Reasoning about Programs

Emina Torlak

emina@cs.washington.edu

http://courses.cs.washington.edu/courses/cse507/16sp/index.html

Overview

Last lecture

* Finite model finding for first-order logic with quantifiers,
relations, and transitive closure

Today

- Reasoning about (partial) correctness of programs
* Hoare Logic

« Verification Condition Generation

Based on lectures by Isil Dillig, Daniel Jackson, and Viktor Kuncak

A look ahead (L9-L14)

Classic verification (L9, L10)

+ Checking that all (terminating) executions
satisfy an FOL property on all inputs

Bounded verification (LI11)

+ Scope-complete checking of FOL properties

Symbolic execution (L12)

+ Systematic checking of FOL properties

Model checking (L13, L14)

 Exhaustive checking of temporal properties
of abstracted programs

Active research
topic for 45 years

— e —

Classic ideas every
computer scientist
should know

Understanding the
ideas can help you
become a better
programmer

A bit of history

1967: Assigning Meaning to Programs (Floyd)
1978 Turing Award

1969: An Axiomatic Basis for Computer
Programming (Hoare)

1980 Turing Award

1975: Guarded Commands, Nondeterminacy
and Formal Derivation of Programs (Dijkstra)

1972 Turing Award

A tiny Imperative Programming Language (IMP)

Expression E
 Z|IVIE+ER|ETER S :
A minimalist programming
Conditional C language for demonstrating
. true |false |E/ = E; | E| < B key features of Hoare logic.

Statement S

- skip (Skip)
- V:=E (Assignment)
- Si;S2 (Composition)

- if Cthen S else S2 (If)
- while Cdo S (While)

Specifying correctness in Hoare logic

{P} s {Q)

Specifying correctness in Hoare logic

Hoare triple
* Sis a program statement (in IMP).
* Pand Q are FOL formulas over program variables.

- P is called a precondition and Q is a postcondition.

Partial correctness (Hoare triple semantics)

* If S executes from a state satisfying P, and if its execution
terminates, then the resulting state satisfies Q.

(P} S {Q)

safety

Examples of Hoare triples

{false} S {Q}
+ Valid for all S and Q.

{P} while (true) do skip {Q}
« Valid for all P and Q.

{true} S {Q}

* If S terminates, the resulting state satisfies Q.

{P} S {true}
« Valid for all P and S.

Proving partial correctness in Hoare logic

Expression E

- Z|V|E +E|E *E
Conditional C

- true | false |Ei=E2 | EI = B>

Statement S

- skip (Skip)
- V:=E (Assignment)
- Si;S2 (Composition)

- if Cthen S, else S> (If)
* while Cdo S (While)

One inference rule for
every statement in the
language:

H{P1}S1{Q} ... H{Pn}Sn{Qn}
—{P}S{Q}

If the Hoare triples {P|}

SH{Q1} ... {Pn}Sn{Qn} are
provable, then so is {P}S{Q}.

Inference rules for Hoare logic

= {P} S| {R} - {R} S, {Q}
— {P} skip {P} — {P} Si;S2 {Q}

= {PAC} S| {Q} — {PA-C} $; {Q}

- {Q[E/x]} x := E{Q} — {P} if C then S, else S; {Q}
F{P1}S{Qi} P=P Q=Q — {PAC} S{P}
— {P} S {Q} — {P} while C do S {PA-C}

loop invariant

Example: proof outline

{x < n}
while (x < n) do
{x < nAx<n}

{x+1< n} /I consequence

X:=x+|

{x < n} /Il assignment
{x <nAx=n} I/ while

{x = n} /| consequence

Example: proof outline with auxiliary variables

{x=XAy=Y}
{y =Y Ax=X}
t:=X
{y=Y Art=X}
X =y
{x=Y At=X}
y =t

{x=Y Ary=X}

[/ assignment
[/ assignment

[/ assignment

Soundness and relative completeness

Proof rules for Hoare logic are sound

If = {P} S {Q} then = {P} S {Q}

Proof rules for Hoare logic are relatively complete

If = {P} S {Q} then - {P} S {Q}, assuming an oracle for
deciding implications

Automating Hoare logic with VC generation

Program annotated
with pre/post conditions,
loop invariants

Verification Condition
Generator (VCG)

verification
condition (VC)

SMT solver

Forwards computation:

- Starting from the precondition, generate

formulas to prove the postcondition.

* Based on computing strongest

postconditions (sp).
Backwards computation:

» Starting from the postcondition,
generate formulas to prove the
precondition.

- Based on computing weakest liberal
preconditions (wp).

VC generation with WP and SP

wp(S; Q)

* The weakest predicate that guarantees Q will hold
after executing S from a state satisfying that predicate.

sp(S; P)

 The strongest predicate that holds after S is executed
from a state satisfying P.

{P} S {Q} is valid iff
* P= WP(S’ Q) or
- sp(S,P) = Q

Computing wp(S, Q)

wp(S; Q):
* wp(skip, Q) = Q
- wp(x:=E Q) =Q[E/X]
* Wp(Si; S2, Q) = wp(Si, wp(S2, Q))
* wp(if C then S else S, Q) = C = wp(S1, Q) A °C = wp(S2, Q)
- wp(while Cdo S,Q) = X

Approximate wp(S, Q)
with awp(S, Q).

— e ——r— —— i - e — - —

terms of the postcondltlon

Computing awp(S, Q)

awp(S, Q):
- awp(skip, Q) = Q
- awp(x = E, Q) = Q[E / X]
* awp(Si; Sz, Q) = awp(Si, awp(S2, Q))
- awp(if C then S else S$;, Q) = C = awp(S), Q) A °C = awp(Sz, Q)

+ awp(while Cdo {I} S, Q) = |

For each statement S, also define
VC(§,Q) that encodes additional
conditions that must be checked.

Computing VC(S, Q)

VC(S, Q):
- VC(skip, Q) = true
- VC(x:=E Q) = true
* VC(Si;$2, Q) =VC(S2, Q) AVC(S1, awp(S2, Q))
» VC(if C then S else 52, Q) =VC(S1, Q) AVC(S2, Q)
+ VC(while Cdo {I} S,Q) = (IAC = awp(5,1)) AVC(S,) A (IA-C = Q)

| is an invariant. | is strong enough.

Verifying a Hoare triple

Theorem: {P} S {Q} is valid if

VCES, Q) A (P = awp(S, Q))

The other direction doesn’t
hold because loop invariants
may not be strong enough or
they may be incorrect.

Might get false alarms.

sSummary

Today

 Reasoning about partial correctness of programs

* Hoare Logic
- VCG,WBP, SP

Next lecture
* Guest lecture by Rustan Leino!

* Verification with Dafny, Boogie, and Z3.

20

