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Today

2

Past 2 lectures  
• The theory and mechanics of SAT solving

Today  
• Practical applications of SAT

• Variants of the SAT problem

• Motivating the next lecture on SMT

But first …
• A brief Q&A session for Homework I to

pi
cs
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Given a system and a property, 
BMC checks if the property is 
satisfied by all executions of 
the system with ≤k steps, on 
all inputs of size ≤n.

We will focus on safety 
properties (i.e., making 
sure a bad state, such as an 
assertion violation, is not 
reached). 
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Bounded Model Checking (in general)

6

Testing: checks a 
few executions 
of arbitrary size

Verification: checks 
all executions of 
every size

BMC: checks all 
executions of 
size ≤k

low human labor high human labor

low confidence high confidenceThe small scope 
hypothesis says that 
many bugs can be triggered 
with small inputs and 
executions.
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int daysToYear(int days) { 
  int year = 1980; 
  while (days > 365) { 
    if (isLeapYear(year)) { 
      if (days > 366) { 
        days -= 366; 
        year += 1; 
      } 
    } else { 
      days -= 365; 
      year += 1; 
    } 
  } 
  return year; 
}

BMC by example
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The Zune Bug: on 
December 31, 2008, all first 
generation Zune players from 
Microsoft became unresponsive 
because of this code.  What’s 
wrong?
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Infinite loop triggered on the 
last day of every leap year.  
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  return year; 
}

BMC by example
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A desired safety property:  
the value of the days 
variable decreases in every 
loop iteration.
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BMC step 1 of 4:  finitize loops & inline calls

9

• Unwind all loops k times (e.g., 
k=1), and add an unwinding 
assertion after each.

• If a CEX violates a program 
assertion, we have found a 
buggy behavior of length ≤k.

• If a CEX violates an unwinding 
assertion, the program has no 
buggy behavior of length ≤k, 
but it may have a longer one.

• If there is no CEX, the 
program is correct for all k!



int daysToYear(int days) { 
  int year = 1980; 
  if (days > 365) { 
    int oldDays = days; 
    if (isLeapYear(year)) { 
      if (days > 366) { 
        days -= 366; 
        year += 1; 
      } 
    } else { 
      days -= 365; 
      year += 1; 
    } 
    assert days < oldDays; 
    assert days <= 365; 
  } 
  return year; 
}

BMC step 1 of 4:  finitize loops & inline calls
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Assume call to isLeapYear is 
inlined (replaced with the 
procedure body).  We’ll keep it 
for readability.
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int days; 
int year = 1980;  
if (days > 365) { 
  int oldDays = days; 
  if (isLeapYear(year)) { 
    if (days > 366) { 
      days = days - 366; 
      year = year + 1; 
    } 
  } else { 
    days = days - 365; 
    year = year + 1; 
  } 
  assert days < oldDays; 
  assert days <= 365; 
} 
return year;
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int days; 
int year = 1980;  
if (days > 365) { 
  int oldDays = days; 
  if (isLeapYear(year)) { 
    if (days > 366) { 
      days = days - 366; 
      year = year + 1; 
    } 
  } else { 
    days = days - 365; 
    year = year + 1; 
  } 
  assert days < oldDays; 
  assert days <= 365; 
} 
return year;

Convert to Static Single 
Assignment (SSA) form:

• Replace each assignment to a 
variable v with a definition of 
a fresh variable vi.

• Change uses of variables so 
that they refer to the correct 
definition (version).

• Make conditional 
dependences explicit with 
gated φ nodes.
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int days0; 
int year0 = 1980;  
if (days0 > 365) { 
  int oldDays0 = days0; 
  if (isLeapYear(year0)) { 
    if (days0 > 366) { 
      days1 = days0 - 366; 
      year1 = year0 + 1; 
    } 
  } else { 
    days3 = days0 - 365; 
    year3 = year0 + 1; 
  } 
  assert days4 < oldDays0; 
  assert days4 <= 365; 
} 
return year5;

Convert to Static Single 
Assignment (SSA) form:

• Replace each assignment to a 
variable v with a definition of 
a fresh variable vi.

• Change uses of variables so 
that they refer to the correct 
definition (version).

• Make conditional 
dependences explicit with 
gated φ nodes.



BMC step 2 of 4:  eliminate side effects
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int days0; 
int year0 = 1980; 
boolean g0 = (days0 > 365); 
int oldDays0 = days0; 
boolean g1 = isLeapYear(year0); 
boolean g2 = days0 > 366; 
days1 = days0 - 366; 
year1 = year0 + 1; 
days2 = φ(g1 && g2, days1, days0); 
year2 = φ(g1 && g2, year1, year0); 
days3 = days0 - 365; 
year3 = year0 + 1; 
days4 = φ(g1, days2, days3);  
year4 = φ(g1, year2, year3); 
assert days4 < oldDays0; 
assert days4 <= 365; 
year5 = φ(g0, year4, year0); 
return year5;

Convert to Static Single 
Assignment (SSA) form:

• Replace each assignment to a 
variable v with a definition of 
a fresh variable vi.

• Change uses of variables so 
that they refer to the correct 
definition (version).

• Make conditional 
dependences explicit with 
gated φ nodes.
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  } else { 
    days3 = days0 - 365; 
    year3 = year0 + 1; 
  } 
  assert days4 < oldDays0; 
  assert days4 <= 365; 
} 
return year4;
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int days0; 
int year0 = 1980; 
boolean g0 = (days0 > 365); 
int oldDays0 = days0; 
boolean g1 = isLeapYear(year0); 
boolean g2 = days0 > 366; 
days1 = days0 - 366; 
year1 = year0 + 1; 
days2 = φ(g1 && g2, days1, days0); 
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year0 = 1980 ⋀ 
g0 = (days0 > 365) ⋀ 
oldDays0 = days0 ⋀ 
g1 = isLeapYear(year0) ⋀ 
g2 = days0 > 366 ⋀ 
days1 = days0 - 366 ⋀ 
year1 = year0 + 1 ⋀ 
days2 = ite(g1 ⋀ g2, days1, days0) ⋀ 
year2 = ite(g1 ⋀ g2, year1, year0) ⋀ 
days3 = days0 - 365 ⋀ 
year3 = year0 + 1 ⋀ 
days4 = ite(g1, days2, days3) ⋀ 
year4 = ite(g1, year2, year3) ⋀ 
year5 = ite(g0, year4, year0) ⋀ 
(¬(days4 < oldDays0) ⋁  
 ¬(days4 <= 365))

BMC step 3 of 4:  convert into equations

12

A solution to these equations 
is a sound 
counterexample:  an 
interpretation for all logical 
variables that satisfies the 
program semantics (for up to 
k unwindings) but violates at 
least one of the assertions.
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BMC step 4 of 4:  convert into CNF

13

…

s31 s1 s0

c1c2c32

year0:31 year0:1 year0:00 0 1

year1:31 ⟺ s31 year1:1 ⟺ s1 s0 ⟺ year1:0

year1 = year0 + 1

⋀ … ⋀ ⋀

year0 = 000 … 000

Represent numbers as 
arrays of bits, and create 
one propositional variable 
per bit for each number.31 30 29 2 1 0

Introduce new clauses to 
constrain bits in year1 to 
match bits in the sum.



BMC counterexample for k=1

14

int daysToYear(int days) { 
  int year = 1980; 
  while (days > 365) { 
    int oldDays = days; 
    if (isLeapYear(year)) { 
      if (days > 366) { 
        days -= 366; 
        year += 1; 
      } 
    } else { 
      days -= 365; 
      year += 1; 
    } 
    assert days < oldDays; 
  } 
  return year; 
}

days = 366
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Given a configuration, consisting of a 
set of components, their dependencies, 
and conflicts:

• Decide if a new component can be 
added to the configuration.

• Add the component while optimizing 
some linear function.

• If the component cannot be added, 
find a way to add it by removing as 
few conflicting components from the 
current configuration as possible.
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Given a configuration, consisting of a 
set of components, their dependencies, 
and conflicts:

• Decide if a new component can be 
added to the configuration.

• Add the component while optimizing 
some linear function.

• If the component cannot be added, 
find a way to add it by removing as 
few conflicting components from the 
current configuration as possible.

SAT

Partial (Weighted) MaxSAT

Pseudo-Boolean Constraints
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Assume f and g are 5MB and 2MB each, 
and all other components are 1MB.  To 
install a, while minimizing total size, 
pseudo-boolean constraints are:

min a + b + c + d + e + 5f  + 2g + y + 0z

(-a + b ≥0)⋀(-a + c ≥0)⋀(-a + z ≥0) ⋀
(-b + d ≥0) ⋀
(-c + d + e ≥0) ⋀ (-c + f + g ≥0) ⋀
(-d + -e ≥-1) ⋀
(-y + z ≥0) ⋀
(a ≥1) ⋀ (z ≥1)

Optimal installation

18

a

b c z

y

d e f g

Pseudo-boolean solvers 
accept a linear function 
to minimize, in addition 
to a (weighted) CNF. 
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a cannot be installed 
because it requires b, 
which requires d, which 
conflicts with e.
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To install a, while minimizing the number 
of removed components, Partial 
MaxSAT constraints are:

hard: (¬a ⋁ b) ⋀ (¬a ⋁ c) ⋀ (¬a ⋁ z) ⋀
         (¬b ⋁ d) ⋀
         (¬c ⋁ d ⋁ e) ⋀ (¬c ⋁ f ⋁ g) ⋀
         (¬d ⋁ ¬e) ⋀ (¬y ⋁ z) ⋀ a
soft:  e ⋀ z

Partial MaxSAT solver takes as input a set of 
hard clauses and a set of soft clauses, and 
it produces an assignment that satisfies all 
hard clauses and the greatest number of 
soft clauses.
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Today
• SAT solvers have been used successfully in many applications & domains

• But reducing problems to SAT is a lot like programming in assembly …

• We need higher-level logics!

Next lecture
• On to richer logics:  introduction to Satisfiability Modulo Theories (SMT)


