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What is this course about?

Course logistics

Review of propositional logic

A basic SAT solver!
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Tools for building better software, more easily
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class List { 
Node head; 

void reverse() { 
Node near = head; 
Node mid = near.next; 
Node far = mid.next; 

near.next = far; 
while (far != null) { 

mid.next = near; 
near = mid; 
mid = far; 
far = far.next; 

} 

mid.next = near; 
head = mid;   

} 
} 

class Node { 
Node next; String data; 

}

Is this list reversal 
procedure correct?
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Which lines of code 
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the buggy behavior?

debugging
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class List { 
Node head; 

void reverse() { 
Node near = head; 
Node mid = near.next; 
Node far = mid.next; 
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Is there a way to 
complete this code 
so that it is correct?
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Is there a way to 
complete this code 
so that it is correct?

synthesis

this
n2

data: s1
head null

n1

data: s2
next n0

data: null
next next

this
n0

data: null
headnull

n1

data: s2
nextn2
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✓



goalBy the end of this course, you’ll be able to 
build computer-aided tools for any domain!
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low-power computing

hardware databases

systems

networking

education

high-performance computing

security

goalBy the end of this course, you’ll be able to 
build computer-aided tools for any domain!
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automated 
reasoning 
engine

Course overview
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SAT, SMT, 
model finders 

verifier, 
synthesizer, 
fault localizer
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synthesizer, 
fault localizer

VIII Preface

Fig. 1. Decision procedures can be rather complex . . . those that we consider in
this book take formulas of different theories as input, possibly mix them (using
the Nelson–Oppen procedure – see Chap. 10), decide their satisfiability (“YES” or
“NO”), and, if yes, provide a satisfying assignment

Which Theories? Which Algorithms?

A first-order theory can be considered “interesting”, at least from a practical
perspective, if it fulfills at least these two conditions:

1. The theory is expressive enough to model a real decision problem. More-
over, it is more expressive or more natural for the purpose of expressing
some models in comparison with theories that are easier to decide.

andreis@uw.edu

Course overview
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logic

Drawing from “Decision Procedures” by Kroening & Strichman
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Grading

3 individual homework assignments (75%)
• conceptual problems & proofs (TeX)

• implementations (Racket)

• completed on your own (may discuss HWs with course staff only)

Course project (25%)
• build a computer-aided reasoning tool for a domain of your choice

• teams of 2-3 people 

• see the course web page for timeline, deliverables and other details

11

study (part I)

build! 

(part II)

http://courses.cs.washington.edu/courses/cse507/18sp/index.html


Reading and references

Required readings posted on the course web page

• Complete each reading before the lecture for which it is assigned

• If multiple papers are listed, only the first is required reading

Recommended text books
• Bradley & Manna, The Calculus of Computation

• Kroening & Strichman, Decision Procedures

Related courses
• Isil Dillig:  Automated Logical Reasoning (2013)

• Viktor Kuncak:  Synthesis,  Analysis, and Verification (2013)

• Sanjit Seshia:  Computer-Aided Verification (2016)

12

http://courses.cs.washington.edu/courses/cse507/18sp/index.html
http://www.springer.com/computer/communication+networks/book/978-3-540-74112-1
http://www.springer.com/computer/ai/book/978-3-540-74104-6
http://www.cs.utexas.edu/~isil/cs643/
http://lara.epfl.ch/w/sav13:top
http://www.eecs.berkeley.edu/~sseshia/219c/index.html


Advice for doing well in 507

Come to class (prepared)
• Lecture slides are enough to teach from, but not enough to learn from

Participate
• Ask and answer questions

Meet deadlines
• Turn homework in on time

• Start homework and project sooner than you think you need to

• Follow instructions for submitting code (we have to be able to run it)

• No proof should be longer than a page (most are ~1 paragraph)

13



People
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Emina Torlak
PLSE
CSE 596
Wed 2-3pm

instructor

Eric Butler
Game Science & PLSE
CSE 324
Thu 2-3pm

TA



Eric Butler
Game Science & PLSE
CSE 324
Thu 2-3pm

TA students!

Your name
Research area

People

15

Emina Torlak
PLSE
CSE 596
Thursdays 9-10

instructor



reviewLet’s get started!  A review of propositional logic

• Syntax
• Semantics
• Satisfiability and validity 
• Proof methods 
• Semantic judgments
• Normal forms (NNF, DNF, CNF)



F1 ⟷ F2

F1 → F2

F1 ⋁ F2

F1 ⋀ F2

Atom truth symbols: ⊤ (“true”), ⊥ (“false”)
propositional variables:  p, q, r, …

Literal an atom α or its negation ¬α
Formula a literal or the application of a logical connective 

to formulas F, F1, F2:

¬F “not” (negation)
“and” (conjunction)
“or” (disjunction)
“implies” (implication)
“if and only if” (iff)

Syntax of propositional logic

17

(¬p ∧ ⊤) ∨ (q → ⊥) 
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Semantics of propositional logic: interpretations

18

An interpretation I for a propositional 
formula F maps every variable in F to a truth 
value:

I : { p ↦ true, q ↦ false, …}



Semantics of propositional logic: interpretations

18

An interpretation I for a propositional 
formula F maps every variable in F to a truth 
value:

I : { p ↦ true, q ↦ false, …}

I is a satisfying interpretation of F, 
written as I ⊨ F, if F evaluates to true under I.

I is a falsifying interpretation of F, 
written as I ⊭ F, if F evaluates to false under I.



Semantics of propositional logic: definition

Base cases:
• I ⊨ ⊤ 

• I ⊭ ⊥

• I ⊨ p iff I[p] = true

• I ⊭ p iff I[p] = false

19
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• I ⊨ F1 ∧ F2 iff I ⊨ F1 and I ⊨ F2 



Semantics of propositional logic: definition

Base cases:
• I ⊨ ⊤ 

• I ⊭ ⊥

• I ⊨ p iff I[p] = true

• I ⊭ p iff I[p] = false

19

Inductive cases:
• I ⊨ ¬F iff I ⊭ F

• I ⊨ F1 ∧ F2 iff I ⊨ F1 and I ⊨ F2 

• I ⊨ F1 ∨ F2 iff I ⊨ F1 or I ⊨ F2

• I ⊨ F1 → F2 iff I ⊭ F1 or I ⊨ F2

• I ⊨ F1 ⟷ F2 iff I ⊨ F1 and I ⊨ F2, or 
I ⊭ F1 and I ⊭ F2



F: (p ∧ q) → (p ∨ ¬q) 
I: {p ↦ true, q ↦ false}

Semantics of propositional logic:  example

20

?



F: (p ∧ q) → (p ∨ ¬q) 
I: {p ↦ true, q ↦ false}

I ⊨ F

Semantics of propositional logic:  example

20

✓



Satisfiability & validity of propositional formulas

21

F is satisfiable iff I ⊨ F for some I.

F is valid iff I ⊨ F for all I.
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Duality of satisfiability and validity:

F is valid iff ¬F is unsatisfiable.



Satisfiability & validity of propositional formulas
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F is satisfiable iff I ⊨ F for some I.

F is valid iff I ⊨ F for all I.

Duality of satisfiability and validity:

F is valid iff ¬F is unsatisfiable.

If we have a procedure for 
checking satisfiability, then we 
can also check validity of 
propositional formulas, and 
vice versa.



Techniques for deciding satisfiability & validity

22

SAT solver

Search Deduction



Enumerate all interpretations 
(i.e., build a truth table), and 
check that they satisfy the 
formula.

Techniques for deciding satisfiability & validity
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SAT solver

Search

Deduction



Enumerate all interpretations 
(i.e., build a truth table), and 
check that they satisfy the 
formula.

Techniques for deciding satisfiability & validity

22

SAT solver

Assume the formula is invalid, 
apply proof rules, and check 
for contradiction in every 
branch of the proof tree.

Search Deduction



Proof by search (truth tables)

23

F: (p ∧ q) → (p ∨ ¬q) 

p q p ∧ q ¬q p ∨ ¬q F

0 0 0 1 1 1

0 1 0 0 0 1

1 0 0 1 1 1

1 1 1 0 1 1



Proof by search (truth tables)
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F: (p ∧ q) → (p ∨ ¬q) 

p q p ∧ q ¬q p ∨ ¬q F

0 0 0 1 1 1

0 1 0 0 0 1

1 0 0 1 1 1

1 1 1 0 1 1

Valid.



I ⊨ F1 ∧ F2

Proof by deduction (semantic arguments)

24

I ⊨ ¬F

I ⊭ F

Example proof rules:

I ⊭¬F

I ⊨ F

I ⊨ F1

I ⊨ F2

I ⊭ F1 ∧ F2

I ⊭ F1 I ⊭ F2
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Proof by deduction (semantic arguments)

24

I ⊨ ¬F

I ⊭ F

Example proof rules: F: p ∧ ¬q 

I ⊭¬F

I ⊨ F

I ⊨ F1

I ⊨ F2

I ⊭ F1 ∧ F2

I ⊭ F1 I ⊭ F2
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Proof by deduction (semantic arguments)
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I ⊨ ¬F

I ⊭ F

Example proof rules: F: p ∧ ¬q 

1. I ⊭ p ∧ ¬q (assumption)

I ⊭¬F

I ⊨ F

I ⊨ F1

I ⊨ F2

I ⊭ F1 ∧ F2

I ⊭ F1 I ⊭ F2



I ⊨ F1 ∧ F2

Proof by deduction (semantic arguments)

24

I ⊨ ¬F

I ⊭ F

Example proof rules: F: p ∧ ¬q 

1. I ⊭ p ∧ ¬q (assumption)
a. I ⊭ p (1, ∧)

I ⊭¬F

I ⊨ F

I ⊨ F1

I ⊨ F2

I ⊭ F1 ∧ F2

I ⊭ F1 I ⊭ F2
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Proof by deduction (semantic arguments)
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I ⊨ ¬F

I ⊭ F

Example proof rules: F: p ∧ ¬q 

1. I ⊭ p ∧ ¬q (assumption)
a. I ⊭ p (1, ∧)
b. I ⊭ ¬q (1, ∧)

I ⊭¬F

I ⊨ F

I ⊨ F1

I ⊨ F2

I ⊭ F1 ∧ F2

I ⊭ F1 I ⊭ F2



I ⊨ F1 ∧ F2

Proof by deduction (semantic arguments)
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I ⊨ ¬F

I ⊭ F

Example proof rules: F: p ∧ ¬q 

1. I ⊭ p ∧ ¬q (assumption)
a. I ⊭ p (1, ∧)
b. I ⊭ ¬q (1, ∧)

i. I ⊨ q (1b, ¬)

I ⊭¬F

I ⊨ F

I ⊨ F1

I ⊨ F2

I ⊭ F1 ∧ F2

I ⊭ F1 I ⊭ F2



I ⊨ F1 ∧ F2

Proof by deduction (semantic arguments)
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I ⊨ ¬F

I ⊭ F

Example proof rules: F: p ∧ ¬q 

1. I ⊭ p ∧ ¬q (assumption)
a. I ⊭ p (1, ∧)
b. I ⊭ ¬q (1, ∧)

i. I ⊨ q (1b, ¬)

Invalid; I is a falsifying 
interpretation.

I ⊭¬F

I ⊨ F

I ⊨ F1

I ⊨ F2

I ⊭ F1 ∧ F2

I ⊭ F1 I ⊭ F2



F1 ⟺ F2 and F1 ⟹ F2 are 
not propositional formulas 
(not part of syntax).  They are 
properties of formulas, just 
like validity or satisfiability.

Formulas F1 and F2 are equivalent, 
written F1 ⟺ F2, iff F1 ⟷ F2 is valid.

Formula F1 implies F2, written F1 ⟹ 
F2, iff F1 → F2 is valid.

Semantic judgements

25



If we have a procedure for 
checking satisfiability, then we 
can also check for equivalence 
and implication of 
propositional formulas.

Formulas F1 and F2 are equivalent, 
written F1 ⟺ F2, iff F1 ⟷ F2 is valid.

Formula F1 implies F2, written F1 ⟹ 
F2, iff F1 → F2 is valid.

Semantic judgements
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If we have a procedure for 
checking satisfiability, then we 
can also check for equivalence 
and implication of 
propositional formulas.

Formulas F1 and F2 are equivalent, 
written F1 ⟺ F2, iff F1 ⟷ F2 is valid.

Formula F1 implies F2, written F1 ⟹ 
F2, iff F1 → F2 is valid.

Semantic judgements

26

Why do we care?



Getting ready for SAT solving with normal forms

27

A normal form for a logic is 
a syntactic restriction such that 
every formula in the logic has 
an equivalent formula in the 
normal form.
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Getting ready for SAT solving with normal forms

27

A normal form for a logic is 
a syntactic restriction such that 
every formula in the logic has 
an equivalent formula in the 
normal form.

Assembly language for a logic.

Three important normal forms for 
propositional logic:

• Negation Normal Form (NNF)

• Disjunctive Normal Form (DNF)

• Conjunctive Normal Form (CNF)



Negation Normal Form (NNF)

28

Atom := Variable | ⊤ | ⊥

Literal := Atom | ¬Atom

Formula := Literal | Formula op Formula

op := ∧ | ∨
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Formula := Literal | Formula op Formula

op := ∧ | ∨

• The only allowed 
connectives are ∧, ∨, and ¬.

• ¬ can appear only in literals.



Negation Normal Form (NNF)

28

Atom := Variable | ⊤ | ⊥

Literal := Atom | ¬Atom

Formula := Literal | Formula op Formula

op := ∧ | ∨

• The only allowed 
connectives are ∧, ∨, and ¬.

• ¬ can appear only in literals.

Conversion to NNF performed using DeMorgan’s Laws:

¬(F ∧ G) ⟺ ¬F ∨ ¬G                 ¬(F ∨ G) ⟺ ¬F ∧ ¬G  
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Literal := Atom | ¬Atom

Formula := Clause ∨ Formula

Clause := Literal | Literal ∧ Clause
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((G ∨ H) ∧ F) ⟺  (G ∧ F) ∨ (H ∧ F)
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Atom := Variable | ⊤ | ⊥
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• Deciding satisfiability of a 
DNF formula is trivial.
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(F ∧ (G ∨ H)) ⟺  (F ∧ G) ∨ (F ∧ H)  

((G ∨ H) ∧ F) ⟺  (G ∧ F) ∨ (H ∧ F)



Disjunctive Normal Form (DNF)

29

Atom := Variable | ⊤ | ⊥

Literal := Atom | ¬Atom

Formula := Clause ∨ Formula

Clause := Literal | Literal ∧ Clause

• Disjunction of conjunction of 
literals.

• Deciding satisfiability of a 
DNF formula is trivial.

• Why not SAT solve by 
conversion to DNF?

To convert to DNF, convert to NNF and distribute ∧ over ∨: 

(F ∧ (G ∨ H)) ⟺  (F ∧ G) ∨ (F ∧ H)  

((G ∨ H) ∧ F) ⟺  (G ∧ F) ∨ (H ∧ F)



Conjunctive Normal Form (CNF)
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Atom := Variable | ⊤ | ⊥

Literal := Atom | ¬Atom

Formula := Clause ∧ Formula

Clause := Literal | Literal ∨ Clause

• Conjunction of disjunction of 
literals.

• Deciding the satisfiability of a 
CNF formula is hard.

• SAT solvers use CNF as their 
input language.

To convert to CNF, convert to NNF and distribute ∨ over ∧

(F ∨ (G ∧ H)) ⟺  (F ∨ G) ∧ (F ∨ H)  

((G ∧ H) ∨ F) ⟺  (G ∨ F) ∧ (H ∨ F)
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Atom := Variable | ⊤ | ⊥

Literal := Atom | ¬Atom

Formula := Clause ∧ Formula

Clause := Literal | Literal ∨ Clause

• Conjunction of disjunction of 
literals.

• Deciding the satisfiability of a 
CNF formula is hard.

• SAT solvers use CNF as their 
input language.

To convert to CNF, convert to NNF and distribute ∨ over ∧

(F ∨ (G ∧ H)) ⟺  (F ∨ G) ∧ (F ∨ H)  

((G ∧ H) ∨ F) ⟺  (G ∨ F) ∧ (H ∨ F)

Why CNF?  Doesn't the 
conversion explode just as 
badly as DNF?
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satisfiable or they are both 
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Tseitin’s transformation 
converts a propositional formula F 
into an equisatisfiable CNF formula 
that is linear in the size of F.  

Key idea:  introduce auxiliary 
variables to represent the output of 
subformulas, and constrain those 
variables using CNF clauses.

x → (y ∧ z)

a1
a1 ⟷ (x → a2) 
a2 ⟷ (y ∧ z)

a1
a1 → (x → a2) 
(x → a2) → a1 
a2 ⟷ (y ∧ z)

a1
¬a1 ∨ ¬x ∨ a2 
(x ∧ ¬a2) ∨ a1 
a2 ⟷ (y ∧ z)

a1
¬a1 ∨ ¬x ∨ a2 
x ∨ a1 
¬a2 ∨ a1 
a2 ⟷ (y ∧ z)



dpllA basic SAT solver!
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// Returns true if the CNF formula F is
// satisfiable; otherwise returns false.

DPLL(F)
  G ← BCP(F)
  if G = ⟙ then return true
  if G = ⟘ then return false
  p ← choose(vars(G))
  return DPLL(G{p ↦ ⟙}) ||

             DPLL(G{p ↦ ⟘})
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// Returns true if the CNF formula F is
// satisfiable; otherwise returns false.

DPLL(F)
  G ← BCP(F)
  if G = ⟙ then return true
  if G = ⟘ then return false
  p ← choose(vars(G))
  return DPLL(G{p ↦ ⟙}) ||

             DPLL(G{p ↦ ⟘})

Boolean constraint 
propagation applies unit 
resolution until fixed point: 

lit    clause[lit]
⟙

 lit    clause[¬lit]
clause[⟘]



Summary

Today
• Course overview & logistics

• Review of propositional logic

• A basic SAT solver

Next Lecture
• A modern SAT solver

• Read Chapter 1 of Bradley & Manna
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