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Today

Past 2 lectures

* The theory and mechanics of SAT solving

Today

* Practical applications of SAT
* Variants of the SAT problem

- Motivating the next lecture on SMT

But first ...

« A brief Q&A session for Homework |
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A brief history of SAT solving and applications

Bounded Model Checking.
First presented at FMCAD’98. In an
10,000k  unusual move, the Chairs included
an extra talk on BMC. A 1999 paper
describes its application at Motorola

| 000K to verify a PowerPC processor.
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Bounded Model Checking (BMC) &
Configuration Management



Bounded Model Checking (in general)

Given a system and a property,
BMC checks if the property is
satisfied by all executions of

the system with <k steps, on
all inputs of size <n.




Bounded Model Checking (in general)

Given a system and a property,
BMC checks if the property is
satisfied by all executions of

the system with <k steps, on
all inputs of size <n.

We will focus on safety
properties (i.e., making
sure a bad state, such as an
assertion violation, is not
reached).
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Bounded Model Checking (in general)

o ‘. /
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Testing: checks a BMC: checks all Verification: checks
few executions executions of all executions of
of arbitrary size size <k every size

low confidence The small scope

J hypothesis says that
many bugs can be triggered
with small inputs and
executions.

high confidence

low human labor high human labor



BMC by example
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BMC by example

int daysToYear(int days) {
int year = 1980;
while (days > 365) { The Zune Bug: on
if (isLeapYear(year)) A{ December 31,2008, all first

if (days > 366) { generation Zune players from

Sggi ;: 2?6; Microsoft became unresponsive
Y ' because of this code. What’s
} else { Wrong?
days —= 365;
year += 1;

}
}

return year,

}

— ————



BMC by example

int daysToYear(int days) {
int year = 1980;
while (days > 365) {
if (isLeapYear(year)) {

if (days > 366) { Infinite loop triggered on the
days —= 366; last day of every leap year.
year += 1,;
I3
;} else {
days —= 365;
year += 1;
s

}

return year,

}

L —



BMC by example

int daysToYear(int days) {
int year = 1980;
while (days > 365) {
int oldDays = days;
if (isLeapYear(year)) {
if (days > 366) {

days —= 3606;
year += 1;
}
} else {
days —= 365;
year += 1; A desired safety property:
t the value of the days
assert days < oldDays; - variable decreases in every
; loop iteration.

return year;

¥

L ——



BMC step | of 4: finitize loops & inline calls

int daysToYear(int days) {
int year = 1980;
while (days > 365) {
int oldDays = days;
if (isLeapYear(year)) {
if (days > 366) {
days —= 3606;
year += 1;
I3
} else {
days —= 365;
year += 1,;
s

assert days < oldDays;

}

return year;

¥

—— ————



BMC step | of 4: finitize loops & inline calls

int daysToYear(int days) {

int year = 1980; » Unwind all loops k times (e.g.,
if_ (days > 365) { k=1),and add an unwinding
int oldDays = days; assertion after each.

if (isLeapYear(year)) {
if (days > 366) {

days —= 3606;
year += 1;
I3
} else {
days —= 365;
year += 1,;
}

assert days < oldDays;
assert days <= 365;

}

return year;

¥



BMC step | of 4: finitize loops & inline calls

int daysToYear(int days) {
int year = 1980;
if (days > 365) {
int oldDays = days;

if (isLeapYear(year)) {

if (days > 366) {

days —= 3606;
year += 1;
}
} else {
days —= 365;
year += 1,;
I3

assert days < oldDays;
assert days <= 365;

}

return year,

¥

— —

» Unwind all loops k times (e.g.,

k=1), and add an unwinding
assertion after each.

- If a CEX violates a program

assertion, we have found a
buggy behavior of length <k.
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int daysToYear(int days) {
int year = 1980;
if (days > 365) {
int oldDays = days;

if (isLeapYear(year)) {

if (days > 366) {
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assertion, the program has no

buggy behavior of length <k,
but it may have a longer one.



BMC step | of 4: finitize loops & inline calls

int daysToYear(int days) {
int year = 1980;
if (days > 365) {
int oldDays = days;

if (isLeapYear(year)) {

if (days > 366) {

days —= 3606;
year += 1;
}
} else {
days —= 365;
year += 1,;
I3

assert days < oldDays;
assert days <= 365;

}

return year,

¥

— —

» Unwind all loops k times (e.g.,

k=1), and add an unwinding
assertion after each.

- If a CEX violates a program

assertion, we have found a
buggy behavior of length <k.

- If a CEX violates an unwinding

assertion, the program has no

buggy behavior of length <k,
but it may have a longer one.

* If there is no CEX, the

program is correct for all k!



BMC step | of 4: finitize loops & inline calls

int daysToYear(int days) {
int year = 1980;
if (days > 365) { Assume call to isLeapYear is
int oldDays = days; inlined (replaced with the

if (isLeapYear(year)) - procedure body). We'll keep it
for readability.

if (days > 366) {

days —= 3606;
year += 1;
¥
} else {
days —= 365;
year += 1,;
¥

assert days < oldDays;
assert days <= 365;

}

return year,

}

— e —————



BMC step 2 of 4: eliminate side effects

int daysToYear(int days) {
int year = 1980;
if (days > 365) {
int oldDays = days;
if (isLeapYear(year)) {
if (days > 366) {
days —= 3606;
year += 1;
s
} else {
days —= 365;
year += 1,;
s
assert days < oldDays;
assert days <= 365;

}

return year;

}

L — e ————————.



BMC step 2 of 4: eliminate side effects

int days;
int year = 1980;
if (days > 365) {
int oldDays = days;
if (isLeapYear(year)) {
if (days > 366) {
days = days - 360;
year = year + 1;

s

} else {
days = days - 365;
year = year + 1;

}

assert days < oldDays;
assert days <= 365;

¥

return year;




BMC step 2 of 4: eliminate side effects

int days;

int year = 1980; . e
if (days > 365) { Convert to Static Single

int oldDays = days; Assignment (SSA) form:

1f (isLeapYear(year)) A * Replace each assignment to a

if (days > 366) { variable v with a definition of

Szgi ; S:;’i :_ 266 a fresh variable vi.

}  Change uses of variables so
r else E _ that they refer to the correct
days = days — 365; definition (version).
year = year + 1;
} » Make conditional
assert days < oldDays; dependences explicit with
assert days <= 365; gated (p nodes.

¥

return year,

e e



BMC step 2 of 4: eliminate side effects

int dayse;
int yeare = 1980;
if (dayse > 365) {
int oldDayse = dayse;

Convert to Static Single
Assignment (SSA) form:

1f (islLeapYear(yearo)) { + Replace each assignment to a
1fd;(3d2ys— Za36556)_ {366' variable v with a definition of
yeg ri _ yeg rg + 1 a fresh variable vi.
}  Change uses of variables so
+ else { that they refer to the correct
dayss - dayse — 363; definition (version).
years = yeare + 1;
} » Make conditional
assert dayss < oldDayso; dependences explicit with
assert dayss <= 365; gated (p nodes.

¥

return years,;

— e———



BMC step 2 of 4: eliminate side effects

int daysoe;

int yeare = 1980;

boolean go = (dayse > 365);
int oldDayse = daysSe;

boolean g1 = islLeapYear(years);
boolean g> = dayse > 360;

daysi = dayse — 300;

yeari = yeare + 1;

days2 = ¢(g1 && g2, daysi, dayse); -
year, = ¢(g1 && g2, yeari, yearo);
dayss = dayse — 365;

years = yearg + 1;

dayss = ¢(g1, daysz, dayss);

years = ¢(g1, yearz, years);

assert dayss < oldDaysoe;
assert dayss <= 365;

years = ¢(ge, years, yearg);
return years;

Convert to Static Single
Assignment (SSA) form:

Replace each assignment to a
variable v with a definition of
a fresh variable vi.

* Change uses of variables so

that they refer to the correct
definition (version).

Make conditional
dependences explicit with
gated p nodes.



BMC step 2 of 4: eliminate side effects

int daysoe;
int yearoe = 1980;
if (dayse > 365) {
int oldDayse = dayse;
if (isLeapYear(yearo)) {
if (dayse > 366) {
daysi: = dayse — 300;
yeari = yeare + 1;
s
} else {
dayss
years
I3
assert dayss < oldDayse;
assert dayss <= 365;

¥

return years,;

dayse — 365;
yeare + 1;

int dayse;

int yearo = 1980;

boolean go = (dayse > 365);

int oldDayse = dayse;

boolean g1 = isLeapYear(yearo);
boolean g> = dayse > 3006;

daysi: = dayse — 300;

yeari = yeare + 1;

daysz = ¢(g1 & g2, daysi, dayse);
year, = ¢(g1 && g2, yeari, yeare);
dayss = dayse — 365;

years = yearg + 1;

dayss = ¢(gi1, daysz, dayss);

years = ¢(g1, yearz, years);

assert dayss < oldDaysoe;
assert dayss <= 365;

years

¢(ge, years, yearo);

return years,




BMC step 3 of 4: convert into equations

int daysoe;

int yearoe = 1980;

boolean go = (dayse > 365);
int oldDayse = dayse;

boolean g1 = isLeapYear(yearo);
boolean g, = dayse > 30606;

daysi = dayse — 300;

yeari = yeare + 1;

days: = ¢(g1 && g2, daysi, dayse);
year, = ¢(g1 & g2, yeari, yearo);
dayss = dayse — 365;

years = yearg + 1;

dayss = ¢(g1, daysz, dayss);

years = ¢(g1, yearz, years);

assert dayss < oldDaysoe;
assert dayss <= 365;

years = ¢(ge, years, yeare);
return years;




BMC step 3 of 4: convert into equations

yeare = 1980 A

ge = (dayse > 365) A
oldDayse = dayse A

g1 = IslLeapYear(yeare) A
g2 = dayse > 366 A

A solution to these equations
is a sound

counterexample: an

days:i = dayse — 366 A . : :
year: = yearo + 1 A interpretation for all logical
days; = ite(g: A g2, daysi, dayse) A variables that sat.lsﬁes the
year; = ite(g: A g2, year:i, years) A program semantics (for up to
dayss = dayse — 365 A k unwindings) but violates at
years = yearp + 1 A least one of the assertions.
dayss = ite(gi, daysz, dayss3) A

years = ite(gi, yearz, years) A

years = ite(ge, years, yeare) A

(-(dayss < oldDayss) V
-~ (daysas <= 365))




BMC step 4 of 4: convert into CNF

yeari = yeare + 1

— S —



BMC step 4 of 4: convert into CNF

yeari = yeare + 1

——

Represent numbers as
arrays of bits, and create

_ one propositional variable
yearo 9399 ?9(0) per bit for each number.



BMC step 4 of 4: convert into CNF

yearo:3|
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yearis = yeare + 1

3130 29

yearo:|

yearo = 000 ... 000
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Represent numbers as
arrays of bits, and create
one propositional variable
per bit for each number.

SO



BMC step 4 of 4: convert into CNF

yearis = yeare + 1
Represent numbers as

arrays of bits, and create
one propositional variable

yearo = 000 ... 000

313029 21 0 per bit for each number.
yearo3r O yearo.r 0  yearoo
C32 C2 o
year|3| < s3I A ... A Yyear|) < S| A So < Yyeari.o

Introduce new clauses to
constrain bits in year| to
match bits in the sum.



BMC counterexample for k=1

int daysToYear(int days) { days = 366
int year = 1980;
while (days > 365) {
int oldDays = days;
if (isLeapYear(year)) {
if (days > 366) {
days —= 3606;
year += 1;
I3
} else {
days —= 365;
year += 1,;
s

assert days < oldDays;

}

return year;

¥

—— ————



Bounded Model Checking (BMC) &
Configuration Management



Configuration Management

Given a configuration, consisting of a
set of components, their dependencies,
and conflicts:

* Decide if a new component can be
added to the configuration.

* Add the component while optimizing
some linear function.

* If the component cannot be added,
find a way to add it by removing as
few conflicting components from the
current configuration as possible.
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Configuration Management

Given a configuration, consisting of a
set of components, their dependencies,

and conflicts:

* Decide if a new component can be
added to the configuration.

* Add the component while optimizing
some linear function.

* If the component cannot be added,
find a way to add it by removing as
few conflicting components from the
current configuration as possible.

SAT

Pseudo-Boolean Constraints

Partial (Weighted) MaxSAT



Deciding if a component can be installed
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Deciding if a component can be installed

a y a depends
/ l I on b, c, z.
|
b c 5 z already
installed.
l_T/ \? l c needs f
d < e f g or g.

Conflict: d and e cannot
both be installed.



Deciding if a component can be installed

a y a depends
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installed.
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Deciding if a component can be installed

a y a depends
| on b, c, z. , ,
l l To install a, CNF constraints are:
b c , | zalready (FaVb)A(maVc)A(maVz)A
installed. ((b Vv d) A
ﬂ \? [ ¢ needs (fcvdVe)A(wcVEVeg A
or (0d V e) A
d [« e f g & (Ay V 2) A
a N\Z

Conflict: d and e cannot
both be installed.



Optimal installation
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Optimal installation

d )4
b C Z
d [« e f g
Pseudo-boolean solvers
accept a linear function

to minimize, in addition
to a (weighted) CNF.

Assume f and g are 5SMB and 2MB each,
and all other components are |MB. To
install a, while minimizing total size,
pseudo-boolean constraints are:




Optimal installation

a Assume f and g are 5SMB and 2MB each,

Y
and all other components are |MB. To
/ l l install a, while minimizing total size,
b - pseudo-boolean constraints are:
d [« e f g
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Optimal installation

N
miT

mil‘l Ci1X] + oo + CnXn

anxy + ... +ainxs =bj

akIX| t ... + aknXn =bk

Assume f and g are 5SMB and 2MB each,
and all other components are |MB. To
install a, while minimizing total size,
pseudo-boolean constraints are:

mina+tb+c+d+e+5 +2g+y+0z

(-ka+b =0)A(-a+c=0)A(-a+z =0) A
(-b+d =0) A

(-c+d+e=0) A(c+f+g=0) A

(-d +-e=-1) A

(-y +z =0) A

@=l)A(z=])




Installation in the presence of conflicts
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Installation in the presence of conflicts

N
maT

a cannot be installed
because it requires b,
which requires d, which
conflicts with e.



Installation in the presence of conflicts

1 To install a, while minimizing the number

Y :
of removed components, Partial
/ l l MaxSAT constraints are:

b hard: (mraVb)A(maVvc) A(maVviz) A
d [« e

y
(tbvd)A
(rcvdve)A(cviVvg A
E:
Partial MaxSAT solver takes as input a set of

("dV-e)A(yVz)Aa
soft: e Az

hard clauses and a set of soft clauses, and

it produces an assignment that satisfies all

hard clauses and the greatest number of

soft clauses.

C




sSummary

Today
* SAT solvers have been used successfully in many applications & domains
* But reducing problems to SAT is a lot like programming in assembly ...

* We need higher-level logics!

NeXxt lecture

* On to richer logics: introduction to Satisfiability Modulo Theories (SMT)

20



