
CSE 507: Computer-Aided Reasoning for Software Winter 2017

Homework Assignment 1
Due: January 27, 2017 at 23:00

Total points: 100
Deliverables: hw1.pdf containing typeset solutions to Problems 1-12.

k-coloring.rkt containing your implementation for Problem 10.
Sources: https://gitlab.cs.washington.edu/cse507/hw17wi.

1 Propositional Logic and Normal Forms (30 points)

1. (2 points) Decide whether each of the following formulas is valid. If the formula is valid, prove its
validity using the semantic argument method. Otherwise, provide a falsifying interpretation and, if
the formula is satisfiable, a satisfying interpretation.

(a) (p ∧ q)→ (p→ q)

(b) (p→ (q → r))→ (¬r → (¬q → ¬p))

(LATEX Hint: use the mathpartir package to typeset proofs.)

2. (3 points) Convert the following formula to equivalent formulas in NNF, CNF, and DNF. Write the
final formula as the answer; the intermediate conversion steps need not be shown.

¬(¬(p ∧ q)→ ¬r)

3. (5 points) Convert the formula from Problem 2 to an equisatisfiable formula in CNF using Tseitin’s
encoding. Write the final CNF formula as the answer. Use aφ to denote the auxiliary variable for the
formula φ; for example, a(p∧q) should be used to denote the auxiliary variable for (p ∧ q).

4. (10 points) Let φ be a propositional formula in NNF, and let I be an interpretation of φ. Let the
positive set of I with respect to φ, denoted pos(I, φ), be the literals of φ that are satisfied by I. As an
example, for the NNF formula φ = (¬r ∧ p) ∨ q and the interpretation I = [r 7→ ⊥, p 7→ >, q 7→ ⊥], we
have pos(I, φ) = {¬r, p}. Prove the following theorem about the monotonicity of NNF:

Monotonicity of NNF: For every interpretation I and I ′ such that pos(I, φ) ⊆ pos(I ′, φ), if I |= φ,
then I ′ |= φ.

(Hint: Use structural induction.)

5. (10 points) Let φ be an NNF formula. Let φ̂ be a formula derived from φ using a modified version
of Tseitin’s encoding in which the CNF constraints are derived from implications rather than bi-
implications. For example, given a formula

a1 ∧ (a2 ∨ ¬a3),

the new encoding is the CNF equivalent of the following formula, where x0, x1, x2 are fresh auxiliary
variables:

x0 ∧
(x0 → a1 ∧ x1) ∧
(x1 → a2 ∨ x2) ∧
(x2 → ¬a3)

1 of 5

https://gitlab.cs.washington.edu/cse507/hw17wi
http://www.ccs.neu.edu/course/csg264/latex/mathpartir/mathpartir.pdf
http://cristal.inria.fr/~remy/latex/mathpartir.sty

CSE 507: Computer-Aided Reasoning for Software
Winter 2017

Homework Assignment 1
Due: January 27, 2017 at 23:00

Note that Tseitin’s encoding to CNF starts with the same formula, except that → is replaced with ↔.
As a result, the new encoding has roughly half as many clauses as the Tseitin’s encoding.

Prove that φ̂ is satisfiable if and only if φ is satisfiable.

(Hint: Use the theorem from Problem 4.)

2 of 5

CSE 507: Computer-Aided Reasoning for Software
Winter 2017

Homework Assignment 1
Due: January 27, 2017 at 23:00

2 SAT solving (10 points)

6. (10 points) Consider the following set of clauses:

c1 : (¬x1 ∨ x2 ∨ x4)
c2 : (x1 ∨ x3)
c3 : (¬x4 ∨ ¬x2)
c4 : (¬x4 ∨ ¬x1 ∨ x2)
c5 : (x3 ∨ ¬x1)
c6 : (¬x3 ∨ ¬x2 ∨ x4)
c7 : (x1 ∨ x4)
c8 : (¬x2 ∨ x1)

Complete the table below to show how a modern CDCL SAT solver (Lecture 2) decides the satisfiability
of these clauses. Start a new row every time the decision level changes (due to a new decision or
backtracking). Show the implication graph at each decision level by listing all of its labeled edges.
Keep all conflict clauses returned by AnalyzeConflict and assign them names c9, c10, etc.

Use the following rules when making choices while executing the CDCL algorithm:

• For choosing the next assignment in the Decide step, use the Dynamic Largest Individual Sum
(DLIS) heuristic. In the case of a tie between variables, pick the xi with the lowest index i. If
there is a tie between xi and ¬xi, pick xi.

• When deriving conflict clauses, use the first unique implication points, and backtrack to the second
highest (i.e., second largest) decision level in the derived conflict clause (which is level 0 if the
clause is unit).

• When performing BCP, propagate implications in the increasing order of clause indices (i.e., if
both xi and xj are unit clauses, and i < j, propagate xi first).

Level Decision Implication Graph Conflict Clause
j literal@j {〈literal@k, literal@m, ci〉, . . .} cn : (literal ∨ . . . ∨ literal)
...

...
...

...

3 of 5

https://courses.cs.washington.edu/courses/cse507/17wi/lectures/L2.pdf

CSE 507: Computer-Aided Reasoning for Software
Winter 2017

Homework Assignment 1
Due: January 27, 2017 at 23:00

3 Variations on SAT (20 points)

Consider the following variations on the propositional satisfiability (SAT) problem discussed in Lecture 3:

Partial Weighted MaxSAT Given a CNF formula φH =
∧
c∈H c corresponding to a set of hard clauses

H, and a CNF formula φS =
∧
c∈S c corresponding to a set of soft CNF clauses S with weights

w : S → Z, the Partial Weighted MaxSAT problem is to find an assignment A to the problem variables
that satisfies all the hard clauses and that maximizes the weight of the satisfied soft clauses. That is,
A |=

∧
c∈H c, and if we let C = {c ∈ S|A |= c}, then there is no C ′ ⊆ S such that H ∪ C ′ is satisfiable

and
∑
c′∈C′ w(c′) >

∑
c∈C w(c).

Pseudo-Boolean Optimization Let B be a set of pseudo-boolean constraints of the form
∑
aijxj ≥ bi,

where xj is a variable over {0, 1} and aij , bi, cj are integer constants. The Pseudo-Boolean Optimization
problem is to satisfy all constraints in B while minimizing a linear function

∑
cj · xj .

7. (10 points) Explain how to encode a Partial Weighted MaxSAT problem P as a Pseudo-Boolean
Optimization problem P ′ such that (1) P ′ is satisfiable iff P is satisfiable, and (2) a solution to P can
be extracted from a solution to P ′. Show the result of your encoding (the optimization function and
the pseudo-boolean constraints) on the following example, which uses the pair notation to associate
weights with soft clauses:

H = {(x1 ∨ x2 ∨ ¬x3), (¬x2 ∨ x3), (¬x1 ∨ x3)}
S = {〈(¬x3), 6〉, 〈(x1 ∨ x2), 3〉, 〈(x1 ∨ x3), 2〉}

8. (10 points) Explain how to encode a Pseudo-Boolean Optimization P as a Partial Weighted MaxSAT
problem P ′ such that (1) P ′ is satisfiable iff P is satisfiable, and (2) a solution to P can be extracted
from a solution to P ′. Assume the existence of a function toCNF that takes as input a pseudo-boolean
constraint

∑
aijxj ≥ bi and encodes it as a boolean circuit in CNF form. Show the result of your

encoding (the set of hard clauses, and the set of soft clauses with their weights) on the following
example:

minimize 4x1 + 2x2 + x3
subject to 2x1 + 3x2 + 5x3 ≥ 5

−x1 − x2 ≥ −1
x1 + x2 + x3 ≥ 2

4 of 5

https://courses.cs.washington.edu/courses/cse507/17wi/lectures/L3.pdf

CSE 507: Computer-Aided Reasoning for Software
Winter 2017

Homework Assignment 1
Due: January 27, 2017 at 23:00

4 Graph Coloring with SAT (40 points)

A graph is k-colorable if there is an assignment of k colors to its vertices such that no two adjacent vertices
have the same color. Deciding if such a coloring exists is a classic NP-complete problem with many practical
applications, such as register allocation in compilers. In this problem, you will develop a CNF encoding
for graph coloring and apply them to graphs from various application domains, including course scheduling,
N-queens puzzles, and register allocation for real code.

A finite graph G = 〈V,E〉 consists of vertices V = {v1, . . . , vn} and edges E = {〈vi1 , wi1〉, . . . , 〈vim , wim〉}.
Given a set of k colors C = {c1, . . . , ck}, the k-coloring problem for G is to assign a color c ∈ C to each
vertex v ∈ V such that for every edge 〈v, w〉 ∈ E, color(v) 6= color(w).

9. (10 points) Show how to encode an instance of a k-coloring problem into a propositional formula F
that is satisfiable iff a k-coloring exists.

(a) Describe a set of propositional constraints asserting that every vertex is colored. Use the notation
color(v) = c to indicate that a vertex v has the color c. Such an assertion is encodable as a single
propositional variable pcv (since the set of vertices and colors are both finite).

(b) Describe a set of propositional constraints asserting that every vertex has at most one color.

(c) Describe a set of propositional constraints asserting that no two adjacent vertices have the same
color.

(d) Identify a significant optimization in this encoding that reduces its size asymptotically. (Hint:
Can any constraints be dropped? Why?)

(e) Specify your constraints in CNF. For |V | vertices, |E| edges, and k colors, how many variables
and clauses does your encoding require?

10. (20 points) Implement the above encoding in Racket, using the provided solution skeleton. See the
README file for instructions on obtaining solvers and the database of graph coloring problems. Your
program should generate the encoding for a given graph (see graph.rkt), call a SAT solver on it
(solver.rkt), and then decode the result into an assignment of colors to vertices (see examples.rkt

and k-coloring.rkt).

What is the minimum, maximum, and average solving time (“real” time if you are using Racket’s time
procedure) for easy and medium instances in the provided database of problems (see problems.rkt)?
Can you solve any of the hard instances in 10 minutes or less?

11. (5 points) Describe a CNF encoding for k-coloring that uses O(|V | log k + |E| log k) variables and
clauses.

12. (5 points) Most modern SAT solvers support incremental solving—that is, obtaining a solution to a
CNF, adding more constraints, obtaining another solution, and so on. Because the solver keeps (some)
learned clauses between invocations, incremental solving is generally the fastest way to solve a series
of related CNFs. How would you apply incremental solving to your encoding from Problem 10 to find
the smallest number of colors needed to color a graph (i.e., its chromatic number)?

5 of 5

http://racket-lang.org
https://gitlab.cs.washington.edu/cse507/hw17wi/tree/master/hw1/graph-coloring
https://gitlab.cs.washington.edu/cse507/hw17wi/blob/master/hw1/README.md
https://gitlab.cs.washington.edu/cse507/hw17wi/tree/master/hw1/graph-coloring/graph.rkt
https://gitlab.cs.washington.edu/cse507/hw17wi/tree/master/hw1/graph-coloring/solver.rkt
https://gitlab.cs.washington.edu/cse507/hw17wi/tree/master/hw1/graph-coloring/examples.rkt
https://gitlab.cs.washington.edu/cse507/hw17wi/tree/master/hw1/graph-coloring/k-coloring.rkt
https://docs.racket-lang.org/reference/time.html?q=time#%28form._%28%28lib._racket%2Fprivate%2Fmore-scheme..rkt%29._time%29%29
https://gitlab.cs.washington.edu/cse507/hw17wi/tree/master/hw1/graph-coloring/problems.rkt

	Propositional Logic and Normal Forms (30 points)
	SAT solving (10 points)
	Variations on SAT (20 points)
	Graph Coloring with SAT (40 points)

