Computer-Aided Reasoning for Software

Practical Applications of SAT

courses.cs.washington.edu/courses/cse507/17wi/

Emina Torlak

emina@cs.washington.edu

Today

Past 2 lectures

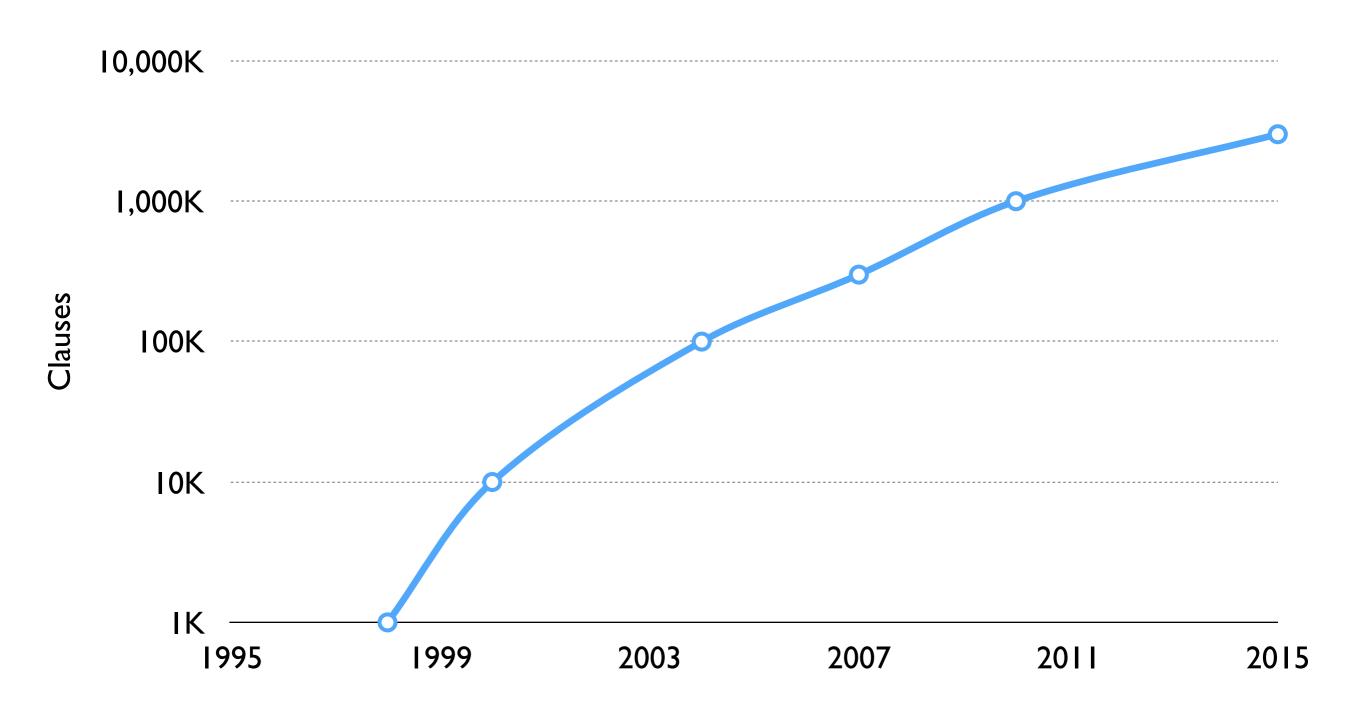
The theory and mechanics of SAT solving

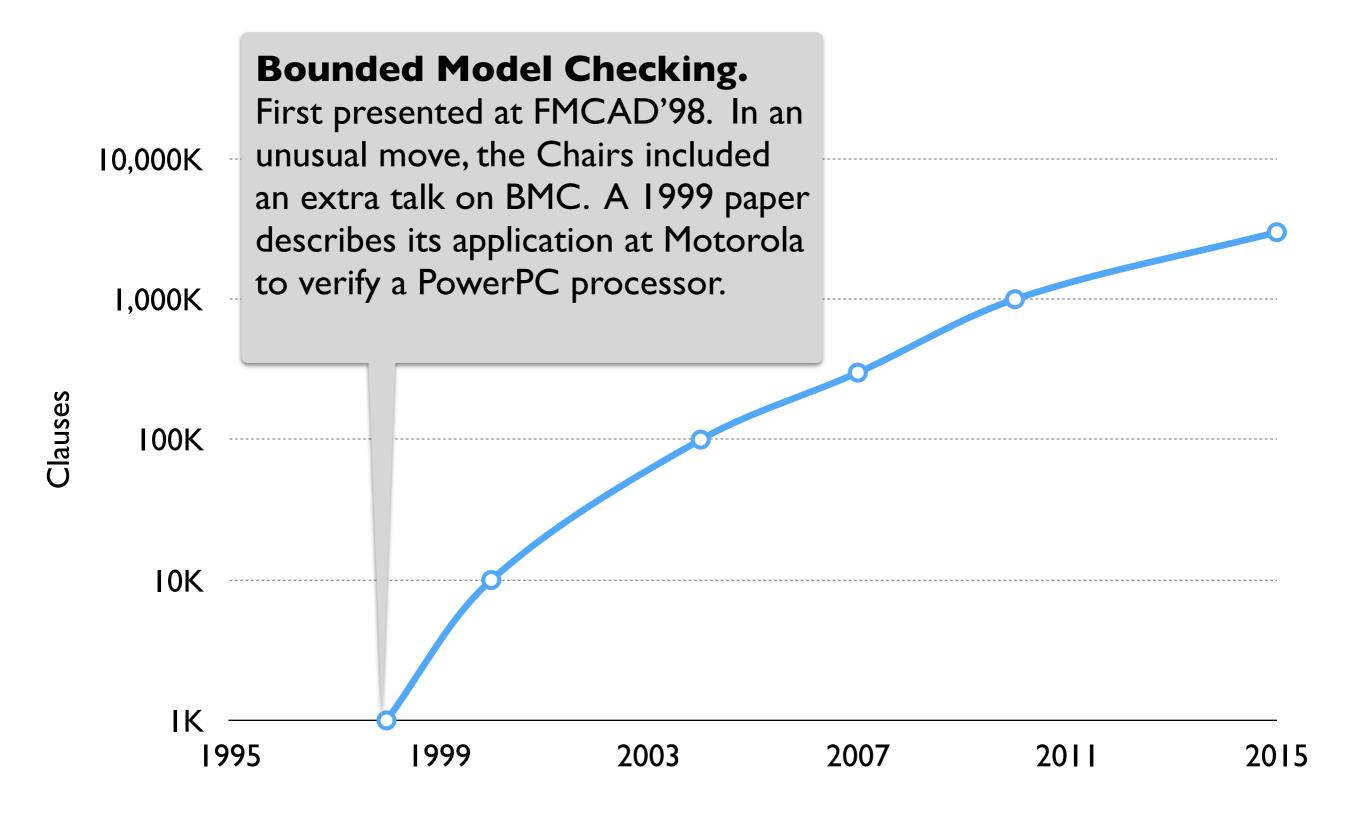
Today

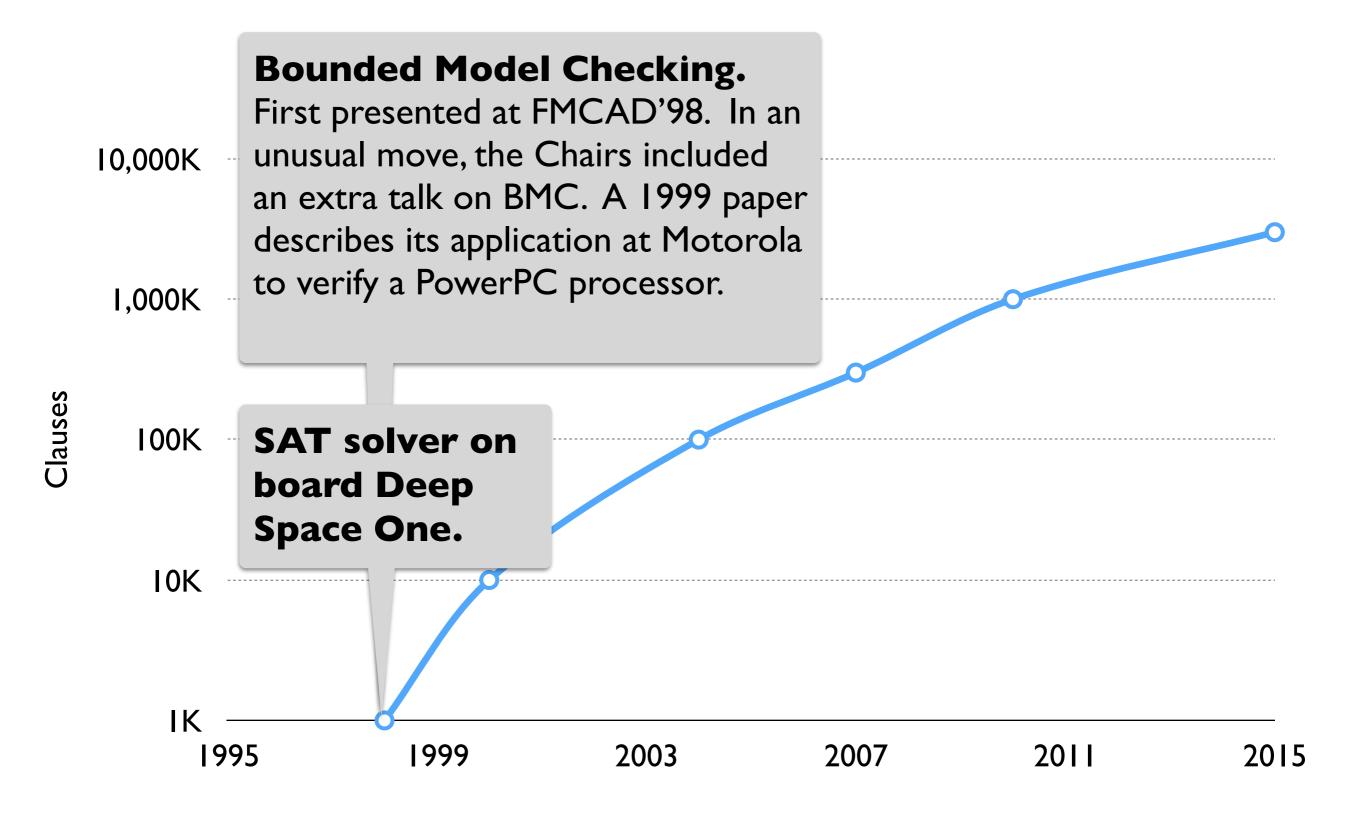
- Practical applications of SAT
- Variants of the SAT problem
- Motivating the next lecture on SMT

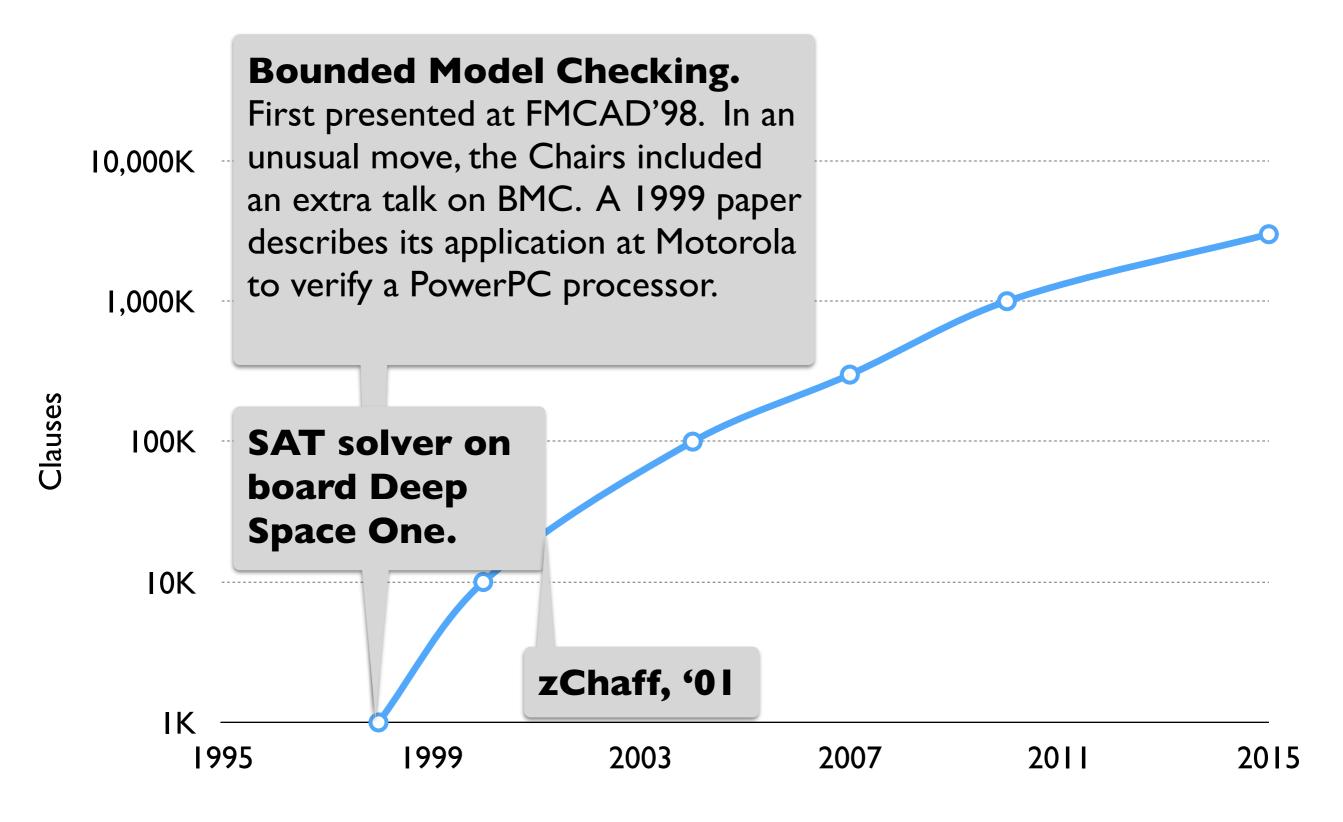
But first ...

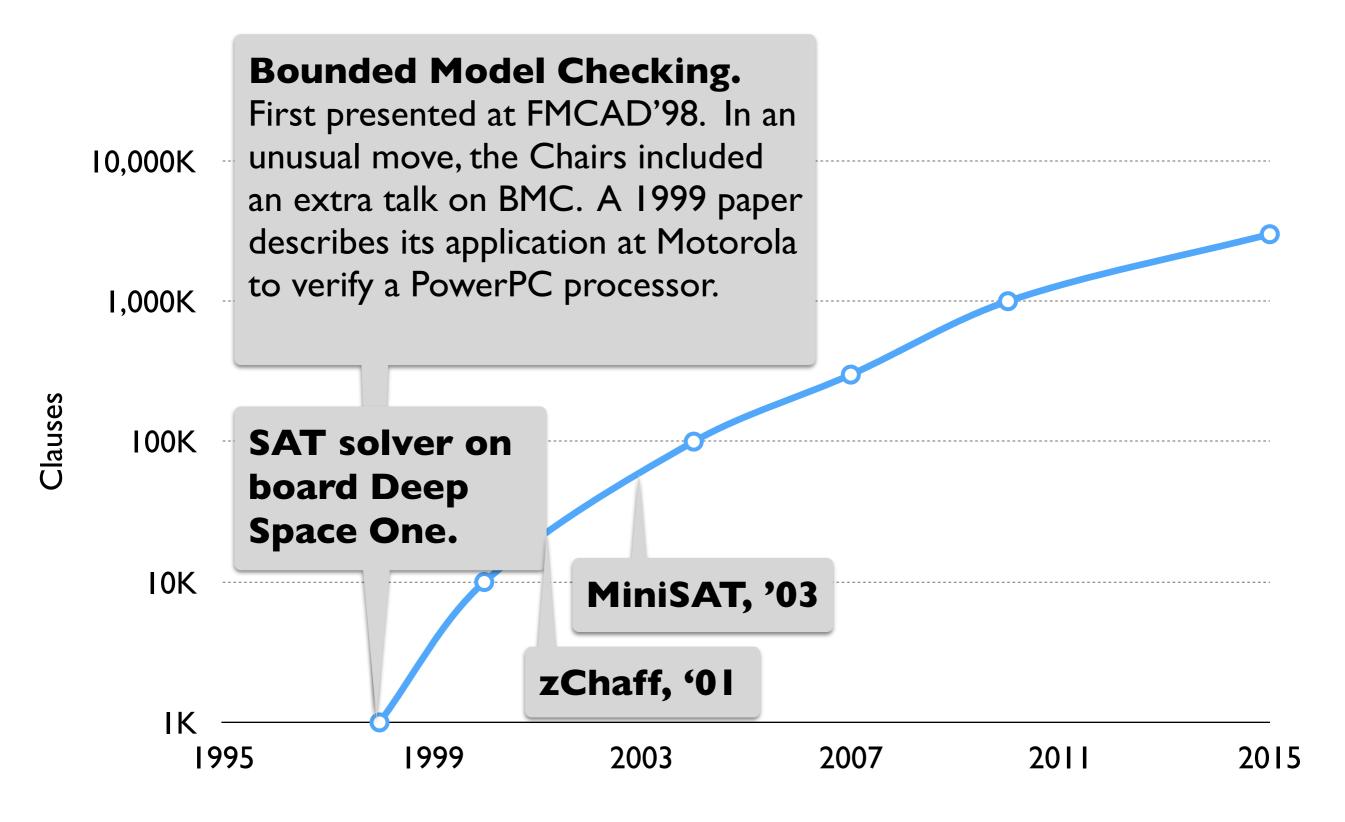
A brief Q&A session for Homework I

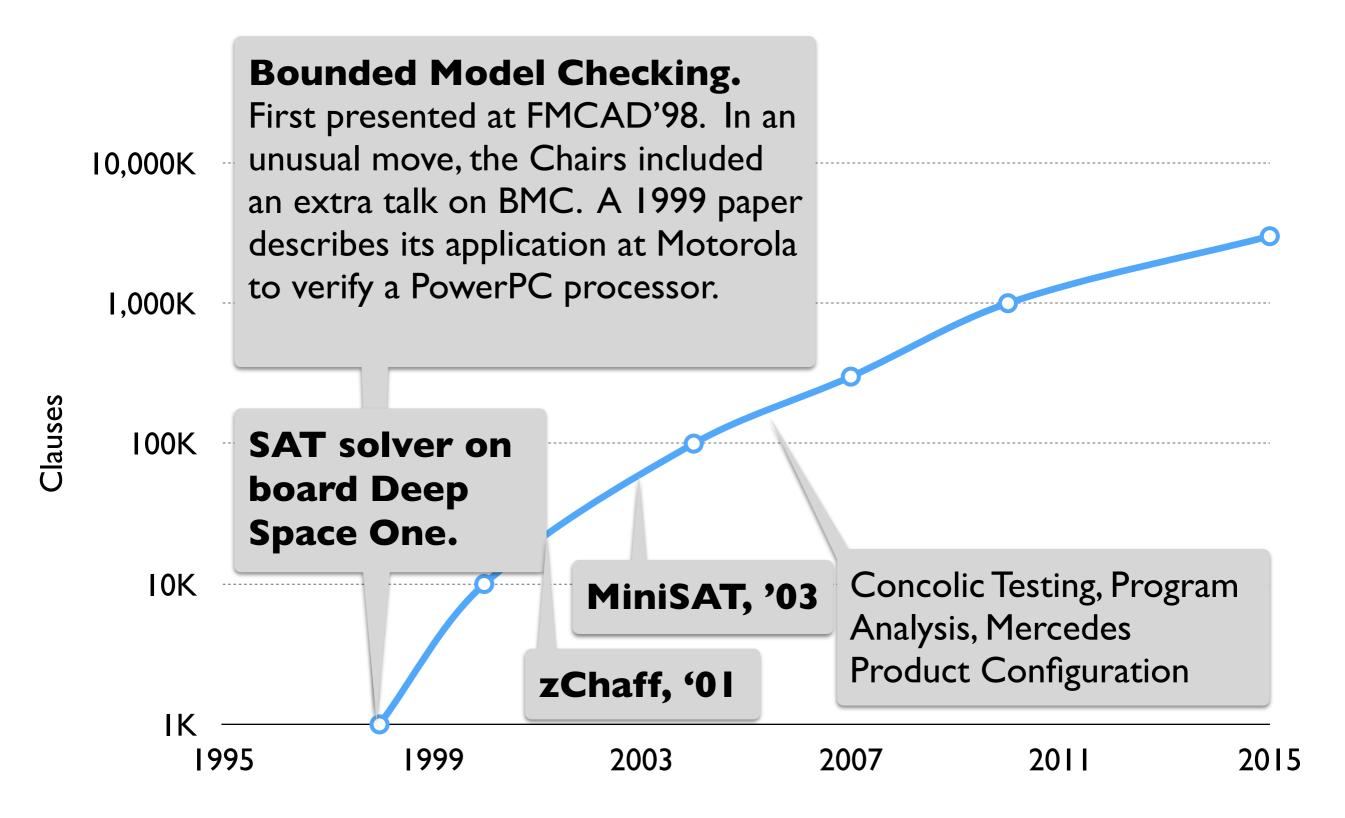


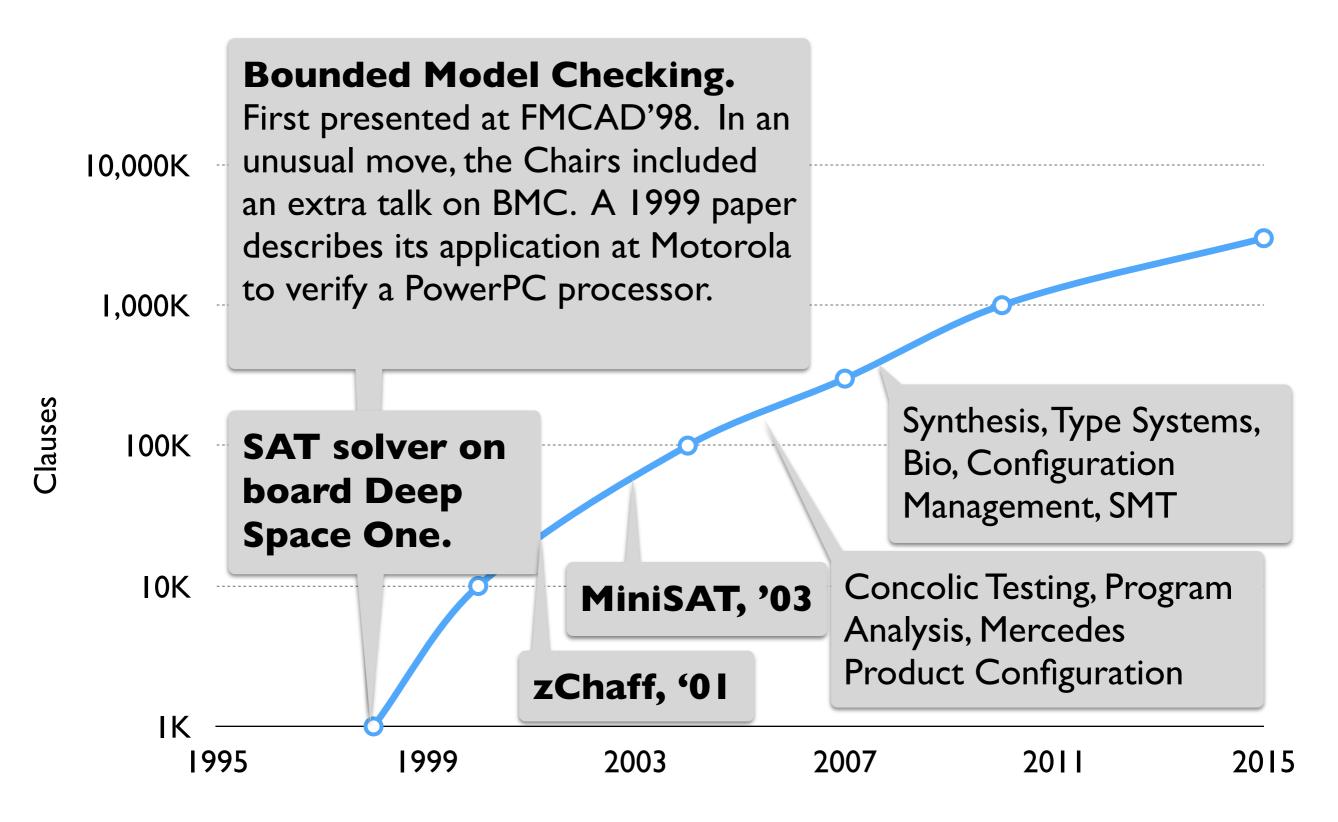










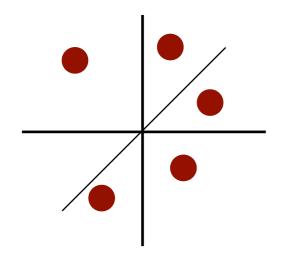


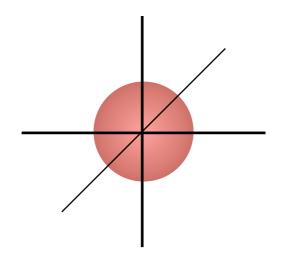
Bounded Model Checking (BMC) & Configuration Management

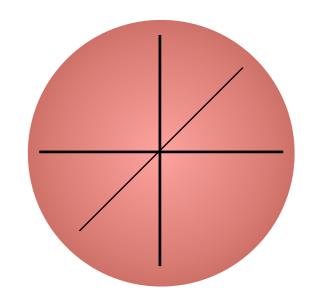
Given a system and a property, BMC checks if the property is satisfied by all executions of the system with $\leq k$ steps, on all inputs of size $\leq n$.

Given a system and a property, BMC checks if the property is satisfied by all executions of the system with $\leq k$ steps, on all inputs of size $\leq n$.

We will focus on **safety properties** (i.e., making sure a bad state, such as an assertion violation, is not reached).







Testing: checks a few executions of arbitrary size

BMC: checks all executions of size ≤k

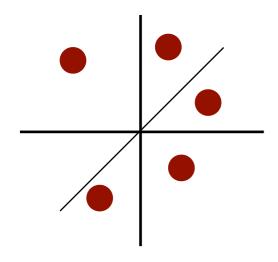
Verification: checks all executions of every size

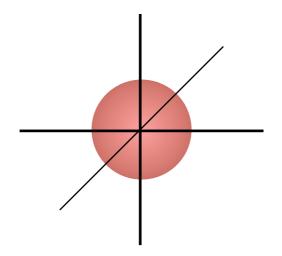
low confidence

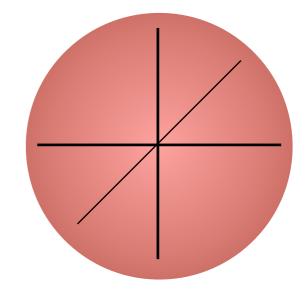
high confidence

low human labor

high human labor







Testing: checks a few executions of arbitrary size

BMC: checks all executions of size ≤k

Verification: checks all executions of every size

low confidence

low human labor

The **small scope hypothesis** says that
many bugs can be triggered
with small inputs and
executions.

high confidence

high human labor


```
int daysToYear(int days) {
  int year = 1980;
  while (days > 365) {
    if (isLeapYear(year)) {
      if (days > 366) {
        days -= 366;
        year += 1;
    } else {
      days -= 365;
      year += 1;
  return year;
```

The Zune Bug: on December 31, 2008, all first generation Zune players from Microsoft became unresponsive because of this code. What's wrong?

```
int daysToYear(int days) {
 int year = 1980;
 while (days > 365) {
   if (isLeapYear(year)) {
      if (days > 366) {
        days -= 366;
        year += 1;
    } else {
      days -= 365;
      year += 1;
  return year;
```

Infinite loop triggered on the last day of every leap year.

```
int daysToYear(int days) {
  int year = 1980;
  while (days > 365) {
    int oldDays = days;
    if (isLeapYear(year)) {
      if (days > 366) {
        days -= 366;
        year += 1;
    } else {
      days -= 365;
      year += 1;
    assert days < oldDays;</pre>
  return year;
```

A desired safety property: the value of the days variable decreases in every loop iteration.

```
int daysToYear(int days) {
  int year = 1980;
  while (days > 365) {
    int oldDays = days;
    if (isLeapYear(year)) {
      if (days > 366) {
        days -= 366;
        year += 1;
    } else {
      days -= 365;
      year += 1;
    assert days < oldDays;</pre>
  return year;
```

```
int daysToYear(int days) {
  int year = 1980;
  if (days > 365) {
    int oldDays = days;
    if (isLeapYear(year)) {
      if (days > 366) {
        days -= 366;
        year += 1;
    } else {
      days -= 365;
      year += 1;
    assert days < oldDays;</pre>
    assert days <= 365;</pre>
  return year;
```

Unwind all loops k times (e.g., k=1), and add an unwinding assertion after each.

```
int daysToYear(int days) {
  int year = 1980;
  if (days > 365) {
    int oldDays = days;
    if (isLeapYear(year)) {
      if (days > 366) {
        days -= 366;
        year += 1;
    } else {
      days -= 365;
      year += 1;
    assert days < oldDays;</pre>
    assert days <= 365;</pre>
  return year;
```

- Unwind all loops k times (e.g., k=1), and add an unwinding assertion after each.
- If a CEX violates a program assertion, we have found a buggy behavior of length ≤k.

```
int daysToYear(int days) {
  int year = 1980;
  if (days > 365) {
    int oldDays = days;
    if (isLeapYear(year)) {
      if (days > 366) {
        days -= 366;
        year += 1;
    } else {
      days -= 365;
      year += 1;
    assert days < oldDays;</pre>
    assert days <= 365;</pre>
  return year;
```

- Unwind all loops k times (e.g., k=1), and add an unwinding assertion after each.
- If a CEX violates a program assertion, we have found a buggy behavior of length ≤k.
- If a CEX violates an unwinding assertion, the program has no buggy behavior of length ≤k, but it may have a longer one.

```
int daysToYear(int days) {
  int year = 1980;
  if (days > 365) {
    int oldDays = days;
    if (isLeapYear(year)) {
      if (days > 366) {
        days -= 366;
        year += 1;
    } else {
      days -= 365;
      year += 1;
    assert days < oldDays;</pre>
    assert days <= 365;</pre>
  return year;
```

- Unwind all loops k times (e.g., k=1), and add an unwinding assertion after each.
- If a CEX violates a program assertion, we have found a buggy behavior of length ≤k.
- If a CEX violates an unwinding assertion, the program has no buggy behavior of length ≤k, but it may have a longer one.
- If there is no CEX, the program is correct for all k!

```
int daysToYear(int days) {
  int year = 1980;
  if (days > 365) {
    int oldDays = days;
    if (isLeapYear(year)) {
      if (days > 366) {
        days -= 366;
        year += 1;
    } else {
      days -= 365;
      year += 1;
    assert days < oldDays;</pre>
    assert days <= 365;</pre>
  return year;
```

Assume call to isLeapYear is inlined (replaced with the procedure body). We'll keep it for readability.

```
int daysToYear(int days) {
  int year = 1980;
  if (days > 365) {
    int oldDays = days;
    if (isLeapYear(year)) {
      if (days > 366) {
        days -= 366;
        year += 1;
    } else {
      days -= 365;
      year += 1;
    assert days < oldDays;</pre>
    assert days <= 365;</pre>
  return year;
```

```
int days;
int year = 1980;
if (days > 365) {
  int oldDays = days;
  if (isLeapYear(year)) {
    if (days > 366) {
      days = days - 366;
      year = year + 1;
  } else {
    days = days - 365;
    year = year + 1;
  assert days < oldDays;</pre>
  assert days <= 365;</pre>
return year;
```

```
int days;
int year = 1980;
if (days > 365) {
  int oldDays = days;
  if (isLeapYear(year)) {
    if (days > 366) {
      days = days - 366;
      year = year + 1;
  } else {
    days = days - 365;
    year = year + 1;
  assert days < oldDays;</pre>
  assert days <= 365;</pre>
return year;
```

Convert to **Static Single Assignment** (SSA) form:

- Replace each assignment to a variable v with a definition of a fresh variable v_i.
- Change uses of variables so that they refer to the correct definition (version).
- Make conditional dependences explicit with gated φ nodes.

```
int days0;
int year<sub>0</sub> = 1980;
if (days_0 > 365) {
  int oldDays_0 = days_0;
  if (isLeapYear(year<sub>0</sub>)) {
     if (days_0 > 366) {
       days_1 = days_0 - 366;
       year_1 = year_0 + 1;
  } else {
     days_3 = days_0 - 365;
     year_3 = year_0 + 1;
  assert days4 < oldDays0;</pre>
  assert days4 <= 365;</pre>
return year<sub>5</sub>;
```

Convert to **Static Single Assignment** (SSA) form:

- Replace each assignment to a variable v with a definition of a fresh variable v_i.
- Change uses of variables so that they refer to the correct definition (version).
- Make conditional dependences explicit with gated φ nodes.

```
int days0;
int year<sub>0</sub> = 1980;
boolean g_0 = (days_0 > 365);
int oldDays0 = days0;
boolean g_1 = isLeapYear(year_0);
boolean g_2 = days_0 > 366;
days_1 = days_0 - 366;
year_1 = year_0 + 1;
days_2 = \varphi(g_1 \&\& g_2, days_1, days_0);
year_2 = \phi(g_1 \&\& g_2, year_1, year_0);
days_3 = days_0 - 365;
year_3 = year_0 + 1;
days_4 = \varphi(g_1, days_2, days_3);
year_4 = \phi(g_1, year_2, year_3);
assert days4 < oldDays0;</pre>
assert days4 <= 365;</pre>
year_5 = \phi(g_0, year_4, year_0);
return year<sub>5</sub>;
```

Convert to **Static Single Assignment** (SSA) form:

- Replace each assignment to a variable v with a definition of a fresh variable v_i.
- Change uses of variables so that they refer to the correct definition (version).
- Make conditional dependences explicit with gated φ nodes.

```
int days<sub>0</sub>;
int year<sub>0</sub> = 1980;
if (days_0 > 365) {
  int oldDays0 = days0;
  if (isLeapYear(year<sub>0</sub>)) {
     if (days_0 > 366) {
       days_1 = days_0 - 366;
       year_1 = year_0 + 1;
  } else {
     days_3 = days_0 - 365;
     year_3 = year_0 + 1;
  assert days4 < oldDays0;</pre>
  assert days4 <= 365;</pre>
return year<sub>4</sub>;
```

```
int days0;
int year<sub>0</sub> = 1980;
boolean g_0 = (days_0 > 365);
int oldDays0 = days0;
boolean g_1 = isLeapYear(year_0);
boolean g_2 = days_0 > 366;
days_1 = days_0 - 366;
year_1 = year_0 + 1;
days_2 = \varphi(g_1 \&\& g_2, days_1, days_0);
year_2 = \phi(g_1 \&\& g_2, year_1, year_0);
days_3 = days_0 - 365;
year_3 = year_0 + 1;
days_4 = \varphi(g_1, days_2, days_3);
year_4 = \phi(g_1, year_2, year_3);
assert days4 < oldDays0;</pre>
assert days4 <= 365;</pre>
year_5 = \phi(g_0, year_4, year_0);
return year<sub>5</sub>;
```

BMC step 3 of 4: convert into equations

```
int days0;
int year<sub>0</sub> = 1980;
boolean g_0 = (days_0 > 365);
int oldDays_0 = days_0;
boolean g_1 = isLeapYear(year_0);
boolean g_2 = days_0 > 366;
days_1 = days_0 - 366;
year_1 = year_0 + 1;
days_2 = \varphi(g_1 \&\& g_2, days_1, days_0);
year_2 = \varphi(g_1 \&\& g_2, year_1, year_0);
days_3 = days_0 - 365;
year_3 = year_0 + 1;
days_4 = \varphi(g_1, days_2, days_3);
year_4 = \phi(g_1, year_2, year_3);
assert days4 < oldDays0;</pre>
assert days4 <= 365;</pre>
year_5 = \phi(g_0, year_4, year_0);
return year<sub>5</sub>;
```

BMC step 3 of 4: convert into equations

```
year_0 = 1980 \land
g_0 = (days_0 > 365) \land
oldDays_0 = days_0 \land
g_1 = isLeapYear(year_0) \land
g_2 = days_0 > 366 \land
days_1 = days_0 - 366 \wedge
year_1 = year_0 + 1 \wedge
days_2 = ite(g_1 \wedge g_2, days_1, days_0) \wedge
year_2 = ite(g_1 \land g_2, year_1, year_0) \land
days_3 = days_0 - 365 \wedge
year_3 = year_0 + 1 \wedge
days_4 = ite(g_1, days_2, days_3) \wedge
year_4 = ite(g_1, year_2, year_3) \land
year_5 = ite(g_0, year_4, year_0) \land
(\neg(days_4 < oldDays_0) \lor
 \neg(days_4 <= 365))
```

A solution to these equations is a sound **counterexample**: an

interpretation for all logical variables that satisfies the program semantics (for up to k unwindings) but violates at least one of the assertions.

$$year_1 = year_0 + 1$$

$$year_1 = year_0 + 1$$

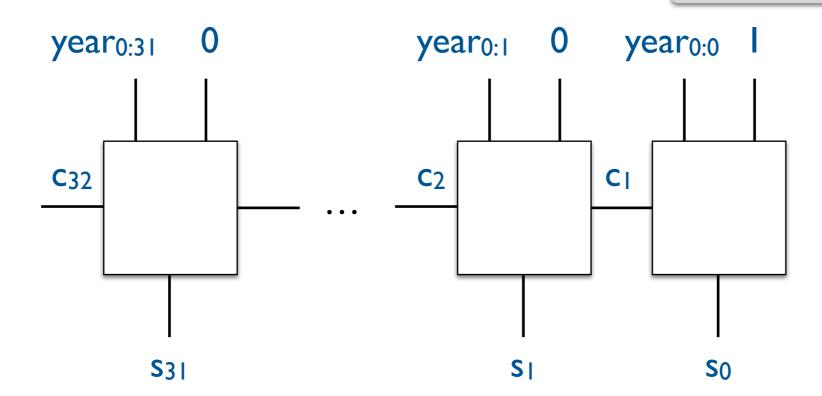
$$year_0 = 000 \dots 000$$

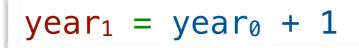
Represent numbers as arrays of bits, and create one propositional variable per bit for each number.



$$year_0 = 000 \dots 000$$

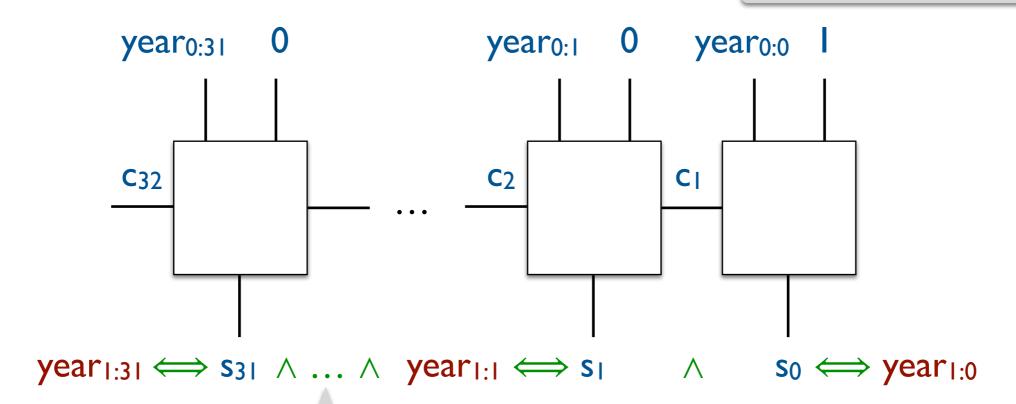
Represent numbers as arrays of bits, and create one propositional variable per bit for each number.





$$year_0 = 000 \dots 000$$

Represent numbers as arrays of bits, and create one propositional variable per bit for each number.



Introduce new clauses to constrain bits in year to match bits in the sum.

BMC counterexample for k=1

```
int daysToYear(int days) {
  int year = 1980;
  while (days > 365) {
    int oldDays = days;
    if (isLeapYear(year)) {
      if (days > 366) {
        days -= 366;
        year += 1;
    } else {
      days -= 365;
      year += 1;
    assert days < oldDays;</pre>
  return year;
```

days = **366**

Bounded Model Checking (BMC) & Configuration Management

Given a configuration, consisting of a set of components, their dependencies, and conflicts:

- Decide if a new component can be added to the configuration.
- Add the component while optimizing some linear function.
- If the component cannot be added, find a way to add it by removing as few conflicting components from the current configuration as possible.

Given a configuration, consisting of a set of components, their dependencies, and conflicts:

- Decide if a new component can be added to the configuration.
- Add the component while optimizing some linear function.
- If the component cannot be added, find a way to add it by removing as few conflicting components from the current configuration as possible.

SAT

Given a configuration, consisting of a set of components, their dependencies, and conflicts:

- Decide if a new component can be added to the configuration.
- Add the component while optimizing some linear function.
- If the component cannot be added, find a way to add it by removing as few conflicting components from the current configuration as possible.

SAT

Pseudo-Boolean Constraints

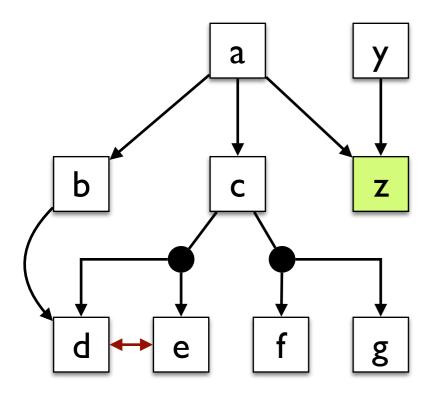
Given a configuration, consisting of a set of components, their dependencies, and conflicts:

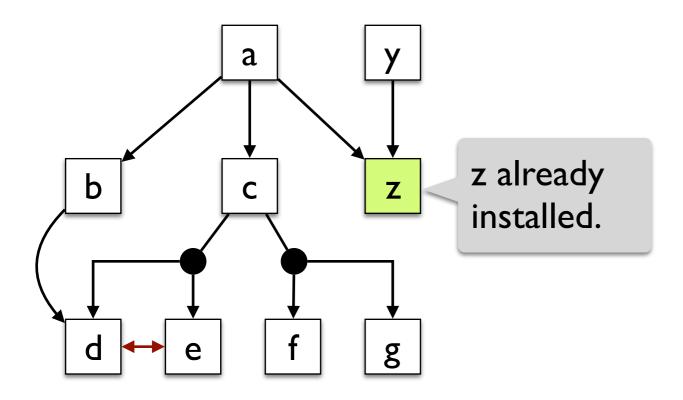
- Decide if a new component can be added to the configuration.
- Add the component while optimizing some linear function.
- If the component cannot be added, find a way to add it by removing as few conflicting components from the current configuration as possible.

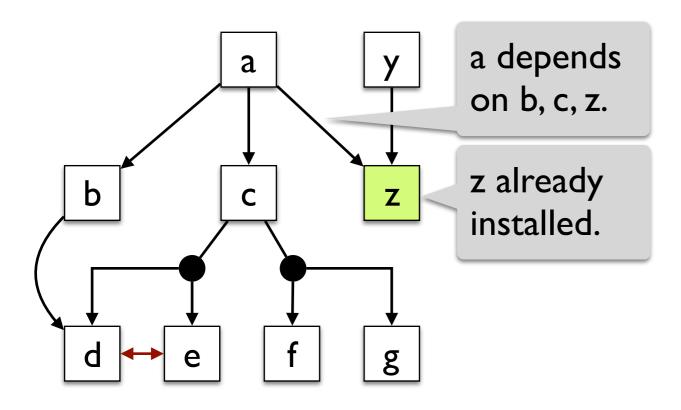
SAT

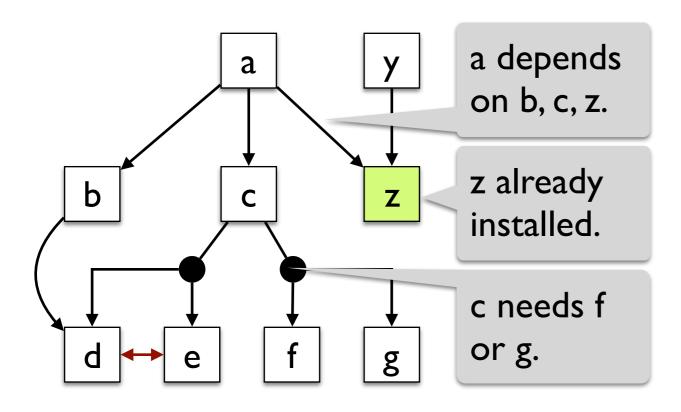
Pseudo-Boolean Constraints

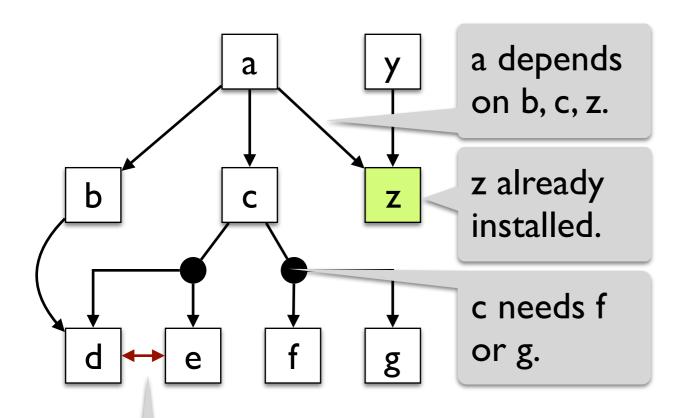
Partial (Weighted) MaxSAT

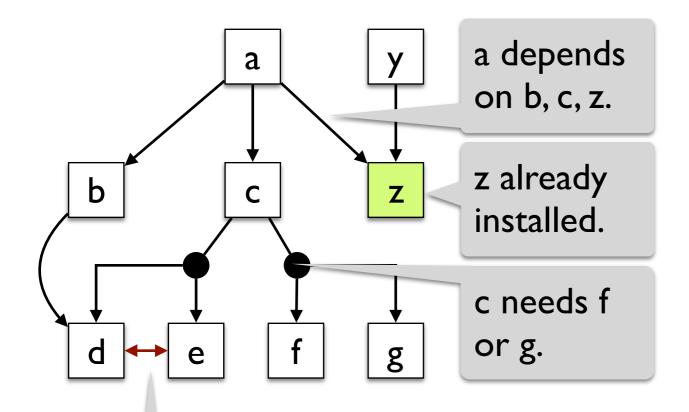




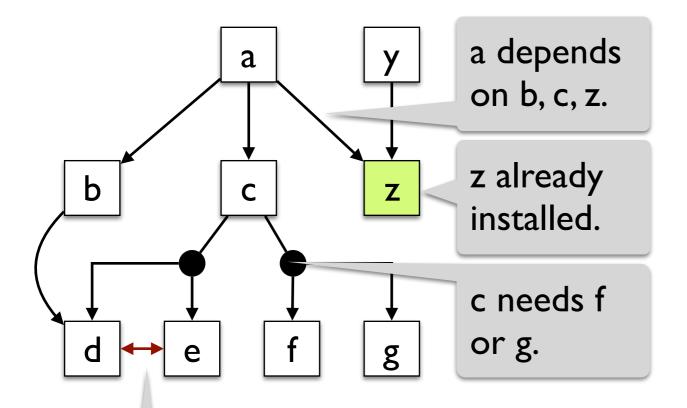




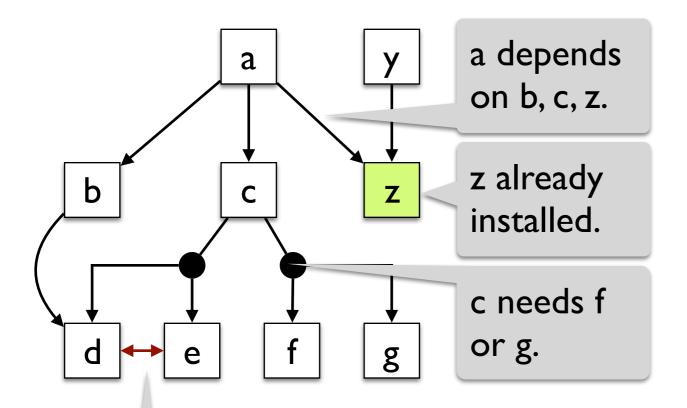




To install a, CNF constraints are:

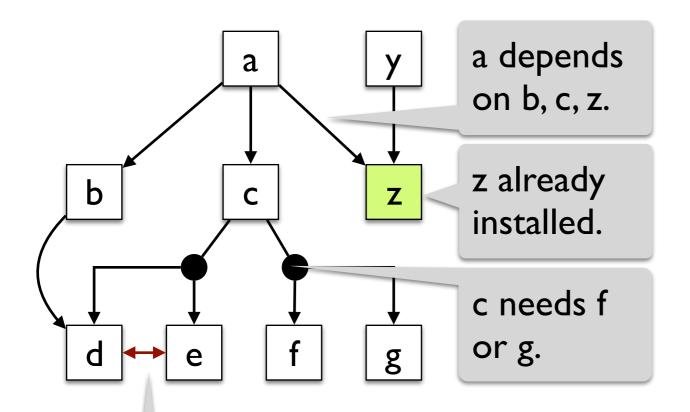


To install a, CNF constraints are: $(\neg a \lor b) \land (\neg a \lor c) \land (\neg a \lor z) \land$



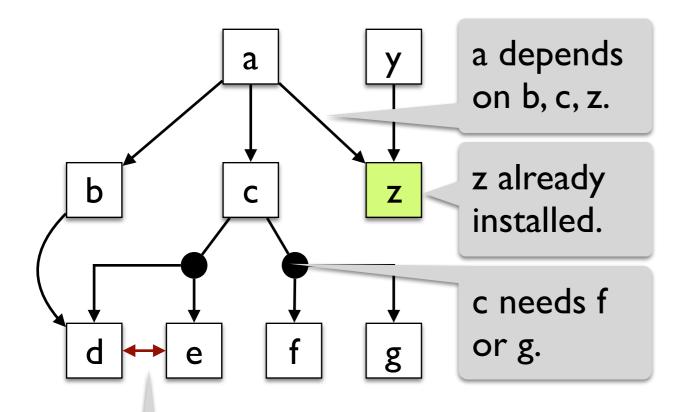
To install a, CNF constraints are:

$$(\neg a \lor b) \land (\neg a \lor c) \land (\neg a \lor z) \land (\neg b \lor d) \land$$

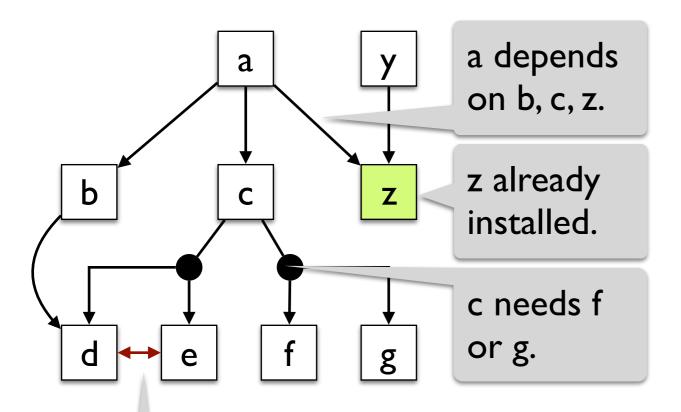


To install a, CNF constraints are:

$$\begin{array}{l} (\neg a \lor b) \land (\neg a \lor c) \land (\neg a \lor z) \land \\ (\neg b \lor d) \land \\ (\neg c \lor d \lor e) \land (\neg c \lor f \lor g) \land \end{array}$$

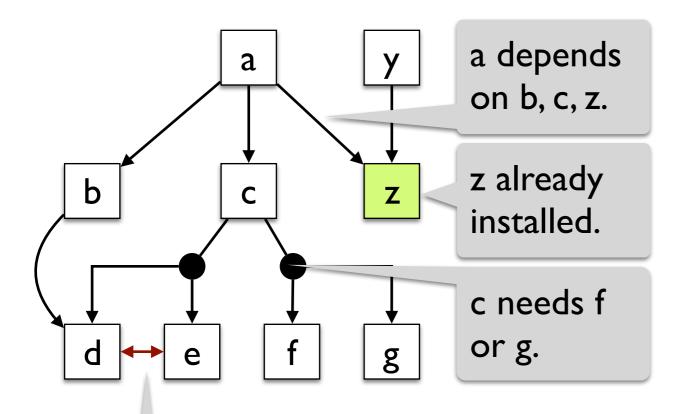


To install a, CNF constraints are:



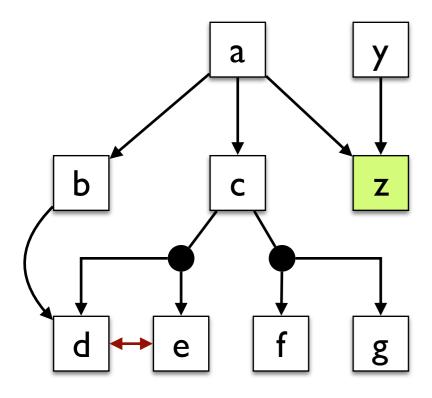
To install a, CNF constraints are:

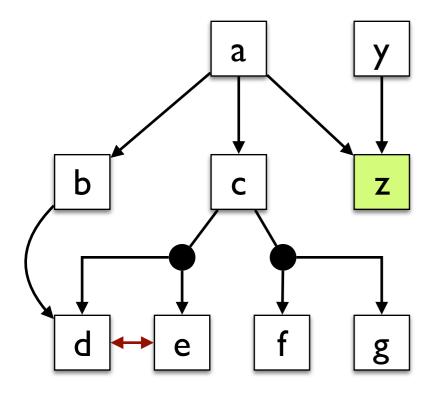
$$\begin{array}{l} (\neg a \lor b) \land (\neg a \lor c) \land (\neg a \lor z) \land \\ (\neg b \lor d) \land \\ (\neg c \lor d \lor e) \land (\neg c \lor f \lor g) \land \\ (\neg d \lor \neg e) \land \\ (\neg y \lor z) \land \end{array}$$



Conflict: d and e cannot both be installed.

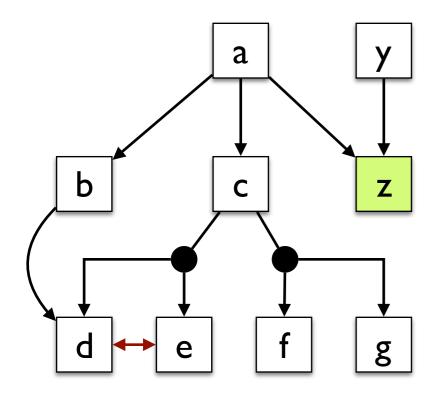
To install a, CNF constraints are: $(\neg a \lor b) \land (\neg a \lor c) \land (\neg a \lor z) \land (\neg b \lor d) \land \\ (\neg b \lor d) \land \\ (\neg c \lor d \lor e) \land (\neg c \lor f \lor g) \land \\ (\neg d \lor \neg e) \land \\ (\neg y \lor z) \land \\ a \land z$





Pseudo-boolean solvers accept a linear function to minimize, in addition to a (weighted) CNF.

Assume f and g are 5MB and 2MB each, and all other components are IMB. To install a, while minimizing total size, pseudo-boolean constraints are:

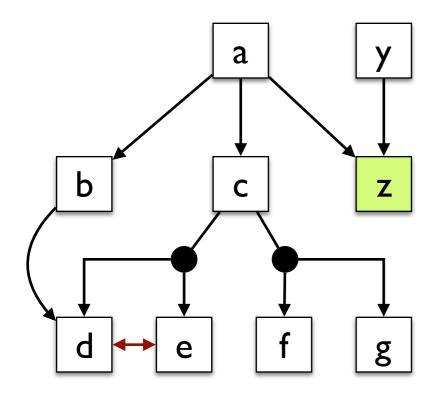


Assume f and g are 5MB and 2MB each, and all other components are IMB. To install a, while minimizing total size, pseudo-boolean constraints are:

min
$$c_1x_1 + ... + c_nx_n$$

 $a_{11}x_1 + ... + a_{1n}x_n \ge b_1$
...

 $a_{k1}x_1 + ... + a_{kn}x_n \ge b_k$



min
$$c_1x_1 + ... + c_nx_n$$

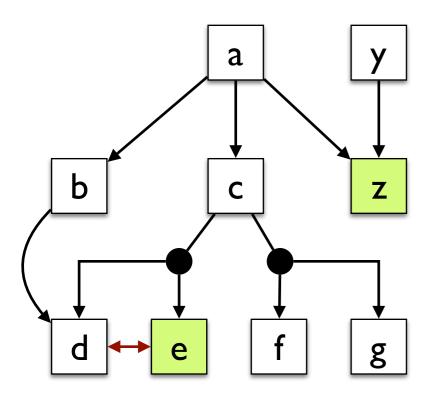
 $a_{11}x_1 + ... + a_{1n}x_n \ge b_1$
...
 $a_{k1}x_1 + ... + a_{kn}x_n \ge b_k$

Assume f and g are 5MB and 2MB each, and all other components are 1MB. To install a, while minimizing total size, pseudo-boolean constraints are:

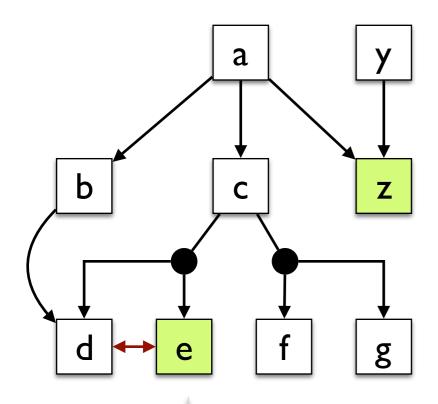
min
$$a + b + c + d + e + 5f + 2g + y + 0z$$

 $(-a + b \ge 0) \land (-a + c \ge 0) \land (-a + z \ge 0) \land$
 $(-b + d \ge 0) \land$
 $(-c + d + e \ge 0) \land (-c + f + g \ge 0) \land$
 $(-d + -e \ge -1) \land$
 $(-y + z \ge 0) \land$
 $(a \ge 1) \land (z \ge 1)$

Installation in the presence of conflicts

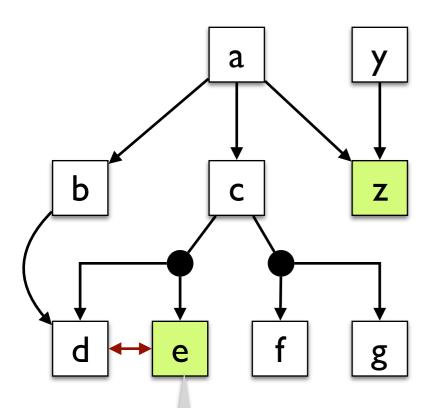


Installation in the presence of conflicts



a cannot be installed because it requires b, which requires d, which conflicts with e.

Installation in the presence of conflicts



To install a, while minimizing the number of removed components, Partial MaxSAT constraints are:

hard:
$$(\neg a \lor b) \land (\neg a \lor c) \land (\neg a \lor z) \land (\neg b \lor d) \land (\neg c \lor d \lor e) \land (\neg c \lor f \lor g) \land (\neg d \lor \neg e) \land (\neg y \lor z) \land a$$

soft: $e \wedge z$

Partial MaxSAT solver takes as input a set of **hard** clauses and a set of **soft** clauses, and it produces an assignment that satisfies all hard clauses and the greatest number of soft clauses.

Summary

Today

- SAT solvers have been used successfully in many applications & domains
- But reducing problems to SAT is a lot like programming in assembly ...
- We need higher-level logics!

Next lecture

• On to richer logics: introduction to Satisfiability Modulo Theories (SMT)