_1 \implies$ F_2 , iff $F_1 \longrightarrow F_2$ is valid.

If we have a procedure for checking satisfiability, then we can also check for equivalence and implication of propositional formulas.

Getting ready for SAT solving with normal forms

A **normal form** for a logic is a syntactic restriction such that every formula in the logic has an equivalent formula in the normal form.

Getting ready for SAT solving with normal forms

A **normal form** for a logic is a syntactic restriction such that every formula in the logic has an equivalent formula in the normal form.

Assembly language for a logic.

Getting ready for SAT solving with normal forms

A **normal form** for a logic is a syntactic restriction such that every formula in the logic has an equivalent formula in the normal form.

Assembly language for a logic.

Three important normal forms for propositional logic:

- Negation Normal Form (NNF)
- Disjunctive Normal Form (DNF)
- Conjunctive Normal Form (CNF)

Negation Normal Form (NNF)

```
Atom := Variable | \top | \perp
Literal := Atom | \negAtom
Formula := Literal | Formula op Formula
op := \land | \lor
```

Negation Normal Form (NNF)

```
Atom := Variable | \top | \perp
Literal := Atom | \negAtom
Formula := Literal | Formula op Formula
op := \land | \lor
```

- The only allowed
 connectives are ∧, ∨, and ¬.
- \neg can appear only in literals.

Negation Normal Form (NNF)

Conversion to NNF performed using **DeMorgan's Laws**: $\neg(F \land G) \iff \neg F \lor \neg G \qquad \neg(F \lor G) \iff \neg F \land \neg G$

Atom := Variable $| \top | \perp$ Literal := Atom $| \neg$ Atom Formula := Clause \lor Formula Clause := Literal | Literal \land Clause

To convert to DNF, convert to NNF and distribute \land over \lor : (F \land (G \lor H)) \iff (F \land G) \lor (F \land H) ((G \lor H) \land F) \iff (G \land F) \lor (H \land F)

Atom := Variable $| \top | \perp$ Literal := Atom $| \neg$ Atom Formula := Clause \lor Formula Clause := Literal | Literal \land Clause

- Disjunction of conjunction of literals.
- Deciding satisfiability of a DNF formula is trivial.

To convert to DNF, convert to NNF and distribute \land over \lor : (F \land (G \lor H)) \iff (F \land G) \lor (F \land H) ((G \lor H) \land F) \iff (G \land F) \lor (H \land F)

Atom := Variable $| \top | \perp$ Literal := Atom $| \neg$ Atom Formula := Clause \lor Formula Clause := Literal | Literal \land Clause

- Disjunction of conjunction of literals.
- Deciding satisfiability of a DNF formula is trivial.
- Why not SAT solve by conversion to DNF?

To convert to DNF, convert to NNF and distribute \land over \lor : (F \land (G \lor H)) \iff (F \land G) \lor (F \land H) ((G \lor H) \land F) \iff (G \land F) \lor (H \land F)

Conjunctive Normal Form (CNF)

- Conjunction of disjunction of literals.
- Deciding the satisfiability of a CNF formula is hard.
 - SAT solvers use CNF as their input language.

To convert to CNF, convert to NNF and distribute \lor over \land (F \lor (G \land H)) \iff (F \lor G) \land (F \lor H) ((G \land H) \lor F) \iff (G \lor F) \land (H \lor F)

Conjunctive Normal Form (CNF)

To convert to CNF, convert to NNF and distribute
$$\lor$$
 over \land
(F \lor (G \land H)) \iff (F \lor G) \land (F \lor H)
((G \land H) \lor F) \iff (G \lor F) \land (H \lor F)

Equisatisfiability and Tseitin's transformation

Equisatisfiability and Tseitin's transformation

Formulas F and G are equisatisfiable if they are both satisfiable or they are both unsatisfiable.

Equisatisfiability and Tseitin's transformation

Formulas F and G are equisatisfiable if they are both satisfiable or they are both unsatisfiable.

Tseitin's transformation

converts a propositional formula F into an equisatisfiable CNF formula that is **linear** in the size of F.
Formulas F and G are equisatisfiable if they are both satisfiable or they are both unsatisfiable.

Tseitin's transformation

converts a propositional formula F into an equisatisfiable CNF formula that is **linear** in the size of F.

Key idea: introduce **auxiliary variables** to represent the output of subformulas, and constrain those variables using CNF clauses.

Formulas F and G are equisatisfiable if they are both satisfiable or they are both unsatisfiable.

Tseitin's transformation

converts a propositional formula F into an equisatisfiable CNF formula that is **linear** in the size of F.

Key idea: introduce **auxiliary variables** to represent the output of subformulas, and constrain those variables using CNF clauses.

$$x \rightarrow (y \land z)$$

Formulas F and G are equisatisfiable if they are both satisfiable or they are both unsatisfiable.

Tseitin's transformation

converts a propositional formula F into an equisatisfiable CNF formula that is **linear** in the size of F.

Key idea: introduce **auxiliary variables** to represent the output of subformulas, and constrain those variables using CNF clauses.

$$\mathsf{x} \to (\mathsf{y} \land \mathsf{z})$$

a1 a1 \leftrightarrow (x \rightarrow a2) a2 \leftrightarrow (y \wedge z)

Formulas F and G are equisatisfiable if they are both satisfiable or they are both unsatisfiable.

Tseitin's transformation

converts a propositional formula F into an equisatisfiable CNF formula that is **linear** in the size of F.

Key idea: introduce **auxiliary variables** to represent the output of subformulas, and constrain those variables using CNF clauses.

$$\mathsf{x} \to (\mathsf{y} \land \mathsf{z})$$

a1 a1 \rightarrow (x \rightarrow a2) (x \rightarrow a2) \rightarrow a1 a2 \leftrightarrow (y \wedge z)

Formulas F and G are equisatisfiable if they are both satisfiable or they are both unsatisfiable.

Tseitin's transformation

converts a propositional formula F into an equisatisfiable CNF formula that is **linear** in the size of F.

Key idea: introduce **auxiliary variables** to represent the output of subformulas, and constrain those variables using CNF clauses.

$$\mathsf{x} \to (\mathsf{y} \land \mathsf{z})$$

a1 $\neg a1 \lor \neg x \lor a2$ $(x \land \neg a2) \lor a1$ $a2 \leftrightarrow (y \land z)$

Formulas F and G are equisatisfiable if they are both satisfiable or they are both unsatisfiable.

Tseitin's transformation

converts a propositional formula F into an equisatisfiable CNF formula that is **linear** in the size of F.

Key idea: introduce **auxiliary variables** to represent the output of subformulas, and constrain those variables using CNF clauses.

$$\mathsf{x} \to (\mathsf{y} \land \mathsf{z})$$

a1 $\neg a1 \lor \neg x \lor a2$ $x \lor a1$ $\neg a2 \lor a1$ $a2 \leftrightarrow (y \land z)$

A basic SAT solver!

Davis-Putnam-Logemann-Loveland (1962)

```
// Returns true if the CNF formula F is
// satisfiable; otherwise returns false.
DPLL(F)
G \leftarrow BCP(F)
if G = \top then return true
if G = \bot then return false
p \leftarrow choose(vars(G))
return DPLL(G\{p \mapsto \top\}) ||
DPLL(G\{p \mapsto \bot\})
```

Davis-Putnam-Logemann-Loveland (1962)

// Returns true if the CNF formula F is // satisfiable; otherwise returns false. DPLL(F) $G \leftarrow BCP(F)$ if $G = \top$ then return true if $G = \bot$ then return false $p \leftarrow choose(vars(G))$ return DPLL($G\{p \mapsto \top\}$) || DPLL($G\{p \mapsto \bot\}$)

Boolean constraint propagation applies *unit* resolution until fixed point:

lit	clause[lit]
	T - I

<u>lit clause[¬lit]</u> clause[⊥]

Summary

Today

- Course overview & logistics
- Review of propositional logic
- A basic SAT solver

Next Lecture

- A modern SAT solver
- Read Chapter I of Bradley & Manna