
CSE507
courses.cs.washington.edu/courses/cse507/17wi/

Computer-Aided Reasoning for Software

Emina Torlak
emina@cs.washington.edu

Practical Applications of SAT

http://courses.cs.washington.edu/courses/cse507/17wi/index.html

Today

2

Past 2 lectures
• The theory and mechanics of SAT solving

Today
• Practical applications of SAT

• Variants of the SAT problem

• Motivating the next lecture on SMT

But first …
• A brief Q&A session for Homework I to

pi
cs

A brief history of SAT solving and applications

3Based on a slide from Vijay Ganesh

C
la

us
es

1K

10K

100K

1,000K

10,000K

1995 1999 2003 2007 2011 2015

A brief history of SAT solving and applications

3Based on a slide from Vijay Ganesh

C
la

us
es

1K

10K

100K

1,000K

10,000K

1995 1999 2003 2007 2011 2015

Bounded Model Checking.
First presented at FMCAD’98. In an
unusual move, the Chairs included
an extra talk on BMC. A 1999 paper
describes its application at Motorola
to verify a PowerPC processor.

A brief history of SAT solving and applications

3Based on a slide from Vijay Ganesh

C
la

us
es

1K

10K

100K

1,000K

10,000K

1995 1999 2003 2007 2011 2015

Bounded Model Checking.
First presented at FMCAD’98. In an
unusual move, the Chairs included
an extra talk on BMC. A 1999 paper
describes its application at Motorola
to verify a PowerPC processor.

SAT solver on
board Deep
Space One.

A brief history of SAT solving and applications

3Based on a slide from Vijay Ganesh

C
la

us
es

1K

10K

100K

1,000K

10,000K

1995 1999 2003 2007 2011 2015

Bounded Model Checking.
First presented at FMCAD’98. In an
unusual move, the Chairs included
an extra talk on BMC. A 1999 paper
describes its application at Motorola
to verify a PowerPC processor.

SAT solver on
board Deep
Space One.

zChaff, ‘01

A brief history of SAT solving and applications

3Based on a slide from Vijay Ganesh

C
la

us
es

1K

10K

100K

1,000K

10,000K

1995 1999 2003 2007 2011 2015

Bounded Model Checking.
First presented at FMCAD’98. In an
unusual move, the Chairs included
an extra talk on BMC. A 1999 paper
describes its application at Motorola
to verify a PowerPC processor.

SAT solver on
board Deep
Space One.

zChaff, ‘01

MiniSAT, ’03

A brief history of SAT solving and applications

3Based on a slide from Vijay Ganesh

C
la

us
es

1K

10K

100K

1,000K

10,000K

1995 1999 2003 2007 2011 2015

Bounded Model Checking.
First presented at FMCAD’98. In an
unusual move, the Chairs included
an extra talk on BMC. A 1999 paper
describes its application at Motorola
to verify a PowerPC processor.

SAT solver on
board Deep
Space One.

zChaff, ‘01

MiniSAT, ’03 Concolic Testing, Program
Analysis, Mercedes
Product Configuration

A brief history of SAT solving and applications

3Based on a slide from Vijay Ganesh

C
la

us
es

1K

10K

100K

1,000K

10,000K

1995 1999 2003 2007 2011 2015

Bounded Model Checking.
First presented at FMCAD’98. In an
unusual move, the Chairs included
an extra talk on BMC. A 1999 paper
describes its application at Motorola
to verify a PowerPC processor.

SAT solver on
board Deep
Space One.

zChaff, ‘01

MiniSAT, ’03 Concolic Testing, Program
Analysis, Mercedes
Product Configuration

Synthesis, Type Systems,
Bio, Configuration
Management, SMT

todayBounded Model Checking (BMC) &
Configuration Management

Bounded Model Checking (in general)

5

Given a system and a property,
BMC checks if the property is
satisfied by all executions of
the system with ≤k steps, on
all inputs of size ≤n.

Bounded Model Checking (in general)

5

Given a system and a property,
BMC checks if the property is
satisfied by all executions of
the system with ≤k steps, on
all inputs of size ≤n.

We will focus on safety
properties (i.e., making
sure a bad state, such as an
assertion violation, is not
reached).

Bounded Model Checking (in general)

6

Testing: checks a
few executions
of arbitrary size

Verification: checks
all executions of
every size

BMC: checks all
executions of
size ≤k

low human labor high human labor

low confidence high confidence

Bounded Model Checking (in general)

6

Testing: checks a
few executions
of arbitrary size

Verification: checks
all executions of
every size

BMC: checks all
executions of
size ≤k

low human labor high human labor

low confidence high confidenceThe small scope
hypothesis says that
many bugs can be triggered
with small inputs and
executions.

BMC by example

7

int daysToYear(int days) {
 int year = 1980;
 while (days > 365) {
 if (isLeapYear(year)) {
 if (days > 366) {
 days -= 366;
 year += 1;
 }
 } else {
 days -= 365;
 year += 1;
 }
 }
 return year;
}

BMC by example

8

The Zune Bug: on
December 31, 2008, all first
generation Zune players from
Microsoft became unresponsive
because of this code. What’s
wrong?

int daysToYear(int days) {
 int year = 1980;
 while (days > 365) {
 if (isLeapYear(year)) {
 if (days > 366) {
 days -= 366;
 year += 1;
 }
 } else {
 days -= 365;
 year += 1;
 }
 }
 return year;
}

BMC by example

8

Infinite loop triggered on the
last day of every leap year.

int daysToYear(int days) {
 int year = 1980;
 while (days > 365) {
 int oldDays = days;
 if (isLeapYear(year)) {
 if (days > 366) {
 days -= 366;
 year += 1;
 }
 } else {
 days -= 365;
 year += 1;
 }
 assert days < oldDays;
 }
 return year;
}

BMC by example

8

A desired safety property:
the value of the days
variable decreases in every
loop iteration.

int daysToYear(int days) {
 int year = 1980;
 while (days > 365) {
 int oldDays = days;
 if (isLeapYear(year)) {
 if (days > 366) {
 days -= 366;
 year += 1;
 }
 } else {
 days -= 365;
 year += 1;
 }
 assert days < oldDays;
 }
 return year;
}

BMC step 1 of 4: finitize loops & inline calls

9

int daysToYear(int days) {
 int year = 1980;
 if (days > 365) {
 int oldDays = days;
 if (isLeapYear(year)) {
 if (days > 366) {
 days -= 366;
 year += 1;
 }
 } else {
 days -= 365;
 year += 1;
 }
 assert days < oldDays;
 assert days <= 365;
 }
 return year;
}

BMC step 1 of 4: finitize loops & inline calls

9

• Unwind all loops k times (e.g.,
k=1), and add an unwinding
assertion after each.

int daysToYear(int days) {
 int year = 1980;
 if (days > 365) {
 int oldDays = days;
 if (isLeapYear(year)) {
 if (days > 366) {
 days -= 366;
 year += 1;
 }
 } else {
 days -= 365;
 year += 1;
 }
 assert days < oldDays;
 assert days <= 365;
 }
 return year;
}

BMC step 1 of 4: finitize loops & inline calls

9

• Unwind all loops k times (e.g.,
k=1), and add an unwinding
assertion after each.

• If a CEX violates a program
assertion, we have found a
buggy behavior of length ≤k.

int daysToYear(int days) {
 int year = 1980;
 if (days > 365) {
 int oldDays = days;
 if (isLeapYear(year)) {
 if (days > 366) {
 days -= 366;
 year += 1;
 }
 } else {
 days -= 365;
 year += 1;
 }
 assert days < oldDays;
 assert days <= 365;
 }
 return year;
}

BMC step 1 of 4: finitize loops & inline calls

9

• Unwind all loops k times (e.g.,
k=1), and add an unwinding
assertion after each.

• If a CEX violates a program
assertion, we have found a
buggy behavior of length ≤k.

• If a CEX violates an unwinding
assertion, the program has no
buggy behavior of length ≤k,
but it may have a longer one.

int daysToYear(int days) {
 int year = 1980;
 if (days > 365) {
 int oldDays = days;
 if (isLeapYear(year)) {
 if (days > 366) {
 days -= 366;
 year += 1;
 }
 } else {
 days -= 365;
 year += 1;
 }
 assert days < oldDays;
 assert days <= 365;
 }
 return year;
}

BMC step 1 of 4: finitize loops & inline calls

9

• Unwind all loops k times (e.g.,
k=1), and add an unwinding
assertion after each.

• If a CEX violates a program
assertion, we have found a
buggy behavior of length ≤k.

• If a CEX violates an unwinding
assertion, the program has no
buggy behavior of length ≤k,
but it may have a longer one.

• If there is no CEX, the
program is correct for all k!

int daysToYear(int days) {
 int year = 1980;
 if (days > 365) {
 int oldDays = days;
 if (isLeapYear(year)) {
 if (days > 366) {
 days -= 366;
 year += 1;
 }
 } else {
 days -= 365;
 year += 1;
 }
 assert days < oldDays;
 assert days <= 365;
 }
 return year;
}

BMC step 1 of 4: finitize loops & inline calls

9

Assume call to isLeapYear is
inlined (replaced with the
procedure body). We’ll keep it
for readability.

BMC step 2 of 4: eliminate side effects

10

int daysToYear(int days) {
 int year = 1980;
 if (days > 365) {
 int oldDays = days;
 if (isLeapYear(year)) {
 if (days > 366) {
 days -= 366;
 year += 1;
 }
 } else {
 days -= 365;
 year += 1;
 }
 assert days < oldDays;
 assert days <= 365;
 }
 return year;
}

BMC step 2 of 4: eliminate side effects

11

int days;
int year = 1980;
if (days > 365) {
 int oldDays = days;
 if (isLeapYear(year)) {
 if (days > 366) {
 days = days - 366;
 year = year + 1;
 }
 } else {
 days = days - 365;
 year = year + 1;
 }
 assert days < oldDays;
 assert days <= 365;
}
return year;

BMC step 2 of 4: eliminate side effects

11

int days;
int year = 1980;
if (days > 365) {
 int oldDays = days;
 if (isLeapYear(year)) {
 if (days > 366) {
 days = days - 366;
 year = year + 1;
 }
 } else {
 days = days - 365;
 year = year + 1;
 }
 assert days < oldDays;
 assert days <= 365;
}
return year;

Convert to Static Single
Assignment (SSA) form:

• Replace each assignment to a
variable v with a definition of
a fresh variable vi.

• Change uses of variables so
that they refer to the correct
definition (version).

• Make conditional
dependences explicit with
gated φ nodes.

BMC step 2 of 4: eliminate side effects

11

int days0;
int year0 = 1980;
if (days0 > 365) {
 int oldDays0 = days0;
 if (isLeapYear(year0)) {
 if (days0 > 366) {
 days1 = days0 - 366;
 year1 = year0 + 1;
 }
 } else {
 days3 = days0 - 365;
 year3 = year0 + 1;
 }
 assert days4 < oldDays0;
 assert days4 <= 365;
}
return year5;

Convert to Static Single
Assignment (SSA) form:

• Replace each assignment to a
variable v with a definition of
a fresh variable vi.

• Change uses of variables so
that they refer to the correct
definition (version).

• Make conditional
dependences explicit with
gated φ nodes.

BMC step 2 of 4: eliminate side effects

11

int days0;
int year0 = 1980;
boolean g0 = (days0 > 365);
int oldDays0 = days0;
boolean g1 = isLeapYear(year0);
boolean g2 = days0 > 366;
days1 = days0 - 366;
year1 = year0 + 1;
days2 = φ(g1 && g2, days1, days0);
year2 = φ(g1 && g2, year1, year0);
days3 = days0 - 365;
year3 = year0 + 1;
days4 = φ(g1, days2, days3);
year4 = φ(g1, year2, year3);
assert days4 < oldDays0;
assert days4 <= 365;
year5 = φ(g0, year4, year0);
return year5;

Convert to Static Single
Assignment (SSA) form:

• Replace each assignment to a
variable v with a definition of
a fresh variable vi.

• Change uses of variables so
that they refer to the correct
definition (version).

• Make conditional
dependences explicit with
gated φ nodes.

int days0;
int year0 = 1980;
if (days0 > 365) {
 int oldDays0 = days0;
 if (isLeapYear(year0)) {
 if (days0 > 366) {
 days1 = days0 - 366;
 year1 = year0 + 1;
 }
 } else {
 days3 = days0 - 365;
 year3 = year0 + 1;
 }
 assert days4 < oldDays0;
 assert days4 <= 365;
}
return year4;

BMC step 2 of 4: eliminate side effects

11

int days0;
int year0 = 1980;
boolean g0 = (days0 > 365);
int oldDays0 = days0;
boolean g1 = isLeapYear(year0);
boolean g2 = days0 > 366;
days1 = days0 - 366;
year1 = year0 + 1;
days2 = φ(g1 && g2, days1, days0);
year2 = φ(g1 && g2, year1, year0);
days3 = days0 - 365;
year3 = year0 + 1;
days4 = φ(g1, days2, days3);
year4 = φ(g1, year2, year3);
assert days4 < oldDays0;
assert days4 <= 365;
year5 = φ(g0, year4, year0);
return year5;

int days0;
int year0 = 1980;
boolean g0 = (days0 > 365);
int oldDays0 = days0;
boolean g1 = isLeapYear(year0);
boolean g2 = days0 > 366;
days1 = days0 - 366;
year1 = year0 + 1;
days2 = φ(g1 && g2, days1, days0);
year2 = φ(g1 && g2, year1, year0);
days3 = days0 - 365;
year3 = year0 + 1;
days4 = φ(g1, days2, days3);
year4 = φ(g1, year2, year3);
assert days4 < oldDays0;
assert days4 <= 365;
year5 = φ(g0, year4, year0);
return year5;

BMC step 3 of 4: convert into equations

12

year0 = 1980 ⋀
g0 = (days0 > 365) ⋀
oldDays0 = days0 ⋀
g1 = isLeapYear(year0) ⋀
g2 = days0 > 366 ⋀
days1 = days0 - 366 ⋀
year1 = year0 + 1 ⋀
days2 = ite(g1 ⋀ g2, days1, days0) ⋀
year2 = ite(g1 ⋀ g2, year1, year0) ⋀
days3 = days0 - 365 ⋀
year3 = year0 + 1 ⋀
days4 = ite(g1, days2, days3) ⋀
year4 = ite(g1, year2, year3) ⋀
year5 = ite(g0, year4, year0) ⋀
(¬(days4 < oldDays0) ⋁
 ¬(days4 <= 365))

BMC step 3 of 4: convert into equations

12

A solution to these equations
is a sound
counterexample: an
interpretation for all logical
variables that satisfies the
program semantics (for up to
k unwindings) but violates at
least one of the assertions.

BMC step 4 of 4: convert into CNF

13

year1 = year0 + 1

BMC step 4 of 4: convert into CNF

13

year1 = year0 + 1

year0 = 000 … 000

Represent numbers as
arrays of bits, and create
one propositional variable
per bit for each number.31 30 29 2 1 0

BMC step 4 of 4: convert into CNF

13

…

s31 s1 s0

c1c2c32

year0:31 year0:1 year0:00 0 1

year1 = year0 + 1

year0 = 000 … 000

Represent numbers as
arrays of bits, and create
one propositional variable
per bit for each number.31 30 29 2 1 0

BMC step 4 of 4: convert into CNF

13

…

s31 s1 s0

c1c2c32

year0:31 year0:1 year0:00 0 1

year1:31 ⟺ s31 year1:1 ⟺ s1 s0 ⟺ year1:0

year1 = year0 + 1

⋀ … ⋀ ⋀

year0 = 000 … 000

Represent numbers as
arrays of bits, and create
one propositional variable
per bit for each number.31 30 29 2 1 0

Introduce new clauses to
constrain bits in year1 to
match bits in the sum.

BMC counterexample for k=1

14

int daysToYear(int days) {
 int year = 1980;
 while (days > 365) {
 int oldDays = days;
 if (isLeapYear(year)) {
 if (days > 366) {
 days -= 366;
 year += 1;
 }
 } else {
 days -= 365;
 year += 1;
 }
 assert days < oldDays;
 }
 return year;
}

days = 366

todayBounded Model Checking (BMC) &
Configuration Management

Configuration Management

16

Given a configuration, consisting of a
set of components, their dependencies,
and conflicts:

• Decide if a new component can be
added to the configuration.

• Add the component while optimizing
some linear function.

• If the component cannot be added,
find a way to add it by removing as
few conflicting components from the
current configuration as possible.

Configuration Management

16

Given a configuration, consisting of a
set of components, their dependencies,
and conflicts:

• Decide if a new component can be
added to the configuration.

• Add the component while optimizing
some linear function.

• If the component cannot be added,
find a way to add it by removing as
few conflicting components from the
current configuration as possible.

SAT

Configuration Management

16

Given a configuration, consisting of a
set of components, their dependencies,
and conflicts:

• Decide if a new component can be
added to the configuration.

• Add the component while optimizing
some linear function.

• If the component cannot be added,
find a way to add it by removing as
few conflicting components from the
current configuration as possible.

SAT

Pseudo-Boolean Constraints

Configuration Management

16

Given a configuration, consisting of a
set of components, their dependencies,
and conflicts:

• Decide if a new component can be
added to the configuration.

• Add the component while optimizing
some linear function.

• If the component cannot be added,
find a way to add it by removing as
few conflicting components from the
current configuration as possible.

SAT

Partial (Weighted) MaxSAT

Pseudo-Boolean Constraints

Deciding if a component can be installed

17

a

b c z

y

d e f g

Deciding if a component can be installed

17

a

b c z

y

d e f g

z already
installed.

Deciding if a component can be installed

17

a

b c z

y

d e f g

a depends
on b, c, z.

z already
installed.

Deciding if a component can be installed

17

a

b c z

y

d e f g
c needs f
or g.

a depends
on b, c, z.

z already
installed.

Deciding if a component can be installed

17

a

b c z

y

d e f g

Conflict: d and e cannot
both be installed.

c needs f
or g.

a depends
on b, c, z.

z already
installed.

Deciding if a component can be installed

17

a

b c z

y

d e f g

Conflict: d and e cannot
both be installed.

c needs f
or g.

a depends
on b, c, z.

To install a, CNF constraints are:
z already
installed.

Deciding if a component can be installed

17

a

b c z

y

d e f g

Conflict: d and e cannot
both be installed.

c needs f
or g.

a depends
on b, c, z.

To install a, CNF constraints are:

(¬a ⋁ b) ⋀ (¬a ⋁ c) ⋀ (¬a ⋁ z) ⋀z already
installed.

Deciding if a component can be installed

17

a

b c z

y

d e f g

Conflict: d and e cannot
both be installed.

c needs f
or g.

a depends
on b, c, z.

To install a, CNF constraints are:

(¬a ⋁ b) ⋀ (¬a ⋁ c) ⋀ (¬a ⋁ z) ⋀
(¬b ⋁ d) ⋀

z already
installed.

Deciding if a component can be installed

17

a

b c z

y

d e f g

Conflict: d and e cannot
both be installed.

c needs f
or g.

a depends
on b, c, z.

To install a, CNF constraints are:

(¬a ⋁ b) ⋀ (¬a ⋁ c) ⋀ (¬a ⋁ z) ⋀
(¬b ⋁ d) ⋀
(¬c ⋁ d ⋁ e) ⋀ (¬c ⋁ f ⋁ g) ⋀

z already
installed.

Deciding if a component can be installed

17

a

b c z

y

d e f g

Conflict: d and e cannot
both be installed.

c needs f
or g.

a depends
on b, c, z.

To install a, CNF constraints are:

(¬a ⋁ b) ⋀ (¬a ⋁ c) ⋀ (¬a ⋁ z) ⋀
(¬b ⋁ d) ⋀
(¬c ⋁ d ⋁ e) ⋀ (¬c ⋁ f ⋁ g) ⋀
(¬d ⋁ ¬e) ⋀

z already
installed.

Deciding if a component can be installed

17

a

b c z

y

d e f g

Conflict: d and e cannot
both be installed.

c needs f
or g.

a depends
on b, c, z.

To install a, CNF constraints are:

(¬a ⋁ b) ⋀ (¬a ⋁ c) ⋀ (¬a ⋁ z) ⋀
(¬b ⋁ d) ⋀
(¬c ⋁ d ⋁ e) ⋀ (¬c ⋁ f ⋁ g) ⋀
(¬d ⋁ ¬e) ⋀
(¬y ⋁ z) ⋀

z already
installed.

Deciding if a component can be installed

17

a

b c z

y

d e f g

Conflict: d and e cannot
both be installed.

c needs f
or g.

a depends
on b, c, z.

To install a, CNF constraints are:

(¬a ⋁ b) ⋀ (¬a ⋁ c) ⋀ (¬a ⋁ z) ⋀
(¬b ⋁ d) ⋀
(¬c ⋁ d ⋁ e) ⋀ (¬c ⋁ f ⋁ g) ⋀
(¬d ⋁ ¬e) ⋀
(¬y ⋁ z) ⋀
a ⋀ z

z already
installed.

Optimal installation

18

a

b c z

y

d e f g

Assume f and g are 5MB and 2MB each,
and all other components are 1MB. To
install a, while minimizing total size,
pseudo-boolean constraints are:

min a + b + c + d + e + 5f + 2g + y + 0z

(-a + b ≥0)⋀(-a + c ≥0)⋀(-a + z ≥0) ⋀
(-b + d ≥0) ⋀
(-c + d + e ≥0) ⋀ (-c + f + g ≥0) ⋀
(-d + -e ≥-1) ⋀
(-y + z ≥0) ⋀
(a ≥1) ⋀ (z ≥1)

Optimal installation

18

a

b c z

y

d e f g

Pseudo-boolean solvers
accept a linear function
to minimize, in addition
to a (weighted) CNF.

Assume f and g are 5MB and 2MB each,
and all other components are 1MB. To
install a, while minimizing total size,
pseudo-boolean constraints are:

min a + b + c + d + e + 5f + 2g + y + 0z

(-a + b ≥0)⋀(-a + c ≥0)⋀(-a + z ≥0) ⋀
(-b + d ≥0) ⋀
(-c + d + e ≥0) ⋀ (-c + f + g ≥0) ⋀
(-d + -e ≥-1) ⋀
(-y + z ≥0) ⋀
(a ≥1) ⋀ (z ≥1)

Optimal installation

18

a

b c z

y

d e f g

min c1x1 + … + cnxn

a11x1 + … + a1nxn ≥b1

…
ak1x1 + … + aknxn ≥bk

Assume f and g are 5MB and 2MB each,
and all other components are 1MB. To
install a, while minimizing total size,
pseudo-boolean constraints are:

min a + b + c + d + e + 5f + 2g + y + 0z

(-a + b ≥0)⋀(-a + c ≥0)⋀(-a + z ≥0) ⋀
(-b + d ≥0) ⋀
(-c + d + e ≥0) ⋀ (-c + f + g ≥0) ⋀
(-d + -e ≥-1) ⋀
(-y + z ≥0) ⋀
(a ≥1) ⋀ (z ≥1)

Optimal installation

18

a

b c z

y

d e f g

min c1x1 + … + cnxn

a11x1 + … + a1nxn ≥b1

…
ak1x1 + … + aknxn ≥bk

Installation in the presence of conflicts

19

a

b c z

y

d e f g

Installation in the presence of conflicts

19

a

b c z

y

d e f g

a cannot be installed
because it requires b,
which requires d, which
conflicts with e.

Installation in the presence of conflicts

19

a

b c z

y

d e f g

To install a, while minimizing the number
of removed components, Partial
MaxSAT constraints are:

hard: (¬a ⋁ b) ⋀ (¬a ⋁ c) ⋀ (¬a ⋁ z) ⋀
 (¬b ⋁ d) ⋀
 (¬c ⋁ d ⋁ e) ⋀ (¬c ⋁ f ⋁ g) ⋀
 (¬d ⋁ ¬e) ⋀ (¬y ⋁ z) ⋀ a
soft: e ⋀ z

Partial MaxSAT solver takes as input a set of
hard clauses and a set of soft clauses, and
it produces an assignment that satisfies all
hard clauses and the greatest number of
soft clauses.

Summary

20

Today
• SAT solvers have been used successfully in many applications & domains

• But reducing problems to SAT is a lot like programming in assembly …

• We need higher-level logics!

Next lecture
• On to richer logics: introduction to Satisfiability Modulo Theories (SMT)

