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Today

2

Last lecture
• Program synthesis

Today  
• The next N years:  solver-aided languages (?)

Reminders
• Next lecture:  metasketches!

• Project presentations next Friday in class
• 11 min per team:  8 min presentation + 3 min questions

• Project reports and prototypes due next Friday at 11:00pm to
pi

cs
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A little programming for everyone

5

solver-aided languages

We all want to build programs …

‣ spreadsheet data manipulation
‣ models of cell fates
‣ cache coherence protocols
‣ memory models

hardware 
designer

biologist social 
scientist

less time

less expertise
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P(x) {
…
…

}

Programming …
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specification



P(x) {
…
…

}

Programming …
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specificationtest case

assert safe(P(2))



translator

P(x) {
…
…

}
assert safe(P(2)) 

Programming with a solver-aided tool 

9

?

SAT/SMT 
solver



∃x .  ¬ safe(P(x))

CBMC [Kroening et al., DAC’03]
Dafny [Leino, LPAR’10]
Miniatur [Vaziri et al., FSE’07]
Klee [Cadar et al., OSDI’08]

P(x) {
…
…

}
assert safe(P(x)) 

Programming with a solver-aided tool 

9

Find an input on which the program fails.

? verify 

42

SAT/SMT 
solver



BugAssist [Jose & Majumdar, PLDI’11]

P(x) {
v = x + 2
…

}
assert safe(P(x)) 

Programming with a solver-aided tool 

9

Find an input on which the program fails.

Localize bad parts of the program.? verify 
debug

42

SAT/SMT 
solverx = 42 ⋀ safe(P(x))



Kaplan [Koksal et al, POPL’12]
PBnJ [Samimi et al., ECOOP’10]
Squander [Milicevic et al., ICSE’11]

P(x) {
v = choose()
…

}
assert safe(P(x)) 

Programming with a solver-aided tool 

9

Find an input on which the program fails.

Localize bad parts of the program.

Find values that repair the failing run.? verify 
debug
solve

42 40

SAT/SMT 
solver∃v . safe(P(42, v))



Sketch [Solar-Lezama et al.,  ASPLOS’06]
Comfusy [Kuncak et al., CAV’10]

P(x) {
v = ??
…

}
assert safe(P(x)) 

Programming with a solver-aided tool 

9

Find an input on which the program fails.

Localize bad parts of the program.

Find values that repair the failing run.

Find code that repairs the program.
? verify 

debug
solve
synth

x − 2

SAT/SMT 
solver∃e . ∀x . safe(Pe(x))



translator

The standard (hard) way to build a tool

10

?
P(x) {

…
…

}
assert safe(P(x)) 

verify 
debug
solve
synth

expertise in PL, FM, SE

translator SAT/SMT 
solver



A new, easy way to build tools
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programming

?
P(x) {

…
…

}
assert safe(P(x)) 

verify 
debug
solve
synth

an 
interpreter 
or a library
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A new, easy way to build tools

11

?
P(x) {

…
…

}
assert safe(P(x)) 

verify 
debug
solve
synth

an 
interpreter 
or a library

Implement a 
language for an 
application 
domain, get the 
tools for free!

symbolic 
virtual machine [Torlak & Bodik, 

PLDI’14, 
Onward’13]

Hard technical 
challenge:  how 
to efficiently 
translate a 
program and its 
interpreter?



designsolver-aided languages



domain-specific language 
(DSL)

Layers of languages

13

host language

A formal language that is 
specialized to a particular 
application domain and often 
limited in capability.

A high-level language for 
implementing DSLs, usually 
with meta-programming 
features.

interpreterlibrary



Scala, Racket, JavaScript

domain-specific language 
(DSL)

artificial intelligence
Church, BLOG

databases
SQL, Datalog

hardware design
Bluespec, Chisel, Verilog, VHDL

math and statistics
Eigen, Matlab, R

layout and visualization
LaTex, dot, dygraphs, D3

Layers of languages

13

host language

interpreterlibrary



domain-specific language 
(DSL)

Layers of languages

13

host language

C = A * B

C / Java

Eigen / Matlab

[associativity]C = A * B

for (i = 0; i < n; i++)  
 for (j = 0; j < m; j++) 
  for (k = 0; k < p; k++) 
   C[i][k] += A[i][j] * B[j][k]

interpreterlibrary



solver-aided domain-
specific language (SDSL)

Layers of solver-aided languages

14

solver-aided host language

symbolic virtual machine

interpreterlibrary
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BGP router configurations
BagPipe
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Modern descendent of 
Scheme with macro-based 
metaprogramming.

Anatomy of a solver-aided host language

15

Racket



ROSETTE

Anatomy of a solver-aided host language

15

(define-symbolic id type) 

(assert expr) 

(verify expr)  
(debug [expr] expr) 
(solve expr) 
(synthesize [expr] expr)



A tiny example SDSL
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def bvmax(r0, r1) : 
  r2 = bvge(r0, r1) 
  r3 = bvneg(r2) 
  r4 = bvxor(r0, r2) 
  r5 = bvand(r3, r4) 
  r6 = bvxor(r1, r5) 
  return r6 

BV:  A tiny assembly-like 
language for writing fast, low-
level library functions.

debug
synth
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def bvmax(r0, r1) : 
  r2 = bvge(r0, r1) 
  r3 = bvneg(r2) 
  r4 = bvxor(r0, r2) 
  r5 = bvand(r3, r4) 
  r6 = bvxor(r1, r5) 
  return r6 

BV:  A tiny assembly-like 
language for writing fast, low-
level library functions.

test 
verify

debug
synth

1. interpreter       [10 LOC]

2. verifier                   [free]

3. debugger                [free]

4. synthesizer             [free]



def bvmax(r0, r1) : 
  r2 = bvge(r0, r1) 
  r3 = bvneg(r2) 
  r4 = bvxor(r0, r2) 
  r5 = bvand(r3, r4) 
  r6 = bvxor(r1, r5) 
  return r6 

> bvmax(-2, -1) 

A tiny example SDSL:

17

ROSETTE



def bvmax(r0, r1) : 
  r2 = bvge(r0, r1) 
  r3 = bvneg(r2) 
  r4 = bvxor(r0, r2) 
  r5 = bvand(r3, r4) 
  r6 = bvxor(r1, r5) 
  return r6 

> bvmax(-2, -1) 

A tiny example SDSL:

17

(define bvmax 
 `((2 bvge 0 1) 
   (3 bvneg 2) 
   (4 bvxor 0 2) 
   (5 bvand 3 4) 
   (6 bvxor 1 5)))

parse

ROSETTE



def bvmax(r0, r1) : 
  r2 = bvge(r0, r1) 
  r3 = bvneg(r2) 
  r4 = bvxor(r0, r2) 
  r5 = bvand(r3, r4) 
  r6 = bvxor(r1, r5) 
  return r6 

> bvmax(-2, -1) 

A tiny example SDSL:

17

(define bvmax 
 `((2 bvge 0 1) 
   (3 bvneg 2) 
   (4 bvxor 0 2) 
   (5 bvand 3 4) 
   (6 bvxor 1 5)))

parse

ROSETTE

(out opcode in ...)

(define bvmax 
 `((2 bvge 0 1) 
   (3 bvneg 2) 
   (4 bvxor 0 2) 
   (5 bvand 3 4) 
   (6 bvxor 1 5)))



def bvmax(r0, r1) : 
  r2 = bvge(r0, r1) 
  r3 = bvneg(r2) 
  r4 = bvxor(r0, r2) 
  r5 = bvand(r3, r4) 
  r6 = bvxor(r1, r5) 
  return r6 

> bvmax(-2, -1) 
-1 

(define (interpret prog inputs) 
  (make-registers prog inputs) 
  (for ([stmt prog]) 
    (match stmt 
      [(list out opcode in ...) 
       (define op (eval opcode)) 
       (define args (map load in)) 
       (store out (apply op args))])) 
  (load (last)))

A tiny example SDSL:

18

ROSETTE

interpret

(define bvmax 
 `((2 bvge 0 1) 
   (3 bvneg 2) 
   (4 bvxor 0 2) 
   (5 bvand 3 4) 
   (6 bvxor 1 5))) `(-2 -1)



def bvmax(r0, r1) : 
  r2 = bvge(r0, r1) 
  r3 = bvneg(r2) 
  r4 = bvxor(r0, r2) 
  r5 = bvand(r3, r4) 
  r6 = bvxor(r1, r5) 
  return r6 

> bvmax(-2, -1) 
-1 

(define (interpret prog inputs) 
  (make-registers prog inputs) 
  (for ([stmt prog]) 
    (match stmt 
      [(list out opcode in ...) 
       (define op (eval opcode)) 
       (define args (map load in)) 
       (store out (apply op args))])) 
  (load (last)))

A tiny example SDSL:

18

ROSETTE

interpret

(define bvmax 
 `((2 bvge 0 1) 
   (3 bvneg 2) 
   (4 bvxor 0 2) 
   (5 bvand 3 4) 
   (6 bvxor 1 5)))

0 -2
1 -1
2 0
3 0
4 -2
5 0
6 -1



def bvmax(r0, r1) : 
  r2 = bvge(r0, r1) 
  r3 = bvneg(r2) 
  r4 = bvxor(r0, r2) 
  r5 = bvand(r3, r4) 
  r6 = bvxor(r1, r5) 
  return r6 

> bvmax(-2, -1) 
-1 

(define (interpret prog inputs) 
  (make-registers prog inputs) 
  (for ([stmt prog]) 
    (match stmt 
      [(list out opcode in ...) 
       (define op (eval opcode)) 
       (define args (map load in)) 
       (store out (apply op args))])) 
  (load (last)))

A tiny example SDSL:

18

ROSETTE

interpret

(define bvmax 
 `((2 bvge 0 1) 
   (3 bvneg 2) 
   (4 bvxor 0 2) 
   (5 bvand 3 4) 
   (6 bvxor 1 5)))

0 -2
1 -1
2 0
3 0
4 -2
5 0
6 -1

(2 bvge 0 1)



def bvmax(r0, r1) : 
  r2 = bvge(r0, r1) 
  r3 = bvneg(r2) 
  r4 = bvxor(r0, r2) 
  r5 = bvand(r3, r4) 
  r6 = bvxor(r1, r5) 
  return r6 

> bvmax(-2, -1) 
-1 

(define (interpret prog inputs) 
  (make-registers prog inputs) 
  (for ([stmt prog]) 
    (match stmt 
      [(list out opcode in ...) 
       (define op (eval opcode)) 
       (define args (map load in)) 
       (store out (apply op args))])) 
  (load (last)))

A tiny example SDSL:

18

ROSETTE

interpret

(define bvmax 
 `((2 bvge 0 1) 
   (3 bvneg 2) 
   (4 bvxor 0 2) 
   (5 bvand 3 4) 
   (6 bvxor 1 5)))

0 -2
1 -1
2 0
3 0
4 -2
5 0
6 -1

(2 bvge 0 1)



def bvmax(r0, r1) : 
  r2 = bvge(r0, r1) 
  r3 = bvneg(r2) 
  r4 = bvxor(r0, r2) 
  r5 = bvand(r3, r4) 
  r6 = bvxor(r1, r5) 
  return r6 

> bvmax(-2, -1) 
-1 

(define (interpret prog inputs) 
  (make-registers prog inputs) 
  (for ([stmt prog]) 
    (match stmt 
      [(list out opcode in ...) 
       (define op (eval opcode)) 
       (define args (map load in)) 
       (store out (apply op args))])) 
  (load (last)))

A tiny example SDSL:

18

ROSETTE

interpret

(define bvmax 
 `((2 bvge 0 1) 
   (3 bvneg 2) 
   (4 bvxor 0 2) 
   (5 bvand 3 4) 
   (6 bvxor 1 5)))

0 -2
1 -1
2 0
3 0
4 -2
5 0
6 -1

(2 bvge 0 1)



def bvmax(r0, r1) : 
  r2 = bvge(r0, r1) 
  r3 = bvneg(r2) 
  r4 = bvxor(r0, r2) 
  r5 = bvand(r3, r4) 
  r6 = bvxor(r1, r5) 
  return r6 

> bvmax(-2, -1) 
-1 

(define (interpret prog inputs) 
  (make-registers prog inputs) 
  (for ([stmt prog]) 
    (match stmt 
      [(list out opcode in ...) 
       (define op (eval opcode)) 
       (define args (map load in)) 
       (store out (apply op args))])) 
  (load (last)))

A tiny example SDSL:

18

ROSETTE

interpret

(define bvmax 
 `((2 bvge 0 1) 
   (3 bvneg 2) 
   (4 bvxor 0 2) 
   (5 bvand 3 4) 
   (6 bvxor 1 5)))

0 -2
1 -1
2 0
3 0
4 -2
5 0
6 -1

(2 bvge 0 1)



def bvmax(r0, r1) : 
  r2 = bvge(r0, r1) 
  r3 = bvneg(r2) 
  r4 = bvxor(r0, r2) 
  r5 = bvand(r3, r4) 
  r6 = bvxor(r1, r5) 
  return r6 

> bvmax(-2, -1) 
-1 

(define (interpret prog inputs) 
  (make-registers prog inputs) 
  (for ([stmt prog]) 
    (match stmt 
      [(list out opcode in ...) 
       (define op (eval opcode)) 
       (define args (map load in)) 
       (store out (apply op args))])) 
  (load (last)))

A tiny example SDSL:

18

ROSETTE

interpret

(define bvmax 
 `((2 bvge 0 1) 
   (3 bvneg 2) 
   (4 bvxor 0 2) 
   (5 bvand 3 4) 
   (6 bvxor 1 5)))

0 -2
1 -1
2 0
3 0
4 -2
5 0
6 -1

(2 bvge 0 1)
(define bvmax 
 `((2 bvge 0 1) 
   (3 bvneg 2) 
   (4 bvxor 0 2) 
   (5 bvand 3 4) 
   (6 bvxor 1 5)))



def bvmax(r0, r1) : 
  r2 = bvge(r0, r1) 
  r3 = bvneg(r2) 
  r4 = bvxor(r0, r2) 
  r5 = bvand(r3, r4) 
  r6 = bvxor(r1, r5) 
  return r6 

> bvmax(-2, -1) 
-1 

(define (interpret prog inputs) 
  (make-registers prog inputs) 
  (for ([stmt prog]) 
    (match stmt 
      [(list out opcode in ...) 
       (define op (eval opcode)) 
       (define args (map load in)) 
       (store out (apply op args))])) 
  (load (last)))

A tiny example SDSL:

18

ROSETTE

interpret

(define bvmax 
 `((2 bvge 0 1) 
   (3 bvneg 2) 
   (4 bvxor 0 2) 
   (5 bvand 3 4) 
   (6 bvxor 1 5)))

0 -2
1 -1
2 0
3 0
4 -2
5 0
6 -1

(2 bvge 0 1)
(define bvmax 
 `((2 bvge 0 1) 
   (3 bvneg 2) 
   (4 bvxor 0 2) 
   (5 bvand 3 4) 
   (6 bvxor 1 5)))



def bvmax(r0, r1) : 
  r2 = bvge(r0, r1) 
  r3 = bvneg(r2) 
  r4 = bvxor(r0, r2) 
  r5 = bvand(r3, r4) 
  r6 = bvxor(r1, r5) 
  return r6 

> bvmax(-2, -1) 
-1 

A tiny example SDSL:

19

ROSETTE

(define bvmax 
 `((2 bvge 0 1) 
   (3 bvneg 2) 
   (4 bvxor 0 2) 
   (5 bvand 3 4) 
   (6 bvxor 1 5)))

‣ pattern matching
‣ dynamic evaluation
‣ first-class & 

higher-order 
procedures

‣ side effects

(define (interpret prog inputs) 
  (make-registers prog inputs) 
  (for ([stmt prog]) 
    (match stmt 
      [(list out opcode in ...) 
       (define op (eval opcode)) 
       (define args (map load in)) 
       (store out (apply op args))])) 
  (load (last)))



(define-symbolic n0 n1 integer?) 
(define inputs (list n0 n1)) 
(verify  
  (assert (= (interpret bvmax inputs)  
             (interpret max inputs))))

def bvmax(r0, r1) : 
  r2 = bvge(r0, r1) 
  r3 = bvneg(r2) 
  r4 = bvxor(r0, r2) 
  r5 = bvand(r3, r4) 
  r6 = bvxor(r1, r5) 
  return r6 

> verify(bvmax, max) 
(0, -2) 

> bvmax(0, -2) 
-1

A tiny example SDSL:

20

ROSETTE

query
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ROSETTE

Creates two fresh symbolic 
constants of type number 
and binds them to variables 
n0 and n1.

query
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ROSETTE

Symbolic values can be used 
just like concrete values of 
the same type.

query
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(verify expr) searches for a 
concrete interpretation of 
symbolic constants that 
causes expr to fail. 

query
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(define inputs (list 0 -2)) 
(debug [input-register?]  
  (assert (= (interpret bvmax inputs)  
             (interpret max inputs))))

def bvmax(r0, r1) : 
  r2 = bvge(r0, r1) 
  r3 = bvneg(r2) 
  r4 = bvxor(r0, r2) 
  r5 = bvand(r3, r4) 
  r6 = bvxor(r1, r5) 
  return r6 
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Merging performance for verification and synthesis 
queries in SynthCL, WebSynth and IFC programs
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SVM and solving time for verification and synthesis 
queries in SynthCL, WebSynth and IFC programs
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  DB003 Evaluation Board Reference for EVB001 

Copyright© 2010-2011 GreenArrays, Inc.  9/26/11 5 

2. Basic Architecture 
The purpose of this board is to facilitate evaluation and application prototyping using GreenArrays chips.  Because no 
single I/O complement would be suitable for all likely uses, this board has two GA144 chips:  One (called "Host") 
configured with sufficient I/O for intensive software development, and the other (called "Target") with as little I/O 
committed as possible so that pure, dedicated applications may be prototyped. 

 

2.1 Highlights 
Three FTDI USB to serial chips provide high speed (960 kBaud) communications for interactive software development 
and general-purpose host communications. 

An onboard switching regulator takes power from the USB connectors and/or a conventional "wall wart" power supply.  
Whichever of these is offering the highest voltage is used by the regulator. 

A barrier strip provides for connection of bench power supplies.  Each of the power buses of the two GA144 chips may 
selectively be run from external power in lieu of the onboard regulator, allowing you to run either chip from any 
desired VDD voltage and also facilitating current measurements. 

The Host chip is supplied with an SPI boot flash holding 1 MByte of nonvolatile data, an external SRAM with 1 MWord 
(2 MBytes) of memory; and may optionally use a dual voltage MMC card such as the 2 Gigabyte unit we have selected 
for in-house use.  These memory resources may be used in conjunction with Virtual Machines such as eForth and 
polyFORTH, or for direct use by your own F18 code. 

The Target chip is committed to as few I/O connections as possible.  The sources for its reset signal are fully 
configurable, and with the exception of a SERDES line connecting it with the Host chip, all other communications (two 
2-wire serial interfaces) may be disconnected so that the chip is fully isolated and thus all practical I/O is available for 
any desired use. 

Roughly half the board is prototyping area, mainly populated with a grid of plated through holes on 0.1 inch centers.  
By soldering suitable headers to this grid, you can provide for expansion using various prototyping fixtures such as 
those made by SchmartBoard.  The grid is intentionally large enough to support an 8- or 16-bit PC-104 socket. 

The periphery of the prototyping area is provided with hole patterns for many popular connectors, and there are six 8-
bit bidirectional level shifters for interfacing with external circuits that may not run on 1.8v.  In addition, one 1.8v 2-
input OR and three NANDs are available for use in external circuitry.  

 

Figure by Per Ljung 

Instructions/Second vs Power

~100x

GreenArrays GA144 Processor
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Manual program partitioning:  
break programs up into a pipeline 
with a few operations per core.

Drawing by Mangpo Phothilimthana

GreenArrays GA144 Processor

‣ Stack-based 18-bit architecture
‣ 32 instructions 
‣ 8 x 18 array of asynchronous cores
‣ No shared resources (cache, memory)
‣ Limited communication, neighbors only
‣ < 300 byte memory per core
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int a, b; 
int c = a * b;

a
b

1

*

2
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3

int@1 a, b; 
int@3 c = a *@2 b;

type-checking a program



Synthesizes placement of 
code and data onto cores, by 
type-checking a program 
sketch in a C-like DSL.

Chlorophyll:  ultra low-power computing

33

int a, b; 
int c = a * b;

a
b

1

*

2

c

3

int@1 a, b; 
int@3 c = a *@2 b;
int@?? a, b; 
int@?? c = a *@?? b;

sketch
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int a, b; 
int c = a * b;

a
b

1

*

2

c

3

int@1 a, b; 
int@3 c = a *@2 b;
int@?? a, b; 
int@?? c = a *@?? b;

Phitchaya Mangpo Phothilimthana

Built by a first-year 
grad in a few weeks
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int a, b; 
int c = a * b;

a
b

1

*

2

c

3

int@1 a, b; 
int@3 c = a *@2 b;
int@?? a, b; 
int@?? c = a *@?? b;

[Phothilimthana et al., 
PLDI’14]
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AS

AS AS

AS
AS

Autonomous systems 
communicate routing 
information by sending 
announcements via the Border 
Gateway Protocol.
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Configuring BGP is tricky

• distributed system
• low-level language
• no static analysis

AS

AS AS

AS
AS
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BGP configuration

policy violation

A BGP interpreter 
implemented in 
Rosette.

property

Bagpipe
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BGP configuration

policy violation

property

Bagpipe

Built by two grads in a 
few weeks

Konstantin Weitz and Doug Woos
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route leaks!

private 
announcements 
are not leaked

Bagpipe

Internet2

[Weitz et al., OOPSLA’16]



Clinical Neutron 
Therapy System 
(CNTS) at UW
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• 30 years of incident-free service. 
• Controlled by custom software, built 

by CNTS engineering staff. 
• Third generation of Therapy Control 

software built recently.



Beam, motors, etc.

Prescription Sensors

Therapy Control Software

Clinical Neutron 
Therapy System 
(CNTS) at UW
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Experimental Physics and  
Industrial Control System 
(EPICS) Dataflow Language

Beam, motors, etc.

Prescription Sensors

Therapy Control Software
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Beam, motors, etc.

Prescription Sensors

Therapy Control Software
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The Maximize Severity attribute is one of NMS 
(Non-Maximize Severity), MS (Maximize 
Severity), MSS (Maximize Status and Severity) or 
MSI (Maximize Severity if Invalid). It determines 
whether alarm severity is propagated across 
links. If the attribute is MSI only a severity of 
INVALID_ALARM is propagated; settings of MS 
or MSS propagate all alarms that are more 
severe than the record's current severity. For 
input links the alarm severity of the record 
referred to by the link is propagated to the 
record containing the link. For output links the 
alarm severity of the record containing the link 
is propagated to the record referred to by the 
link. If the severity is changed the associated 
alarm status is set to LINK_ALARM, except if 
the attribute is MSS when the alarm status will 
be copied along with the severity.

EPICS documentation / semantics
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bug report

Built by a 2nd year 
grad in a few days!

Calvin Loncaric

EPICS Verifier

safety property
EPICS 

program



Found a bug in the EPICS runtime! 
Therapy Control depends on this 
bug for correct operation.
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EPICS Verifier

safety property
Therapy 
Control 

Software

[Pernsteiner et al., CAV’16]





Thanks for a great quarter!


