
CSE507
courses.cs.washington.edu/courses/cse507/17wi/

Computer-Aided Reasoning for Software

Emina Torlak
emina@cs.washington.edu

Solver-Aided Languages

http://courses.cs.washington.edu/courses/cse507/17wi/index.html

Today

2

Last lecture
• Program synthesis

Today
• The next N years: solver-aided languages (?)

Reminders
• Next lecture: metasketches!

• Project presentations next Friday in class
• 11 min per team: 8 min presentation + 3 min questions

• Project reports and prototypes due next Friday at 11:00pm to
pi

cs

visiona little programming for everyone

A little programming for everyone

4

Every knowledge worker wants to program …

‣ spreadsheet data manipulation [Flashfill, POPL’11]

A little programming for everyone

4

Every knowledge worker wants to program …

social
scientist

‣ spreadsheet data manipulation [Flashfill, POPL’11]

‣ models of cell fates [SBL, POPL’13]

A little programming for everyone

4

Every knowledge worker wants to program …

biologist social
scientist

‣ spreadsheet data manipulation [Flashfill, POPL’11]

‣ models of cell fates [SBL, POPL’13]

‣ cache coherence protocols [Transit, PLDI’13]

‣ memory models [MemSAT, PLDI’10]

A little programming for everyone

4

Every knowledge worker wants to program …

hardware
designer

biologist social
scientist

‣ spreadsheet data manipulation [Flashfill, POPL’11]

‣ models of cell fates [SBL, POPL’13]

‣ cache coherence protocols [Transit, PLDI’13]

‣ memory models [MemSAT, PLDI’10]

A little programming for everyone

4

Every knowledge worker wants to program …

hardware
designer

biologist social
scientist

time

expertise

A little programming for everyone

5

solver-aided languages

We all want to build programs …

‣ spreadsheet data manipulation
‣ models of cell fates
‣ cache coherence protocols
‣ memory models

hardware
designer

biologist social
scientist

less time

less expertise

outlinesolver-aided tools, languages and beyond

outlinesolver-aided tools, languages and beyondsolver-aided tools

outlinesolver-aided tools, languages and beyondsolver-aided tools, languages

outlinesolver-aided tools, languages and beyondsolver-aided tools, languages, and applications

toolssolver-aided tools

P(x) {
…
…

}

Programming …

8

specification

P(x) {
…
…

}

Programming …

8

specificationtest case

assert safe(P(2))

translator

P(x) {
…
…

}
assert safe(P(2))

Programming with a solver-aided tool

9

?

SAT/SMT
solver

∃x . ¬ safe(P(x))

CBMC [Kroening et al., DAC’03]
Dafny [Leino, LPAR’10]
Miniatur [Vaziri et al., FSE’07]
Klee [Cadar et al., OSDI’08]

P(x) {
…
…

}
assert safe(P(x))

Programming with a solver-aided tool

9

Find an input on which the program fails.

? verify

42

SAT/SMT
solver

BugAssist [Jose & Majumdar, PLDI’11]

P(x) {
v = x + 2
…

}
assert safe(P(x))

Programming with a solver-aided tool

9

Find an input on which the program fails.

Localize bad parts of the program.? verify
debug

42

SAT/SMT
solverx = 42 ⋀ safe(P(x))

Kaplan [Koksal et al, POPL’12]
PBnJ [Samimi et al., ECOOP’10]
Squander [Milicevic et al., ICSE’11]

P(x) {
v = choose()
…

}
assert safe(P(x))

Programming with a solver-aided tool

9

Find an input on which the program fails.

Localize bad parts of the program.

Find values that repair the failing run.? verify
debug
solve

42 40

SAT/SMT
solver∃v . safe(P(42, v))

Sketch [Solar-Lezama et al., ASPLOS’06]
Comfusy [Kuncak et al., CAV’10]

P(x) {
v = ??
…

}
assert safe(P(x))

Programming with a solver-aided tool

9

Find an input on which the program fails.

Localize bad parts of the program.

Find values that repair the failing run.

Find code that repairs the program.
? verify

debug
solve
synth

x − 2

SAT/SMT
solver∃e . ∀x . safe(Pe(x))

translator

The standard (hard) way to build a tool

10

?
P(x) {

…
…

}
assert safe(P(x))

verify
debug
solve
synth

expertise in PL, FM, SE

translator SAT/SMT
solver

A new, easy way to build tools

11

programming

?
P(x) {

…
…

}
assert safe(P(x))

verify
debug
solve
synth

an
interpreter
or a library

ROSETTE

A new, easy way to build tools

11

?
P(x) {

…
…

}
assert safe(P(x))

verify
debug
solve
synth

an
interpreter
or a library

Implement a
language for an
application
domain, get the
tools for free!

ROSETTE

A new, easy way to build tools

11

?
P(x) {

…
…

}
assert safe(P(x))

verify
debug
solve
synth

an
interpreter
or a library

Implement a
language for an
application
domain, get the
tools for free!

symbolic
virtual machine

ROSETTE

A new, easy way to build tools

11

?
P(x) {

…
…

}
assert safe(P(x))

verify
debug
solve
synth

an
interpreter
or a library

Implement a
language for an
application
domain, get the
tools for free!

symbolic
virtual machine [Torlak & Bodik,

PLDI’14,
Onward’13]

Hard technical
challenge: how
to efficiently
translate a
program and its
interpreter?

designsolver-aided languages

domain-specific language
(DSL)

Layers of languages

13

host language

A formal language that is
specialized to a particular
application domain and often
limited in capability.

A high-level language for
implementing DSLs, usually
with meta-programming
features.

interpreterlibrary

Scala, Racket, JavaScript

domain-specific language
(DSL)

artificial intelligence
Church, BLOG

databases
SQL, Datalog

hardware design
Bluespec, Chisel, Verilog, VHDL

math and statistics
Eigen, Matlab, R

layout and visualization
LaTex, dot, dygraphs, D3

Layers of languages

13

host language

interpreterlibrary

domain-specific language
(DSL)

Layers of languages

13

host language

C = A * B

C / Java

Eigen / Matlab

[associativity]C = A * B

for (i = 0; i < n; i++)
 for (j = 0; j < m; j++)
 for (k = 0; k < p; k++)
 C[i][k] += A[i][j] * B[j][k]

interpreterlibrary

solver-aided domain-
specific language (SDSL)

Layers of solver-aided languages

14

solver-aided host language

symbolic virtual machine

interpreterlibrary

ROSETTE
[Torlak & Bodik, Onward’13, PLDI’14]

solver-aided domain-
specific language (SDSL)

Layers of solver-aided languages

14

solver-aided host language

symbolic virtual machine

interpreterlibrary

ROSETTE
[Torlak & Bodik, Onward’13, PLDI’14]

solver-aided domain-
specific language (SDSL)

Layers of solver-aided languages

14

solver-aided host language

symbolic virtual machine

interpreterlibrary

spatial programming
Chlorophyll

intelligent tutoring
RuleSynth

memory models
MemSynth

optimal synthesis
Synapse

radiotherapy controllers
Neutrons

BGP router configurations
BagPipe

ROSETTE
[Torlak & Bodik, Onward’13, PLDI’14]

solver-aided domain-
specific language (SDSL)

Layers of solver-aided languages

14

solver-aided host language

symbolic virtual machine

interpreterlibrary

spatial programming
Chlorophyll

intelligent tutoring
RuleSynth

memory models
MemSynth

optimal synthesis
Synapse

radiotherapy controllers
Neutrons

BGP router configurations
BagPipe

Modern descendent of
Scheme with macro-based
metaprogramming.

Anatomy of a solver-aided host language

15

Racket

ROSETTE

Anatomy of a solver-aided host language

15

(define-symbolic id type)

(assert expr)

(verify expr)
(debug [expr] expr)
(solve expr)
(synthesize [expr] expr)

A tiny example SDSL

16

def bvmax(r0, r1) :
 r2 = bvge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

BV: A tiny assembly-like
language for writing fast, low-
level library functions.

debug
synth

A tiny example SDSL

16

def bvmax(r0, r1) :
 r2 = bvge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

BV: A tiny assembly-like
language for writing fast, low-
level library functions.

test
verify

debug
synth

A tiny example SDSL

16

def bvmax(r0, r1) :
 r2 = bvge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

BV: A tiny assembly-like
language for writing fast, low-
level library functions.

test
verify

debug
synth

1. interpreter [10 LOC]

2. verifier [free]

3. debugger [free]

4. synthesizer [free]

def bvmax(r0, r1) :
 r2 = bvge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> bvmax(-2, -1)

A tiny example SDSL:

17

ROSETTE

def bvmax(r0, r1) :
 r2 = bvge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> bvmax(-2, -1)

A tiny example SDSL:

17

(define bvmax
 `((2 bvge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

parse

ROSETTE

def bvmax(r0, r1) :
 r2 = bvge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> bvmax(-2, -1)

A tiny example SDSL:

17

(define bvmax
 `((2 bvge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

parse

ROSETTE

(out opcode in ...)

(define bvmax
 `((2 bvge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

def bvmax(r0, r1) :
 r2 = bvge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> bvmax(-2, -1)
-1

(define (interpret prog inputs)
 (make-registers prog inputs)
 (for ([stmt prog])
 (match stmt
 [(list out opcode in ...)
 (define op (eval opcode))
 (define args (map load in))
 (store out (apply op args))]))
 (load (last)))

A tiny example SDSL:

18

ROSETTE

interpret

(define bvmax
 `((2 bvge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5))) `(-2 -1)

def bvmax(r0, r1) :
 r2 = bvge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> bvmax(-2, -1)
-1

(define (interpret prog inputs)
 (make-registers prog inputs)
 (for ([stmt prog])
 (match stmt
 [(list out opcode in ...)
 (define op (eval opcode))
 (define args (map load in))
 (store out (apply op args))]))
 (load (last)))

A tiny example SDSL:

18

ROSETTE

interpret

(define bvmax
 `((2 bvge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

0 -2
1 -1
2 0
3 0
4 -2
5 0
6 -1

def bvmax(r0, r1) :
 r2 = bvge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> bvmax(-2, -1)
-1

(define (interpret prog inputs)
 (make-registers prog inputs)
 (for ([stmt prog])
 (match stmt
 [(list out opcode in ...)
 (define op (eval opcode))
 (define args (map load in))
 (store out (apply op args))]))
 (load (last)))

A tiny example SDSL:

18

ROSETTE

interpret

(define bvmax
 `((2 bvge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

0 -2
1 -1
2 0
3 0
4 -2
5 0
6 -1

(2 bvge 0 1)

def bvmax(r0, r1) :
 r2 = bvge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> bvmax(-2, -1)
-1

(define (interpret prog inputs)
 (make-registers prog inputs)
 (for ([stmt prog])
 (match stmt
 [(list out opcode in ...)
 (define op (eval opcode))
 (define args (map load in))
 (store out (apply op args))]))
 (load (last)))

A tiny example SDSL:

18

ROSETTE

interpret

(define bvmax
 `((2 bvge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

0 -2
1 -1
2 0
3 0
4 -2
5 0
6 -1

(2 bvge 0 1)

def bvmax(r0, r1) :
 r2 = bvge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> bvmax(-2, -1)
-1

(define (interpret prog inputs)
 (make-registers prog inputs)
 (for ([stmt prog])
 (match stmt
 [(list out opcode in ...)
 (define op (eval opcode))
 (define args (map load in))
 (store out (apply op args))]))
 (load (last)))

A tiny example SDSL:

18

ROSETTE

interpret

(define bvmax
 `((2 bvge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

0 -2
1 -1
2 0
3 0
4 -2
5 0
6 -1

(2 bvge 0 1)

def bvmax(r0, r1) :
 r2 = bvge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> bvmax(-2, -1)
-1

(define (interpret prog inputs)
 (make-registers prog inputs)
 (for ([stmt prog])
 (match stmt
 [(list out opcode in ...)
 (define op (eval opcode))
 (define args (map load in))
 (store out (apply op args))]))
 (load (last)))

A tiny example SDSL:

18

ROSETTE

interpret

(define bvmax
 `((2 bvge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

0 -2
1 -1
2 0
3 0
4 -2
5 0
6 -1

(2 bvge 0 1)

def bvmax(r0, r1) :
 r2 = bvge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> bvmax(-2, -1)
-1

(define (interpret prog inputs)
 (make-registers prog inputs)
 (for ([stmt prog])
 (match stmt
 [(list out opcode in ...)
 (define op (eval opcode))
 (define args (map load in))
 (store out (apply op args))]))
 (load (last)))

A tiny example SDSL:

18

ROSETTE

interpret

(define bvmax
 `((2 bvge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

0 -2
1 -1
2 0
3 0
4 -2
5 0
6 -1

(2 bvge 0 1)
(define bvmax
 `((2 bvge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

def bvmax(r0, r1) :
 r2 = bvge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> bvmax(-2, -1)
-1

(define (interpret prog inputs)
 (make-registers prog inputs)
 (for ([stmt prog])
 (match stmt
 [(list out opcode in ...)
 (define op (eval opcode))
 (define args (map load in))
 (store out (apply op args))]))
 (load (last)))

A tiny example SDSL:

18

ROSETTE

interpret

(define bvmax
 `((2 bvge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

0 -2
1 -1
2 0
3 0
4 -2
5 0
6 -1

(2 bvge 0 1)
(define bvmax
 `((2 bvge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

def bvmax(r0, r1) :
 r2 = bvge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> bvmax(-2, -1)
-1

A tiny example SDSL:

19

ROSETTE

(define bvmax
 `((2 bvge 0 1)
 (3 bvneg 2)
 (4 bvxor 0 2)
 (5 bvand 3 4)
 (6 bvxor 1 5)))

‣ pattern matching
‣ dynamic evaluation
‣ first-class &

higher-order
procedures

‣ side effects

(define (interpret prog inputs)
 (make-registers prog inputs)
 (for ([stmt prog])
 (match stmt
 [(list out opcode in ...)
 (define op (eval opcode))
 (define args (map load in))
 (store out (apply op args))]))
 (load (last)))

(define-symbolic n0 n1 integer?)
(define inputs (list n0 n1))
(verify
 (assert (= (interpret bvmax inputs)
 (interpret max inputs))))

def bvmax(r0, r1) :
 r2 = bvge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> verify(bvmax, max)
(0, -2)

> bvmax(0, -2)
-1

A tiny example SDSL:

20

ROSETTE

query

(define-symbolic n0 n1 integer?)
(define inputs (list n0 n1))
(verify
 (assert (= (interpret bvmax inputs)
 (interpret max inputs))))

(define-symbolic n0 n1 integer?)
(define inputs (list n0 n1))
(verify
 (assert (= (interpret bvmax inputs)
 (interpret max inputs))))

def bvmax(r0, r1) :
 r2 = bvge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> verify(bvmax, max)
(0, -2)

> bvmax(0, -2)
-1

A tiny example SDSL:

20

ROSETTE

Creates two fresh symbolic
constants of type number
and binds them to variables
n0 and n1.

query

(define-symbolic n0 n1 integer?)
(define inputs (list n0 n1))
(verify
 (assert (= (interpret bvmax inputs)
 (interpret max inputs))))

(define-symbolic n0 n1 integer?)
(define inputs (list n0 n1))
(verify
 (assert (= (interpret bvmax inputs)
 (interpret max inputs))))

(define-symbolic n0 n1 integer?)
(define inputs (list n0 n1))
(verify
 (assert (= (interpret bvmax inputs)
 (interpret max inputs))))

def bvmax(r0, r1) :
 r2 = bvge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> verify(bvmax, max)
(0, -2)

> bvmax(0, -2)
-1

A tiny example SDSL:

20

ROSETTE

Symbolic values can be used
just like concrete values of
the same type.

query

(define-symbolic n0 n1 integer?)
(define inputs (list n0 n1))
(verify
 (assert (= (interpret bvmax inputs)
 (interpret max inputs))))

(define-symbolic n0 n1 integer?)
(define inputs (list n0 n1))
(verify
 (assert (= (interpret bvmax inputs)
 (interpret max inputs))))

(define-symbolic n0 n1 integer?)
(define inputs (list n0 n1))
(verify
 (assert (= (interpret bvmax inputs)
 (interpret max inputs))))

(define-symbolic n0 n1 integer?)
(define inputs (list n0 n1))
(verify
 (assert (= (interpret bvmax inputs)
 (interpret max inputs))))

def bvmax(r0, r1) :
 r2 = bvge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> verify(bvmax, max)
(0, -2)

> bvmax(0, -2)
-1

A tiny example SDSL:

20

ROSETTE

(verify expr) searches for a
concrete interpretation of
symbolic constants that
causes expr to fail.

query

(define-symbolic n0 n1 integer?)
(define inputs (list n0 n1))
(verify
 (assert (= (interpret bvmax inputs)
 (interpret max inputs))))

(define-symbolic n0 n1 integer?)
(define inputs (list n0 n1))
(verify
 (assert (= (interpret bvmax inputs)
 (interpret max inputs))))

(define-symbolic n0 n1 integer?)
(define inputs (list n0 n1))
(verify
 (assert (= (interpret bvmax inputs)
 (interpret max inputs))))

(define-symbolic n0 n1 integer?)
(define inputs (list n0 n1))
(verify
 (assert (= (interpret bvmax inputs)
 (interpret max inputs))))

def bvmax(r0, r1) :
 r2 = bvge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> verify(bvmax, max)
(0, -2)

> bvmax(0, -2)
-1

A tiny example SDSL:

20

ROSETTE

query

(define inputs (list 0 -2))
(debug [input-register?]
 (assert (= (interpret bvmax inputs)
 (interpret max inputs))))

def bvmax(r0, r1) :
 r2 = bvge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> debug(bvmax, max, (0, -2))

A tiny example SDSL:

21

ROSETTE

query

(define inputs (list 0 -2))
(debug [input-register?]
 (assert (= (interpret bvmax inputs)
 (interpret max inputs))))

def bvmax(r0, r1) :
 r2 = bvge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

> debug(bvmax, max, (0, -2))

A tiny example SDSL:

21

ROSETTE

query

def bvmax(r0, r1) :
 r2 = bvge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r2)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

(define-symbolic n0 n1 integer?)
(define inputs (list n0 n1))
(synthesize [inputs]
 (assert (= (interpret bvmax inputs)
 (interpret max inputs)))))

def bvmax(r0, r1) :
 r2 = bvge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(??, ??)
 r5 = bvand(r3, ??)
 r6 = bvxor(??, ??)
 return r6

> synthesize(bvmax, max)

A tiny example SDSL:

22

ROSETTE

query

(define-symbolic n0 n1 integer?)
(define inputs (list n0 n1))
(synthesize [inputs]
 (assert (= (interpret bvmax inputs)
 (interpret max inputs)))))

def bvmax(r0, r1) :
 r2 = bvge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(??, ??)
 r5 = bvand(r3, ??)
 r6 = bvxor(??, ??)
 return r6

> synthesize(bvmax, max)

def bvmax(r0, r1) :
 r2 = bvge(r0, r1)
 r3 = bvneg(r2)
 r4 = bvxor(r0, r1)
 r5 = bvand(r3, r4)
 r6 = bvxor(r1, r5)
 return r6

A tiny example SDSL:

22

ROSETTE

query

techsymbolic virtual machine (SVM)

ROSETTE

How it all works: a big picture view

24

symbolic
virtual
machine

SDSL

program

query

solver

[Torlak & Bodik,
Onward’13]

[Torlak & Bodik,
PLDI’14]

ROSETTE

How it all works: a big picture view

24

symbolic
virtual
machine

SDSL

program

result

solver

[Torlak & Bodik,
Onward’13]

[Torlak & Bodik,
PLDI’14]

ROSETTE

How it all works: a big picture view

24

symbolic
virtual
machine

SDSL

program

result

solver

‣ pattern matching
‣ dynamic evaluation
‣ first-class procedures
‣ higher-order procedures
‣ side effects
‣ macros

theories of bitvectors,
integers, reals, and
uninterpreted functions

[Torlak & Bodik,
Onward’13]

[Torlak & Bodik,
PLDI’14]

(3, 1, -2) (1, 3)

Translation to constraints by example

25

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

reverse and filter, keeping
only positive numbers

vs ps

(3, 1, -2) (1, 3)

Translation to constraints by example

25

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

vs ps

Translation to constraints by example

25

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

vs psconstraints

 (a, b)

Translation to constraints by example

25

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

vs psconstraints

a>0 ∧ b>0 (a, b)

Translation to constraints by example

25

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

vs psconstraints

Design space of precise symbolic encodings

26

symbolic execution

bounded model checkingsolve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

{ }a > 0
b ≤ 0
false

Design space of precise symbolic encodings

26

a > 0

b ≤ 0

ps ↦ (a)

ps ↦ (a)

vs ↦ (a, b)
ps ↦ ()

symbolic execution

bounded model checkingsolve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

{ }a > 0
b ≤ 0
false

∨ ∨ ∨

Design space of precise symbolic encodings

26

a > 0

b ≤ 0

ps ↦ (a)

ps ↦ (a)

vs ↦ (a, b)
ps ↦ ()

b > 0b > 0

ps ↦ (b) ps ↦ (b, a)

{ }a ≤ 0
b > 0
false

{ }a > 0
b > 0
true

a ≤ 0

b ≤ 0

ps ↦ ()

ps ↦ ()

{ }a ≤ 0
b ≤ 0
false

symbolic execution

bounded model checkingsolve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

{ }a > 0
b ≤ 0
false

∨ ∨ ∨

Design space of precise symbolic encodings

26

vs ↦ (a, b)
ps ↦ ()

ps ↦ (a)

ps ↦ ps0

a > 0a ≤ 0

ps0 = ite(a > 0, (a), ())
ps1 = insert(b, ps0)
ps2 = ite(b > 0, ps0, ps1)
assert len(ps2) = 2

a > 0

b ≤ 0

ps ↦ (a)

ps ↦ (a)

vs ↦ (a, b)
ps ↦ ()

b > 0b > 0

ps ↦ (b) ps ↦ (b, a)

{ }a ≤ 0
b > 0
false

{ }a > 0
b > 0
true

a ≤ 0

b ≤ 0

ps ↦ ()

ps ↦ ()

{ }a ≤ 0
b ≤ 0
false

symbolic execution

bounded model checking

ps ↦ ()

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

{ }a > 0
b ≤ 0
false

∨ ∨ ∨

Design space of precise symbolic encodings

26

vs ↦ (a, b)
ps ↦ ()

ps ↦ (a)

ps ↦ ps0

a > 0a ≤ 0

ps0 = ite(a > 0, (a), ())
ps1 = insert(b, ps0)
ps2 = ite(b > 0, ps0, ps1)
assert len(ps2) = 2

a > 0

b ≤ 0

ps ↦ (a)

ps ↦ (a)

vs ↦ (a, b)
ps ↦ ()

b > 0b > 0

ps ↦ (b) ps ↦ (b, a)

{ }a ≤ 0
b > 0
false

{ }a > 0
b > 0
true

a ≤ 0

b ≤ 0

ps ↦ ()

ps ↦ ()

{ }a ≤ 0
b ≤ 0
false

symbolic execution

bounded model checking

ps ↦ ()

ps ↦ ps1

b > 0

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

{ }a > 0
b ≤ 0
false

∨ ∨ ∨

Design space of precise symbolic encodings

26

vs ↦ (a, b)
ps ↦ ()

ps ↦ (a)

ps ↦ ps0

a > 0a ≤ 0

ps0 = ite(a > 0, (a), ())
ps1 = insert(b, ps0)
ps2 = ite(b > 0, ps0, ps1)
assert len(ps2) = 2

a > 0

b ≤ 0

ps ↦ (a)

ps ↦ (a)

vs ↦ (a, b)
ps ↦ ()

b > 0b > 0

ps ↦ (b) ps ↦ (b, a)

{ }a ≤ 0
b > 0
false

{ }a > 0
b > 0
true

a ≤ 0

b ≤ 0

ps ↦ ()

ps ↦ ()

{ }a ≤ 0
b ≤ 0
false

symbolic execution

bounded model checking

ps ↦ ()

ps ↦ ps1

ps ↦ ps2

b > 0b ≤ 0

ps ↦ ps0

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

A new design: type-driven state merging

27

{ }a > 0
b > 0
true

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

Merge values of
‣ primitive types: symbolically
‣ immutable types: structurally
‣ all other types: via unions

A new design: type-driven state merging

27

{ }a > 0
b > 0
true

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

Merge values of
‣ primitive types: symbolically
‣ immutable types: structurally
‣ all other types: via unions

ba

A new design: type-driven state merging

27

{ }a > 0
b > 0
true

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

⁊g g

c

Merge values of
‣ primitive types: symbolically
‣ immutable types: structurally
‣ all other types: via unions

ba (c, d)(a, b)

A new design: type-driven state merging

27

{ }a > 0
b > 0
true

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

⁊g g

c(e, f)

Merge values of
‣ primitive types: symbolically
‣ immutable types: structurally
‣ all other types: via unions

ba (c, d)

A new design: type-driven state merging

27

{ }a > 0
b > 0
true

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

⁊g g

c(e, f){ ¬g ⊦ a, g ⊦ () }

()

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

A new design: type-driven state merging

28

symbolic virtual machine

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

a > 0a ≤ 0

A new design: type-driven state merging

28

vs ↦ (a, b)
ps ↦ ()

ps ↦ (a)ps ↦ ()

symbolic virtual machine

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

Symbolic union: a set
of guarded values, with
disjoint guards.

g0 = a > 0
g1 = b > 0
g2 = g0 ∧ g1

g3 = ¬(g0 ⇔ g1)
g4 = ¬g0 ∧ ¬g1

c = ite(g1, b, a)
assert g2

a > 0a ≤ 0 g0¬ g0

A new design: type-driven state merging

28

vs ↦ (a, b)
ps ↦ ()

ps ↦ (a)ps ↦ ()

symbolic virtual machine

ps ↦ { g0 ⊦ (a),
 ¬g0 ⊦ () }

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

Execute insert
concretely on all
lists in the union.

g0 = a > 0
g1 = b > 0
g2 = g0 ∧ g1

g3 = ¬(g0 ⇔ g1)
g4 = ¬g0 ∧ ¬g1

c = ite(g1, b, a)
assert g2

a > 0a ≤ 0

g1

g0¬ g0

A new design: type-driven state merging

28

vs ↦ (a, b)
ps ↦ ()

ps ↦ (a)ps ↦ ()

symbolic virtual machine

ps ↦ { g0 ⊦ (a),
 ¬g0 ⊦ () }

ps ↦ { g0 ⊦ (b, a),
 ¬g0 ⊦ (b) }

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

g0 = a > 0
g1 = b > 0
g2 = g0 ∧ g1

g3 = ¬(g0 ⇔ g1)
g4 = ¬g0 ∧ ¬g1

c = ite(g1, b, a)
assert g2

a > 0a ≤ 0

¬ g1 g1

g0¬ g0

A new design: type-driven state merging

28

vs ↦ (a, b)
ps ↦ ()

ps ↦ (a)ps ↦ ()

symbolic virtual machine

ps ↦ { g0 ⊦ (a),
 ¬g0 ⊦ () }

ps ↦ { g0 ⊦ (b, a),
 ¬g0 ⊦ (b) }

ps ↦ { g0 ⊦ (a),
 ¬g0 ⊦ () }

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

g0 = a > 0
g1 = b > 0
g2 = g0 ∧ g1

g3 = ¬(g0 ⇔ g1)
g4 = ¬g0 ∧ ¬g1

c = ite(g1, b, a)
assert g2

a > 0a ≤ 0

¬ g1 g1

g0¬ g0

A new design: type-driven state merging

28

vs ↦ (a, b)
ps ↦ ()

ps ↦ (a)ps ↦ ()

symbolic virtual machine

ps ↦ { g0 ⊦ (a),
 ¬g0 ⊦ () }

ps ↦ { g0 ⊦ (b, a),
 ¬g0 ⊦ (b) }

ps ↦ { g0 ⊦ (a),
 ¬g0 ⊦ () }

ps ↦ { g2 ⊦ (b, a),
 g3 ⊦ (c),
 g4 ⊦ () }

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

Evaluate len concretely
on all lists in the union;
assertion true only on
the list guarded by g2.

g0 = a > 0
g1 = b > 0
g2 = g0 ∧ g1

g3 = ¬(g0 ⇔ g1)
g4 = ¬g0 ∧ ¬g1

c = ite(g1, b, a)
assert g2

a > 0a ≤ 0

¬ g1 g1

g0¬ g0

A new design: type-driven state merging

28

vs ↦ (a, b)
ps ↦ ()

ps ↦ (a)ps ↦ ()

symbolic virtual machine

ps ↦ { g0 ⊦ (a),
 ¬g0 ⊦ () }

ps ↦ { g0 ⊦ (b, a),
 ¬g0 ⊦ (b) }

ps ↦ { g0 ⊦ (a),
 ¬g0 ⊦ () }

ps ↦ { g2 ⊦ (b, a),
 g3 ⊦ (c),
 g4 ⊦ () }

solve:
 ps = ()
 for v in vs:
 if v > 0:
 ps = insert(v, ps)
 assert len(ps) == len(vs)

g0 = a > 0
g1 = b > 0
g2 = g0 ∧ g1

g3 = ¬(g0 ⇔ g1)
g4 = ¬g0 ∧ ¬g1

c = ite(g1, b, a)
assert g2

a > 0a ≤ 0

¬ g1 g1

g0¬ g0

A new design: type-driven state merging

28

vs ↦ (a, b)
ps ↦ ()

ps ↦ (a)ps ↦ ()

symbolic virtual machine

ps ↦ { g0 ⊦ (a),
 ¬g0 ⊦ () }

ps ↦ { g0 ⊦ (b, a),
 ¬g0 ⊦ (b) }

ps ↦ { g0 ⊦ (a),
 ¬g0 ⊦ () }

ps ↦ { g2 ⊦ (b, a),
 g3 ⊦ (c),
 g4 ⊦ () }

concre
te evaluatio

n

polynomial encoding

Effectiveness of type-driven state merging

29

Merging performance for verification and synthesis
queries in SynthCL, WebSynth and IFC programs

0

10000

20000

30000

40000

number of control flow joins

0 4500 9000 13500 18000

R² = 0.9884

R² = 0.95

number of unions
size of all unions

Effectiveness of type-driven state merging

30

SVM and solving time for verification and synthesis
queries in SynthCL, WebSynth and IFC programs

ru
nn

in
g

tim
e

(s
ec

)

0

75

150

225

300

FW
T

3 B1 B2 J2 B3

M
M

1 J1

FW
T

1 B4 SF
3

C
R

1

C
R

2

C
R

3

FW
T

4

C
R

4

M
M

2

SF
1

FW
T

2

iT
un

es

IM
D

b

M
M

3

A
lA

n

SF
4

SF
2

SVM
Z3

appssolver-aided programming for everyone

Chlorophyll: ultra low-power computing

32

 DB003 Evaluation Board Reference for EVB001

Copyright© 2010-2011 GreenArrays, Inc. 9/26/11 5

2. Basic Architecture
The purpose of this board is to facilitate evaluation and application prototyping using GreenArrays chips. Because no
single I/O complement would be suitable for all likely uses, this board has two GA144 chips: One (called "Host")
configured with sufficient I/O for intensive software development, and the other (called "Target") with as little I/O
committed as possible so that pure, dedicated applications may be prototyped.

2.1 Highlights
Three FTDI USB to serial chips provide high speed (960 kBaud) communications for interactive software development
and general-purpose host communications.

An onboard switching regulator takes power from the USB connectors and/or a conventional "wall wart" power supply.
Whichever of these is offering the highest voltage is used by the regulator.

A barrier strip provides for connection of bench power supplies. Each of the power buses of the two GA144 chips may
selectively be run from external power in lieu of the onboard regulator, allowing you to run either chip from any
desired VDD voltage and also facilitating current measurements.

The Host chip is supplied with an SPI boot flash holding 1 MByte of nonvolatile data, an external SRAM with 1 MWord
(2 MBytes) of memory; and may optionally use a dual voltage MMC card such as the 2 Gigabyte unit we have selected
for in-house use. These memory resources may be used in conjunction with Virtual Machines such as eForth and
polyFORTH, or for direct use by your own F18 code.

The Target chip is committed to as few I/O connections as possible. The sources for its reset signal are fully
configurable, and with the exception of a SERDES line connecting it with the Host chip, all other communications (two
2-wire serial interfaces) may be disconnected so that the chip is fully isolated and thus all practical I/O is available for
any desired use.

Roughly half the board is prototyping area, mainly populated with a grid of plated through holes on 0.1 inch centers.
By soldering suitable headers to this grid, you can provide for expansion using various prototyping fixtures such as
those made by SchmartBoard. The grid is intentionally large enough to support an 8- or 16-bit PC-104 socket.

The periphery of the prototyping area is provided with hole patterns for many popular connectors, and there are six 8-
bit bidirectional level shifters for interfacing with external circuits that may not run on 1.8v. In addition, one 1.8v 2-
input OR and three NANDs are available for use in external circuitry.

Figure by Per Ljung

Instructions/Second vs Power

~100x

GreenArrays GA144 Processor

Chlorophyll: ultra low-power computing

32

 DB003 Evaluation Board Reference for EVB001

Copyright© 2010-2011 GreenArrays, Inc. 9/26/11 5

2. Basic Architecture
The purpose of this board is to facilitate evaluation and application prototyping using GreenArrays chips. Because no
single I/O complement would be suitable for all likely uses, this board has two GA144 chips: One (called "Host")
configured with sufficient I/O for intensive software development, and the other (called "Target") with as little I/O
committed as possible so that pure, dedicated applications may be prototyped.

2.1 Highlights
Three FTDI USB to serial chips provide high speed (960 kBaud) communications for interactive software development
and general-purpose host communications.

An onboard switching regulator takes power from the USB connectors and/or a conventional "wall wart" power supply.
Whichever of these is offering the highest voltage is used by the regulator.

A barrier strip provides for connection of bench power supplies. Each of the power buses of the two GA144 chips may
selectively be run from external power in lieu of the onboard regulator, allowing you to run either chip from any
desired VDD voltage and also facilitating current measurements.

The Host chip is supplied with an SPI boot flash holding 1 MByte of nonvolatile data, an external SRAM with 1 MWord
(2 MBytes) of memory; and may optionally use a dual voltage MMC card such as the 2 Gigabyte unit we have selected
for in-house use. These memory resources may be used in conjunction with Virtual Machines such as eForth and
polyFORTH, or for direct use by your own F18 code.

The Target chip is committed to as few I/O connections as possible. The sources for its reset signal are fully
configurable, and with the exception of a SERDES line connecting it with the Host chip, all other communications (two
2-wire serial interfaces) may be disconnected so that the chip is fully isolated and thus all practical I/O is available for
any desired use.

Roughly half the board is prototyping area, mainly populated with a grid of plated through holes on 0.1 inch centers.
By soldering suitable headers to this grid, you can provide for expansion using various prototyping fixtures such as
those made by SchmartBoard. The grid is intentionally large enough to support an 8- or 16-bit PC-104 socket.

The periphery of the prototyping area is provided with hole patterns for many popular connectors, and there are six 8-
bit bidirectional level shifters for interfacing with external circuits that may not run on 1.8v. In addition, one 1.8v 2-
input OR and three NANDs are available for use in external circuitry.

Manual program partitioning:
break programs up into a pipeline
with a few operations per core.

Drawing by Mangpo Phothilimthana

GreenArrays GA144 Processor

‣ Stack-based 18-bit architecture
‣ 32 instructions
‣ 8 x 18 array of asynchronous cores
‣ No shared resources (cache, memory)
‣ Limited communication, neighbors only
‣ < 300 byte memory per core

Chlorophyll: ultra low-power computing

32

 DB003 Evaluation Board Reference for EVB001

Copyright© 2010-2011 GreenArrays, Inc. 9/26/11 5

2. Basic Architecture
The purpose of this board is to facilitate evaluation and application prototyping using GreenArrays chips. Because no
single I/O complement would be suitable for all likely uses, this board has two GA144 chips: One (called "Host")
configured with sufficient I/O for intensive software development, and the other (called "Target") with as little I/O
committed as possible so that pure, dedicated applications may be prototyped.

2.1 Highlights
Three FTDI USB to serial chips provide high speed (960 kBaud) communications for interactive software development
and general-purpose host communications.

An onboard switching regulator takes power from the USB connectors and/or a conventional "wall wart" power supply.
Whichever of these is offering the highest voltage is used by the regulator.

A barrier strip provides for connection of bench power supplies. Each of the power buses of the two GA144 chips may
selectively be run from external power in lieu of the onboard regulator, allowing you to run either chip from any
desired VDD voltage and also facilitating current measurements.

The Host chip is supplied with an SPI boot flash holding 1 MByte of nonvolatile data, an external SRAM with 1 MWord
(2 MBytes) of memory; and may optionally use a dual voltage MMC card such as the 2 Gigabyte unit we have selected
for in-house use. These memory resources may be used in conjunction with Virtual Machines such as eForth and
polyFORTH, or for direct use by your own F18 code.

The Target chip is committed to as few I/O connections as possible. The sources for its reset signal are fully
configurable, and with the exception of a SERDES line connecting it with the Host chip, all other communications (two
2-wire serial interfaces) may be disconnected so that the chip is fully isolated and thus all practical I/O is available for
any desired use.

Roughly half the board is prototyping area, mainly populated with a grid of plated through holes on 0.1 inch centers.
By soldering suitable headers to this grid, you can provide for expansion using various prototyping fixtures such as
those made by SchmartBoard. The grid is intentionally large enough to support an 8- or 16-bit PC-104 socket.

The periphery of the prototyping area is provided with hole patterns for many popular connectors, and there are six 8-
bit bidirectional level shifters for interfacing with external circuits that may not run on 1.8v. In addition, one 1.8v 2-
input OR and three NANDs are available for use in external circuitry.

Drawing by Mangpo Phothilimthana

GreenArrays GA144 Processor

‣ Stack-based 18-bit architecture
‣ 32 instructions
‣ 8 x 18 array of asynchronous cores
‣ No shared resources (cache, memory)
‣ Limited communication, neighbors only
‣ < 300 byte memory per core

a
b

1

*

2

c

3

c = a * b

Synthesizes placement of
code and data onto cores, by
type-checking a program
sketch in a C-like DSL.

Chlorophyll: ultra low-power computing

33

int a, b;
int c = a * b;

a
b

1

*

2

c

3

Synthesizes placement of
code and data onto cores, by
type-checking a program
sketch in a C-like DSL.

Chlorophyll: ultra low-power computing

33

int a, b;
int c = a * b;

a
b

1

*

2

c

3

int@1 a, b;
int@3 c = a *@2 b;

type-checking a program

Synthesizes placement of
code and data onto cores, by
type-checking a program
sketch in a C-like DSL.

Chlorophyll: ultra low-power computing

33

int a, b;
int c = a * b;

a
b

1

*

2

c

3

int@1 a, b;
int@3 c = a *@2 b;
int@?? a, b;
int@?? c = a *@?? b;

sketch

Chlorophyll: ultra low-power computing

33

int a, b;
int c = a * b;

a
b

1

*

2

c

3

int@1 a, b;
int@3 c = a *@2 b;
int@?? a, b;
int@?? c = a *@?? b;

Phitchaya Mangpo Phothilimthana

Built by a first-year
grad in a few weeks

Chlorophyll: ultra low-power computing

33

int a, b;
int c = a * b;

a
b

1

*

2

c

3

int@1 a, b;
int@3 c = a *@2 b;
int@?? a, b;
int@?? c = a *@?? b;

[Phothilimthana et al.,
PLDI’14]

Bagpipe: verifying BGP router configurations

34

Bagpipe: verifying BGP router configurations

34

Bagpipe: verifying BGP router configurations

34

AS

AS AS

AS
AS

Autonomous systems
communicate routing
information by sending
announcements via the Border
Gateway Protocol.

Bagpipe: verifying BGP router configurations

34

Configuring BGP is tricky

• distributed system
• low-level language
• no static analysis

AS

AS AS

AS
AS

Bagpipe: verifying BGP router configurations

35

BGP configuration

policy violation

A BGP interpreter
implemented in
Rosette.

property

Bagpipe

Bagpipe: verifying BGP router configurations

35

BGP configuration

policy violation

property

Bagpipe

Built by two grads in a
few weeks

Konstantin Weitz and Doug Woos

Bagpipe: verifying BGP router configurations

36

route leaks!

private
announcements
are not leaked

Bagpipe

Internet2

[Weitz et al., OOPSLA’16]

Clinical Neutron
Therapy System
(CNTS) at UW

Neutrons: verifying a radiotherapy system

37

• 30 years of incident-free service.
• Controlled by custom software, built

by CNTS engineering staff.
• Third generation of Therapy Control

software built recently.

Beam, motors, etc.

Prescription Sensors

Therapy Control Software

Clinical Neutron
Therapy System
(CNTS) at UW

Neutrons: verifying a radiotherapy system

37

Experimental Physics and
Industrial Control System
(EPICS) Dataflow Language

Beam, motors, etc.

Prescription Sensors

Therapy Control Software

Neutrons: verifying a radiotherapy system

38

Beam, motors, etc.

Prescription Sensors

Therapy Control Software

Neutrons: verifying a radiotherapy system

38

The Maximize Severity attribute is one of NMS
(Non-Maximize Severity), MS (Maximize
Severity), MSS (Maximize Status and Severity) or
MSI (Maximize Severity if Invalid). It determines
whether alarm severity is propagated across
links. If the attribute is MSI only a severity of
INVALID_ALARM is propagated; settings of MS
or MSS propagate all alarms that are more
severe than the record's current severity. For
input links the alarm severity of the record
referred to by the link is propagated to the
record containing the link. For output links the
alarm severity of the record containing the link
is propagated to the record referred to by the
link. If the severity is changed the associated
alarm status is set to LINK_ALARM, except if
the attribute is MSS when the alarm status will
be copied along with the severity.

EPICS documentation / semantics

Neutrons: verifying a radiotherapy system

39

bug report

Built by a 2nd year
grad in a few days!

Calvin Loncaric

EPICS Verifier

safety property
EPICS

program

Found a bug in the EPICS runtime!
Therapy Control depends on this
bug for correct operation.

Neutrons: verifying a radiotherapy system

40

EPICS Verifier

safety property
Therapy
Control

Software

[Pernsteiner et al., CAV’16]

Thanks for a great quarter!

