
CSE507
Emina Torlak
emina@cs.washington.edu

courses.cs.washington.edu/courses/cse507/18sp/

Computer-Aided Reasoning for Software

Introduction

http://courses.cs.washington.edu/courses/cse507/18sp/index.html

Today

What is this course about?

Course logistics

Review of propositional logic

A basic SAT solver!

2 w
el

co
m

e

aboutTools for building better software, more easily

Tools for building better software, more easily

more reliable,
efficient, secure

Tools for building better software, more easily

automatic
verification,
debugging &
synthesis

Tools for building better software, more easily

4

class List {
Node head;

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;

}
}

class Node {
Node next; String data;

}

Is this list reversal
procedure correct?

Tools for building better software, more easily

4

class List {
Node head;

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;

}
}

class Node {
Node next; String data;

}

Is this list reversal
procedure correct?

this
n0

data: null
head

n1

data: s2 next
n2

data: s1

next

next

this
n2

data: s1
head null

n1

data: s2
next n0

data: null
next next

verification

Tools for building better software, more easily

5

class List {
Node head;

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;

}
}

class Node {
Node next; String data;

}

Which lines of code
are responsible for
the buggy behavior?

this
n0

data: null
head

n1

data: s2 next
n2

data: s1

next

next

this
n2

data: s1
head null

n1

data: s2
next n0

data: null
next next

Tools for building better software, more easily

5

class List {
Node head;

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;

}
}

class Node {
Node next; String data;

}

Which lines of code
are responsible for
the buggy behavior?

debugging

this
n0

data: null
head

n1

data: s2 next
n2

data: s1

next

next

this
n2

data: s1
head null

n1

data: s2
next n0

data: null
next next

class List {
Node head;

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = ??;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;

}
}

class Node {
Node next; String data;

}

Tools for building better software, more easily

6

Is there a way to
complete this code
so that it is correct?

class List {
Node head;

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = null;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;

}
}

class Node {
Node next; String data;

}

Tools for building better software, more easily

6

Is there a way to
complete this code
so that it is correct?

synthesis

this
n2

data: s1
head null

n1

data: s2
next n0

data: null
next next

this
n0

data: null
headnull

n1

data: s2
nextn2

data: s1
nextnext

✓

goalBy the end of this course, you’ll be able to
build computer-aided tools for any domain!

biology

low-power computing

hardware databases

systems

networking

education

high-performance computing

security

goalBy the end of this course, you’ll be able to
build computer-aided tools for any domain!

logisticsTopics, structure, people

automated
reasoning
engine

Course overview

9

program question

logic

tools

SAT, SMT,
model finders

verifier,
synthesizer,
fault localizer

Course overview

10

program question

logic

SAT, SMT,
model finders

verifier,
synthesizer,
fault localizer

VIII Preface

Fig. 1. Decision procedures can be rather complex . . . those that we consider in
this book take formulas of different theories as input, possibly mix them (using
the Nelson–Oppen procedure – see Chap. 10), decide their satisfiability (“YES” or
“NO”), and, if yes, provide a satisfying assignment

Which Theories? Which Algorithms?

A first-order theory can be considered “interesting”, at least from a practical
perspective, if it fulfills at least these two conditions:

1. The theory is expressive enough to model a real decision problem. More-
over, it is more expressive or more natural for the purpose of expressing
some models in comparison with theories that are easier to decide.

andreis@uw.edu

Course overview

10

program question

logic

Drawing from “Decision Procedures” by Kroening & Strichman

SAT, SMT,
model finders

verifier,
synthesizer,
fault localizer

VIII Preface

Fig. 1. Decision procedures can be rather complex . . . those that we consider in
this book take formulas of different theories as input, possibly mix them (using
the Nelson–Oppen procedure – see Chap. 10), decide their satisfiability (“YES” or
“NO”), and, if yes, provide a satisfying assignment

Which Theories? Which Algorithms?

A first-order theory can be considered “interesting”, at least from a practical
perspective, if it fulfills at least these two conditions:

1. The theory is expressive enough to model a real decision problem. More-
over, it is more expressive or more natural for the purpose of expressing
some models in comparison with theories that are easier to decide.

andreis@uw.edu

Course overview

10

program question

logic

Drawing from “Decision Procedures” by Kroening & Strichman

study (part I)

SAT, SMT,
model finders

verifier,
synthesizer,
fault localizer

VIII Preface

Fig. 1. Decision procedures can be rather complex . . . those that we consider in
this book take formulas of different theories as input, possibly mix them (using
the Nelson–Oppen procedure – see Chap. 10), decide their satisfiability (“YES” or
“NO”), and, if yes, provide a satisfying assignment

Which Theories? Which Algorithms?

A first-order theory can be considered “interesting”, at least from a practical
perspective, if it fulfills at least these two conditions:

1. The theory is expressive enough to model a real decision problem. More-
over, it is more expressive or more natural for the purpose of expressing
some models in comparison with theories that are easier to decide.

andreis@uw.edu

Course overview

10

program question

logic

Drawing from “Decision Procedures” by Kroening & Strichman

study (part I)

build! (part II)

Grading

3 individual homework assignments (75%)
• conceptual problems & proofs (TeX)

• implementations (Racket)

• completed on your own (may discuss HWs with course staff only)

Course project (25%)
• build a computer-aided reasoning tool for a domain of your choice

• teams of 2-3 people

• see the course web page for timeline, deliverables and other details

11

study (part I)

build!

(part II)

http://courses.cs.washington.edu/courses/cse507/18sp/index.html

Reading and references

Required readings posted on the course web page

• Complete each reading before the lecture for which it is assigned

• If multiple papers are listed, only the first is required reading

Recommended text books
• Bradley & Manna, The Calculus of Computation

• Kroening & Strichman, Decision Procedures

Related courses
• Isil Dillig: Automated Logical Reasoning (2013)

• Viktor Kuncak: Synthesis, Analysis, and Verification (2013)

• Sanjit Seshia: Computer-Aided Verification (2016)

12

http://courses.cs.washington.edu/courses/cse507/18sp/index.html
http://www.springer.com/computer/communication+networks/book/978-3-540-74112-1
http://www.springer.com/computer/ai/book/978-3-540-74104-6
http://www.cs.utexas.edu/~isil/cs643/
http://lara.epfl.ch/w/sav13:top
http://www.eecs.berkeley.edu/~sseshia/219c/index.html

Advice for doing well in 507

Come to class (prepared)
• Lecture slides are enough to teach from, but not enough to learn from

Participate
• Ask and answer questions

Meet deadlines
• Turn homework in on time

• Start homework and project sooner than you think you need to

• Follow instructions for submitting code (we have to be able to run it)

• No proof should be longer than a page (most are ~1 paragraph)

13

People

14

Emina Torlak
PLSE
CSE 596
Wed 2-3pm

instructor

Eric Butler
Game Science & PLSE
CSE 324
Thu 2-3pm

TA

Eric Butler
Game Science & PLSE
CSE 324
Thu 2-3pm

TA students!

Your name
Research area

People

15

Emina Torlak
PLSE
CSE 596
Thursdays 9-10

instructor

reviewLet’s get started! A review of propositional logic

• Syntax
• Semantics
• Satisfiability and validity
• Proof methods
• Semantic judgments
• Normal forms (NNF, DNF, CNF)

F1 ⟷ F2

F1 → F2

F1 ⋁ F2

F1 ⋀ F2

Atom truth symbols: ⊤ (“true”), ⊥ (“false”)
propositional variables: p, q, r, …

Literal an atom α or its negation ¬α
Formula a literal or the application of a logical connective

to formulas F, F1, F2:

¬F “not” (negation)
“and” (conjunction)
“or” (disjunction)
“implies” (implication)
“if and only if” (iff)

Syntax of propositional logic

17

(¬p ∧ ⊤) ∨ (q → ⊥)

F1 ⟷ F2

F1 → F2

F1 ⋁ F2

F1 ⋀ F2

Atom truth symbols: ⊤ (“true”), ⊥ (“false”)
propositional variables: p, q, r, …

Literal an atom α or its negation ¬α
Formula a literal or the application of a logical connective

to formulas F, F1, F2:

¬F “not” (negation)
“and” (conjunction)
“or” (disjunction)
“implies” (implication)
“if and only if” (iff)

Syntax of propositional logic

17

(¬p ∧ ⊤) ∨ (q → ⊥)

F1 ⟷ F2

F1 → F2

F1 ⋁ F2

F1 ⋀ F2

Atom truth symbols: ⊤ (“true”), ⊥ (“false”)
propositional variables: p, q, r, …

Literal an atom α or its negation ¬α
Formula a literal or the application of a logical connective

to formulas F, F1, F2:

¬F “not” (negation)
“and” (conjunction)
“or” (disjunction)
“implies” (implication)
“if and only if” (iff)

Syntax of propositional logic

17

(¬p ∧ ⊤) ∨ (q → ⊥)

F1 ⟷ F2

F1 → F2

F1 ⋁ F2

F1 ⋀ F2

Atom truth symbols: ⊤ (“true”), ⊥ (“false”)
propositional variables: p, q, r, …

Literal an atom α or its negation ¬α
Formula a literal or the application of a logical connective

to formulas F, F1, F2:

¬F “not” (negation)
“and” (conjunction)
“or” (disjunction)
“implies” (implication)
“if and only if” (iff)

Syntax of propositional logic

17

(¬p ∧ ⊤) ∨ (q → ⊥)

Semantics of propositional logic: interpretations

18

An interpretation I for a propositional
formula F maps every variable in F to a truth
value:

I : { p ↦ true, q ↦ false, …}

Semantics of propositional logic: interpretations

18

An interpretation I for a propositional
formula F maps every variable in F to a truth
value:

I : { p ↦ true, q ↦ false, …}

I is a satisfying interpretation of F,
written as I ⊨ F, if F evaluates to true under I.

I is a falsifying interpretation of F,
written as I ⊭ F, if F evaluates to false under I.

Semantics of propositional logic: definition

Base cases:
• I ⊨ ⊤

• I ⊭ ⊥

• I ⊨ p iff I[p] = true

• I ⊭ p iff I[p] = false

19

Semantics of propositional logic: definition

Base cases:
• I ⊨ ⊤

• I ⊭ ⊥

• I ⊨ p iff I[p] = true

• I ⊭ p iff I[p] = false

19

Inductive cases:

Semantics of propositional logic: definition

Base cases:
• I ⊨ ⊤

• I ⊭ ⊥

• I ⊨ p iff I[p] = true

• I ⊭ p iff I[p] = false

19

Inductive cases:
• I ⊨ ¬F iff I ⊭ F

Semantics of propositional logic: definition

Base cases:
• I ⊨ ⊤

• I ⊭ ⊥

• I ⊨ p iff I[p] = true

• I ⊭ p iff I[p] = false

19

Inductive cases:
• I ⊨ ¬F iff I ⊭ F

• I ⊨ F1 ∧ F2 iff I ⊨ F1 and I ⊨ F2

Semantics of propositional logic: definition

Base cases:
• I ⊨ ⊤

• I ⊭ ⊥

• I ⊨ p iff I[p] = true

• I ⊭ p iff I[p] = false

19

Inductive cases:
• I ⊨ ¬F iff I ⊭ F

• I ⊨ F1 ∧ F2 iff I ⊨ F1 and I ⊨ F2

• I ⊨ F1 ∨ F2 iff I ⊨ F1 or I ⊨ F2

• I ⊨ F1 → F2 iff I ⊭ F1 or I ⊨ F2

• I ⊨ F1 ⟷ F2 iff I ⊨ F1 and I ⊨ F2, or
I ⊭ F1 and I ⊭ F2

F: (p ∧ q) → (p ∨ ¬q)
I: {p ↦ true, q ↦ false}

Semantics of propositional logic: example

20

?

F: (p ∧ q) → (p ∨ ¬q)
I: {p ↦ true, q ↦ false}

I ⊨ F

Semantics of propositional logic: example

20

✓

Satisfiability & validity of propositional formulas

21

F is satisfiable iff I ⊨ F for some I.

F is valid iff I ⊨ F for all I.

Satisfiability & validity of propositional formulas

21

F is satisfiable iff I ⊨ F for some I.

F is valid iff I ⊨ F for all I.

Duality of satisfiability and validity:

F is valid iff ¬F is unsatisfiable.

Satisfiability & validity of propositional formulas

21

F is satisfiable iff I ⊨ F for some I.

F is valid iff I ⊨ F for all I.

Duality of satisfiability and validity:

F is valid iff ¬F is unsatisfiable.

If we have a procedure for
checking satisfiability, then we
can also check validity of
propositional formulas, and
vice versa.

Techniques for deciding satisfiability & validity

22

SAT solver

Search Deduction

Enumerate all interpretations
(i.e., build a truth table), and
check that they satisfy the
formula.

Techniques for deciding satisfiability & validity

22

SAT solver

Search

Deduction

Enumerate all interpretations
(i.e., build a truth table), and
check that they satisfy the
formula.

Techniques for deciding satisfiability & validity

22

SAT solver

Assume the formula is invalid,
apply proof rules, and check
for contradiction in every
branch of the proof tree.

Search Deduction

Proof by search (truth tables)

23

F: (p ∧ q) → (p ∨ ¬q)

p q p ∧ q ¬q p ∨ ¬q F

0 0 0 1 1 1

0 1 0 0 0 1

1 0 0 1 1 1

1 1 1 0 1 1

Proof by search (truth tables)

23

F: (p ∧ q) → (p ∨ ¬q)

p q p ∧ q ¬q p ∨ ¬q F

0 0 0 1 1 1

0 1 0 0 0 1

1 0 0 1 1 1

1 1 1 0 1 1

Valid.

I ⊨ F1 ∧ F2

Proof by deduction (semantic arguments)

24

I ⊨ ¬F

I ⊭ F

Example proof rules:

I ⊭¬F

I ⊨ F

I ⊨ F1

I ⊨ F2

I ⊭ F1 ∧ F2

I ⊭ F1 I ⊭ F2

I ⊨ F1 ∧ F2

Proof by deduction (semantic arguments)

24

I ⊨ ¬F

I ⊭ F

Example proof rules: F: p ∧ ¬q

I ⊭¬F

I ⊨ F

I ⊨ F1

I ⊨ F2

I ⊭ F1 ∧ F2

I ⊭ F1 I ⊭ F2

I ⊨ F1 ∧ F2

Proof by deduction (semantic arguments)

24

I ⊨ ¬F

I ⊭ F

Example proof rules: F: p ∧ ¬q

1. I ⊭ p ∧ ¬q (assumption)

I ⊭¬F

I ⊨ F

I ⊨ F1

I ⊨ F2

I ⊭ F1 ∧ F2

I ⊭ F1 I ⊭ F2

I ⊨ F1 ∧ F2

Proof by deduction (semantic arguments)

24

I ⊨ ¬F

I ⊭ F

Example proof rules: F: p ∧ ¬q

1. I ⊭ p ∧ ¬q (assumption)
a. I ⊭ p (1, ∧)

I ⊭¬F

I ⊨ F

I ⊨ F1

I ⊨ F2

I ⊭ F1 ∧ F2

I ⊭ F1 I ⊭ F2

I ⊨ F1 ∧ F2

Proof by deduction (semantic arguments)

24

I ⊨ ¬F

I ⊭ F

Example proof rules: F: p ∧ ¬q

1. I ⊭ p ∧ ¬q (assumption)
a. I ⊭ p (1, ∧)
b. I ⊭ ¬q (1, ∧)

I ⊭¬F

I ⊨ F

I ⊨ F1

I ⊨ F2

I ⊭ F1 ∧ F2

I ⊭ F1 I ⊭ F2

I ⊨ F1 ∧ F2

Proof by deduction (semantic arguments)

24

I ⊨ ¬F

I ⊭ F

Example proof rules: F: p ∧ ¬q

1. I ⊭ p ∧ ¬q (assumption)
a. I ⊭ p (1, ∧)
b. I ⊭ ¬q (1, ∧)

i. I ⊨ q (1b, ¬)

I ⊭¬F

I ⊨ F

I ⊨ F1

I ⊨ F2

I ⊭ F1 ∧ F2

I ⊭ F1 I ⊭ F2

I ⊨ F1 ∧ F2

Proof by deduction (semantic arguments)

24

I ⊨ ¬F

I ⊭ F

Example proof rules: F: p ∧ ¬q

1. I ⊭ p ∧ ¬q (assumption)
a. I ⊭ p (1, ∧)
b. I ⊭ ¬q (1, ∧)

i. I ⊨ q (1b, ¬)

Invalid; I is a falsifying
interpretation.

I ⊭¬F

I ⊨ F

I ⊨ F1

I ⊨ F2

I ⊭ F1 ∧ F2

I ⊭ F1 I ⊭ F2

F1 ⟺ F2 and F1 ⟹ F2 are
not propositional formulas
(not part of syntax). They are
properties of formulas, just
like validity or satisfiability.

Formulas F1 and F2 are equivalent,
written F1 ⟺ F2, iff F1 ⟷ F2 is valid.

Formula F1 implies F2, written F1 ⟹
F2, iff F1 → F2 is valid.

Semantic judgements

25

If we have a procedure for
checking satisfiability, then we
can also check for equivalence
and implication of
propositional formulas.

Formulas F1 and F2 are equivalent,
written F1 ⟺ F2, iff F1 ⟷ F2 is valid.

Formula F1 implies F2, written F1 ⟹
F2, iff F1 → F2 is valid.

Semantic judgements

26

If we have a procedure for
checking satisfiability, then we
can also check for equivalence
and implication of
propositional formulas.

Formulas F1 and F2 are equivalent,
written F1 ⟺ F2, iff F1 ⟷ F2 is valid.

Formula F1 implies F2, written F1 ⟹
F2, iff F1 → F2 is valid.

Semantic judgements

26

Why do we care?

Getting ready for SAT solving with normal forms

27

A normal form for a logic is
a syntactic restriction such that
every formula in the logic has
an equivalent formula in the
normal form.

Getting ready for SAT solving with normal forms

27

A normal form for a logic is
a syntactic restriction such that
every formula in the logic has
an equivalent formula in the
normal form.

Assembly language for a logic.

Getting ready for SAT solving with normal forms

27

A normal form for a logic is
a syntactic restriction such that
every formula in the logic has
an equivalent formula in the
normal form.

Assembly language for a logic.

Three important normal forms for
propositional logic:

• Negation Normal Form (NNF)

• Disjunctive Normal Form (DNF)

• Conjunctive Normal Form (CNF)

Negation Normal Form (NNF)

28

Atom := Variable | ⊤ | ⊥

Literal := Atom | ¬Atom

Formula := Literal | Formula op Formula

op := ∧ | ∨

Negation Normal Form (NNF)

28

Atom := Variable | ⊤ | ⊥

Literal := Atom | ¬Atom

Formula := Literal | Formula op Formula

op := ∧ | ∨

• The only allowed
connectives are ∧, ∨, and ¬.

• ¬ can appear only in literals.

Negation Normal Form (NNF)

28

Atom := Variable | ⊤ | ⊥

Literal := Atom | ¬Atom

Formula := Literal | Formula op Formula

op := ∧ | ∨

• The only allowed
connectives are ∧, ∨, and ¬.

• ¬ can appear only in literals.

Conversion to NNF performed using DeMorgan’s Laws:

¬(F ∧ G) ⟺ ¬F ∨ ¬G ¬(F ∨ G) ⟺ ¬F ∧ ¬G

Disjunctive Normal Form (DNF)

29

Atom := Variable | ⊤ | ⊥

Literal := Atom | ¬Atom

Formula := Clause ∨ Formula

Clause := Literal | Literal ∧ Clause

Disjunctive Normal Form (DNF)

29

Atom := Variable | ⊤ | ⊥

Literal := Atom | ¬Atom

Formula := Clause ∨ Formula

Clause := Literal | Literal ∧ Clause

• Disjunction of conjunction of
literals.

Disjunctive Normal Form (DNF)

29

Atom := Variable | ⊤ | ⊥

Literal := Atom | ¬Atom

Formula := Clause ∨ Formula

Clause := Literal | Literal ∧ Clause

• Disjunction of conjunction of
literals.

To convert to DNF, convert to NNF and distribute ∧ over ∨:

(F ∧ (G ∨ H)) ⟺ (F ∧ G) ∨ (F ∧ H)

((G ∨ H) ∧ F) ⟺ (G ∧ F) ∨ (H ∧ F)

Disjunctive Normal Form (DNF)

29

Atom := Variable | ⊤ | ⊥

Literal := Atom | ¬Atom

Formula := Clause ∨ Formula

Clause := Literal | Literal ∧ Clause

• Disjunction of conjunction of
literals.

• Deciding satisfiability of a
DNF formula is trivial.

To convert to DNF, convert to NNF and distribute ∧ over ∨:

(F ∧ (G ∨ H)) ⟺ (F ∧ G) ∨ (F ∧ H)

((G ∨ H) ∧ F) ⟺ (G ∧ F) ∨ (H ∧ F)

Disjunctive Normal Form (DNF)

29

Atom := Variable | ⊤ | ⊥

Literal := Atom | ¬Atom

Formula := Clause ∨ Formula

Clause := Literal | Literal ∧ Clause

• Disjunction of conjunction of
literals.

• Deciding satisfiability of a
DNF formula is trivial.

• Why not SAT solve by
conversion to DNF?

To convert to DNF, convert to NNF and distribute ∧ over ∨:

(F ∧ (G ∨ H)) ⟺ (F ∧ G) ∨ (F ∧ H)

((G ∨ H) ∧ F) ⟺ (G ∧ F) ∨ (H ∧ F)

Conjunctive Normal Form (CNF)

30

Atom := Variable | ⊤ | ⊥

Literal := Atom | ¬Atom

Formula := Clause ∧ Formula

Clause := Literal | Literal ∨ Clause

• Conjunction of disjunction of
literals.

• Deciding the satisfiability of a
CNF formula is hard.

• SAT solvers use CNF as their
input language.

To convert to CNF, convert to NNF and distribute ∨ over ∧

(F ∨ (G ∧ H)) ⟺ (F ∨ G) ∧ (F ∨ H)

((G ∧ H) ∨ F) ⟺ (G ∨ F) ∧ (H ∨ F)

Conjunctive Normal Form (CNF)

30

Atom := Variable | ⊤ | ⊥

Literal := Atom | ¬Atom

Formula := Clause ∧ Formula

Clause := Literal | Literal ∨ Clause

• Conjunction of disjunction of
literals.

• Deciding the satisfiability of a
CNF formula is hard.

• SAT solvers use CNF as their
input language.

To convert to CNF, convert to NNF and distribute ∨ over ∧

(F ∨ (G ∧ H)) ⟺ (F ∨ G) ∧ (F ∨ H)

((G ∧ H) ∨ F) ⟺ (G ∨ F) ∧ (H ∨ F)

Why CNF? Doesn't the
conversion explode just as
badly as DNF?

Equisatisfiability and Tseitin’s transformation

31

Equisatisfiability and Tseitin’s transformation

31

Formulas F and G are
equisatisfiable if they are both
satisfiable or they are both
unsatisfiable.

Equisatisfiability and Tseitin’s transformation

31

Formulas F and G are
equisatisfiable if they are both
satisfiable or they are both
unsatisfiable.

Tseitin’s transformation
converts a propositional formula F
into an equisatisfiable CNF formula
that is linear in the size of F.

Equisatisfiability and Tseitin’s transformation

31

Formulas F and G are
equisatisfiable if they are both
satisfiable or they are both
unsatisfiable.

Tseitin’s transformation
converts a propositional formula F
into an equisatisfiable CNF formula
that is linear in the size of F.

Key idea: introduce auxiliary
variables to represent the output of
subformulas, and constrain those
variables using CNF clauses.

Equisatisfiability and Tseitin’s transformation

31

Formulas F and G are
equisatisfiable if they are both
satisfiable or they are both
unsatisfiable.

Tseitin’s transformation
converts a propositional formula F
into an equisatisfiable CNF formula
that is linear in the size of F.

Key idea: introduce auxiliary
variables to represent the output of
subformulas, and constrain those
variables using CNF clauses.

x → (y ∧ z)

Equisatisfiability and Tseitin’s transformation

31

Formulas F and G are
equisatisfiable if they are both
satisfiable or they are both
unsatisfiable.

Tseitin’s transformation
converts a propositional formula F
into an equisatisfiable CNF formula
that is linear in the size of F.

Key idea: introduce auxiliary
variables to represent the output of
subformulas, and constrain those
variables using CNF clauses.

x → (y ∧ z)

a1
a1 ⟷ (x → a2)
a2 ⟷ (y ∧ z)

Equisatisfiability and Tseitin’s transformation

31

Formulas F and G are
equisatisfiable if they are both
satisfiable or they are both
unsatisfiable.

Tseitin’s transformation
converts a propositional formula F
into an equisatisfiable CNF formula
that is linear in the size of F.

Key idea: introduce auxiliary
variables to represent the output of
subformulas, and constrain those
variables using CNF clauses.

x → (y ∧ z)

a1
a1 ⟷ (x → a2)
a2 ⟷ (y ∧ z)

a1
a1 → (x → a2)
(x → a2) → a1
a2 ⟷ (y ∧ z)

Equisatisfiability and Tseitin’s transformation

31

Formulas F and G are
equisatisfiable if they are both
satisfiable or they are both
unsatisfiable.

Tseitin’s transformation
converts a propositional formula F
into an equisatisfiable CNF formula
that is linear in the size of F.

Key idea: introduce auxiliary
variables to represent the output of
subformulas, and constrain those
variables using CNF clauses.

x → (y ∧ z)

a1
a1 ⟷ (x → a2)
a2 ⟷ (y ∧ z)

a1
a1 → (x → a2)
(x → a2) → a1
a2 ⟷ (y ∧ z)

a1
¬a1 ∨ ¬x ∨ a2
(x ∧ ¬a2) ∨ a1
a2 ⟷ (y ∧ z)

Equisatisfiability and Tseitin’s transformation

31

Formulas F and G are
equisatisfiable if they are both
satisfiable or they are both
unsatisfiable.

Tseitin’s transformation
converts a propositional formula F
into an equisatisfiable CNF formula
that is linear in the size of F.

Key idea: introduce auxiliary
variables to represent the output of
subformulas, and constrain those
variables using CNF clauses.

x → (y ∧ z)

a1
a1 ⟷ (x → a2)
a2 ⟷ (y ∧ z)

a1
a1 → (x → a2)
(x → a2) → a1
a2 ⟷ (y ∧ z)

a1
¬a1 ∨ ¬x ∨ a2
(x ∧ ¬a2) ∨ a1
a2 ⟷ (y ∧ z)

a1
¬a1 ∨ ¬x ∨ a2
x ∨ a1
¬a2 ∨ a1
a2 ⟷ (y ∧ z)

dpllA basic SAT solver!

Davis-Putnam-Logemann-Loveland (1962)

33

// Returns true if the CNF formula F is
// satisfiable; otherwise returns false.

DPLL(F)
 G ← BCP(F)
 if G = ⟙ then return true
 if G = ⟘ then return false
 p ← choose(vars(G))
 return DPLL(G{p ↦ ⟙}) ||

 DPLL(G{p ↦ ⟘})

Davis-Putnam-Logemann-Loveland (1962)

33

// Returns true if the CNF formula F is
// satisfiable; otherwise returns false.

DPLL(F)
 G ← BCP(F)
 if G = ⟙ then return true
 if G = ⟘ then return false
 p ← choose(vars(G))
 return DPLL(G{p ↦ ⟙}) ||

 DPLL(G{p ↦ ⟘})

Boolean constraint
propagation applies unit
resolution until fixed point:

lit clause[lit]
⟙

 lit clause[¬lit]
clause[⟘]

Summary

Today
• Course overview & logistics

• Review of propositional logic

• A basic SAT solver

Next Lecture
• A modern SAT solver

• Read Chapter 1 of Bradley & Manna

34

