
CSE 507: Computer-Aided Reasoning for Software Winter 2017

Homework Assignment 3
Due: March 1, 2017 at 11:00pm

Total points: 100
Deliverables: hw3.pdf containing typeset solutions to Problems 1–6.

sort.dfy containing your Dafny implementation for Problem 2.
hw3.smt containing your SMT-Lib encoding for Problem 5.

1 Reasoning about Programs with Hoare Logic (30 points)

1. (30 points) Prove the validity of the following Hoare triple:

{n ≥ 0 ∧ d > 0}
q := 0;
r := n;
while (r ≥ d) {
q := q + 1;
r := r - d;

}
{n = q ∗ d+ r ∧ 0 ≤ r < d}

Your answer should take the form of a proof outline, which annotates the program S with FOL pred-
icates inferred by applying the rules of Hoare logic, as seen in Lecture 9. For example, if a proof
outline includes n consecutive predicates F1, . . . , Fn, then it must be that case that F1 ⇒ . . . ⇒ Fn,
corresponding to the Rule of Conseqeunce. Similarly, each statement s ∈ S must be surrounded by
formulas P and Q such that {P}S{Q} is a valid Hoare triple, according to the inference rule for S.

1 of 4

https://courses.cs.washington.edu/courses/cse507/17wi/lectures/L09.pdf

CSE 507: Computer-Aided Reasoning for Software
Winter 2017

Homework Assignment 3
Due: March 1, 2017 at 11:00pm

2 Verifying Programs with Dafny (30 points)

In this part of the assignment, you will use Dafny (Lecture 11) to verify a modified implementation of the
insertion sort. You can either download and install Dafny or use the web interface at rise4fun. To get started,
read the Dafny Guide, which describes all features of Dafny that are needed to complete the assignment.

2. (30 points) sort.dfy contains an implementation of insertion sort and a partial correctness predicate:
applying the sort method to an array a ensures that a[i] ≤ a[j] for all indices i < j. This predicate is
not quite right as written, however, and the implementation is missing all annotations except for the
desired post-condition on sort.

Get Dafny to verify sort.dfy by annotating it with sufficient pre/post conditions, assertions, loop
invariants, and frame conditions. You may not change the implementation in any way other than by
adding annotations. When the verification succeeds, Dafny will print the following message: “Dafny
program verifier finished with n verified, 0 errors” (where n is a small number). Submit your annotated
copy of sort.dfy.

2 of 4

https://github.com/microsoft/dafny
https://courses.cs.washington.edu/courses/cse507/17wi/lectures/L11.pptx
https://github.com/Microsoft/dafny/wiki/INSTALL
http://rise4fun.com/dafny/
http://rise4fun.com/Dafny/tutorial/guide
https://gitlab.cs.washington.edu/cse507/hw17wi/blob/master/hw3/dafny/sort.dfy
https://gitlab.cs.washington.edu/cse507/hw17wi/blob/master/hw3/dafny/sort.dfy
https://gitlab.cs.washington.edu/cse507/hw17wi/blob/master/hw3/dafny/sort.dfy

CSE 507: Computer-Aided Reasoning for Software
Winter 2017

Homework Assignment 3
Due: March 1, 2017 at 11:00pm

3 Symbolic Execution (40 points)

Consider the Python programs P0 and P1 shown below, along with a harness procedure that tests their
equivalence on a given k-bit integer:

def P0(x, k):
return x & -x

def P1(x, k):
for i in range(0, k):
if (x & (1 << i)) != 0:
return 1 << i

return 0

def equiv1(x, k):
assert P0(x, k) == P1(x, k)

Suppose that we apply symbolic execution to evaluate equiv1 on a symbolic k-bit integer x and a concrete
positive integer k. Let VC1(x, k) denote the set of verification conditions emitted during this symbolic
execution process.

3. (2 points) How many verification conditions will be generated?

4. (3 points) Can the generated verification conditions VC1(x, k) be used to prove that P1 and P0 are
equivalent for a given concrete k? Explain why or why not.

5. (20 points) Encode all verification conditions from VC1(x, 4) in SMT-LIB syntax. Your encoding
should list the verification conditions in the order in which they are generated by basic symbolic
execution (i.e., depth-first, exploring ‘then’ branches before ‘else’ branches). Each verification condition
should be defined using its own define-fun expression. All verification conditions should be checked
independently for validity using the push / pop commands (see the SMT-LIB manual or the Z3 tutorial
for details). In particular, your encoding should take the following form:

(declare-const x ...)
...
(define-fun vc0 ...) ; the first VC generated by symbolic execution
...
(define-fun vcn ...) ; the last VC generated by symbolic execution

(push) ; check the validity of vc0
...
(check-sat)
(pop)
...
(push) ; check the validity of vcn
...
(check-sat)
(pop)

Use Z3 to check the validity of your VC1(x, 4) encoding. Report the result of running Z3 with the -st
and -smt2 options. Submit your SMT-LIB encoding in a separate hw3.smt file.

6. (15 points) Consider the program P2 shown below:
def P2(x, k):
i = 0
while ((x & (1 << i)) == 0 and i < k):
i = i + 1

assert P0(x, k) == x & (1 << i)

3 of 4

http://smt-lib.org
http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.0-r10.12.21.pdf
http://rise4fun.com/z3/tutorial
https://github.com/z3prover/z3

CSE 507: Computer-Aided Reasoning for Software
Winter 2017

Homework Assignment 3
Due: March 1, 2017 at 11:00pm

The assert statement checks if P2’s final state is equivalent to that of P0. Use the technique shown
in Lecture 13 to transform and annotate P2 so that it can be used to prove the equivalence of P2

and P0 by emitting just three verification conditions via symbolic execution. In particular, after your
transformation, symbolic execution should behave as follows when applied to P2(x, k) with a symbolic
k-bit integer x and a concrete positive integer k:

• it yields a set VC2(x, k) with three verification conditions, whose sizes are independent of k
(though quantifiers with domains involving k are permitted), and

• P2 and P0 are equivalent if and only if the verification conditions in VC2(x, k) are valid.

Your transformed code may use the procedure symbolic(k) to obtain a fresh symbolic k-bit integer; it
may include assume statements; and it may also use Python’s all syntax in assert and assume state-
ments as a universal quantifier (e.g., all(x[i] for i in range(0,k)) is equivalent to ∀ i ∈ [0, k). x[i]).

annotated and transformed code
def P2(x, k):
...

4 of 4

https://courses.cs.washington.edu/courses/cse507/17wi/lectures/L13.pdf

	Reasoning about Programs with Hoare Logic (30 points)
	Verifying Programs with Dafny (30 points)
	Symbolic Execution (40 points)

