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Today

Last lecture

A survey of theory solvers and deciding T= with
congruence closure

Today

 Deciding a combination of theories

Reminders
- HWI is due by 11:00 pm

- HW2 is posted
- Start early

« Submit self-contained runnable code
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Combining theories with Nelson-Oppen

2 -theory T 2n-theory T,
with axioms A with axioms An
Theory Theory
solver e solver

Combination solver

Theory T U...U T, with
signature 2| U...U 2, and
axioms A| U...U A,
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2 -theory T 2>-theory T
with axioms A with axioms A
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solver solver

Combination solver

Theory T U T2 with
signature 2| U 2, and
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We'll see how to
combine two
theories. Easy to
generalize to n.



Combining theories with Nelson-Oppen

2 1-theory T 22-theory T»
with axioms A with axioms A
Theory Theory
solver solver

Combination solver

Theory T| U T2 with
sighature 2| U 2 and
axioms A| U Az

We'll see how to
combine two
theories. Easy to
generalize to n.

The combination problem is
undecidable for arbitrary
(decidable) theories. It
becomes decidable under
Nelson-Oppen restrictions.



Nelson-Oppen restrictions

T and T2 can be combined when
- Both are decidable, quantifier-free conjunctive fragments
- Equality (=) is the only symbol in the intersection of their
signatures: 2| n 22 ={ =}
- Both are stably infinite



Nelson-Oppen restrictions

T and T2 can be combined when
- Both are decidable, quantifier-free conjunctive fragments

- Equality (=) is the only symbol in the intersection of their
signatures: 2| n 22 ={ =}

- Both are stably infinite

A theory T is stably infinite if for every
satisfiable 2Zt-formula F, there is a T-
model that satisfies F and that has a
universe of infinite cardinality.




Examples of (hon-)stably infinite theories

27: {a,b,=

AT VYVX.Xx=avx=Dhb
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27: {ab,=} X Equality and
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Examples of (hon-)stably infinite theories

27: {ab,=} X Equality and
Ar VX.x=aVvx=bh uninterpreted
' . functions (T=)

——————

Fixed width bitX Linear real

vectors (Tby) arithmetic (TRr)
' Arrays (Ta) J - v

Linear integer

arithmetic (TR)J




Overview of Nelson-Oppen

(21 U 22)-formula F

Purification

2. 1-formula F 2->-formula F;

Equality Propagation

T solver = T> solver




Overview of purification

Transforms a (2, U 2;)-formula F into

an equisatisfiable formula F; A F2 with
FiinT;and F2in T>

Purification



Overview of purification

Transforms a (2, U 2;)-formula F into

an equisatisfiable formula F; A F2 with
FiinT;and F2in T>

Repeat until fix point:

 IffisinT;and tis not,and u is fresh:
FIf(....,t,...)] »www F[f(...,u,...)] Au=t
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Overview of purification

Transforms a (2, U 2;)-formula F into

an equisatisfiable formula F; A F2 with
FiinT;and F2in T>

Repeat until fix point:

 IffisinT;and tis not,and u is fresh:
FIf(....,t,...)] »www F[f(...,u,...)] Au=t

* IfpisinTiand tis not,and v is fresh:
FIp(...,t,...)] »w F[p(...,v,...)] AVv=t

x =< f(x) + |
Purification
ZR Z:
xsu+l| A u = f(x)



Another purification example

Transforms a (2, U 2;)-formula F into

an equisatisfiable formula F; A F2 with
FiinT;and F2in T>

Repeat until fix point:

 IffisinT;and tis not,and u is fresh:
FIf(....,t,...)] »www F[f(...,u,...)] Au=t

* IfpisinTiand tis not,and v is fresh:
FIp(...,t,...)] »w F[p(...,v,...)] AVv=t

fx + g(y)) < g(@) + f(b)

Purification



Another purification example

Transforms a (2, U 2;)-formula F into

an equisatisfiable formula F; A F2 with
FiinT;and F2in T>

Repeat until fix point:

 IffisinT;and tis not,and u is fresh:
FIf(....,t,...)] »www F[f(...,u,...)] Au=t

* IfpisinTiand tis not,and v is fresh:
FIp(...,t,...)] »w F[p(...,v,...)] AVv=t

fx + g(y)) < g(a) * 1(b)

Purification



Another purification example

Transforms a (2| U 22)-formula F into f(x + ur) < uz + us

an equisatisfiable formula F; A F2 with
FiinT;and F2in T>

Repeat until fix point: Purification

 IffisinT;and tis not,and u is fresh: Sk 5
FIf(....,t,...)] »www F[f(...,u,...)] Au=t

* IfpisinTiand tis not,and v is fresh: ui = g(y)

Flp(...,t,...)] »» F[p(...,v,...)] AV =1t uz = g(a)
* us = f(b)




Another purification example

Transforms a (2| U 22)-formula F into f(x + ur) < uz + us

an equisatisfiable formula F; A F2 with
FiinT;and F2in T>

Repeat until fix point: Purification

 IffisinT;and tis not,and u is fresh: Sk 5
FIf(....,t,...)] »www F[f(...,u,...)] Au=t

* IfpisinTiand tis not,and v is fresh: ui = g(y)

Flp(...,t,...)] »» F[p(...,v,...)] AV =1t uz = g(a)
* us = f(b)




Another purification example

Transforms a (2| U 22)-formula F into f(us) < uz + u3

an equisatisfiable formula F; A F2 with
FiinT;and F2in T>

Repeat until fix point: Purification

 IffisinT;and tis not,and u is fresh: Sk 5
FIf(....,t,...)] »www F[f(...,u,...)] Au=t

- If pisinTiand tis not,and v is fresh: us = x + uj ur = g(y)

Flp(...,t,...)] »» F[p(...,v,...)] AV =1t uz = g(a)
* us = f(b)




Another purification example

Transforms a (2| U 22)-formula F into f(us) < uz + u3

an equisatisfiable formula F; A F2 with
FiinT;and F2in T>

Repeat until fix point: Purification

 IffisinT;and tis not,and u is fresh: Sk 5
FIf(....,t,...)] »www F[f(...,u,...)] Au=t

- If pisinTiand tis not,and v is fresh: us = x + uj ur = g(y)

Flp(...,t,...)] »» F[p(...,v,...)] AV =1t uz = g(a)
* us = f(b)




Another purification example

Transforms a (2, U 2;)-formula F into

an equisatisfiable formula F; A F2 with
FiinT;and F2in T>

Repeat until fix point: Purification

 IffisinT;and tis not,and u is fresh: Sk 5
FIf(....,t,...)] »www F[f(...,u,...)] Au=t

» If pisinTiand tis not,and v is fresh: us = X + uj

ui = g(y)
FIp(....,t,...)] » F[p(...,V,... )] Av=t Us < uz + us u;:g(a)
* us = f(b)



Shared and local constants

A constant is shared if it occurs in
both F|, and F2, and it is local

otherwise.
Purification
ZR Z:
Ua =X+ U u = g(y)
us < uz + us u = g(a)
us = f(b)

us = f(u4)



Shared and local constants

A constant is shared if it occurs in
both F|, and F2, and it is local

otherwise.
Purification
ZR Z:
Shared: {ul, u2, u3, u4, u5} _
Us = x T Ul ur = g(y)
Local: {X’ Ys 4, b} Us < Uz + U3 U; = g(a)
us = f(b)

us = f(u4)
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Overview of Nelson-Oppen

(21 U 22)-formula F

Purification
2. -formula F, 2>-formula F
Equality Propagation

 Convex theories

 Non-convex theories



Convex theories

A theory T is convex if for every conjunctive
formula F, the following holds:

If F = xi =y V...V Xn = yn for a finite n > |,

then F = xi=yi for some i€ {l,...,n}.




Convex theories

A theory T is convex if for every conjunctive
formula F, the following holds:

If F = xi =y V...V Xn = yn for a finite n > |,

then F = xi=yi for some i€ {l,...,n}.

If F implies a disjunction of
equalities, then it also implies
at least one of the equalities.



Examples of (hon-)convex theories

Linear arithmetic over
integers (Tz)

— S —
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not < xAx<2=x=2



Examples of (hon-)convex theories

Linear arithmetic over

integers (Tz) X

I<xAXx<2=x=1|vx=2but
not < xAx<2=x=|

not < xAx<2=x=2

Equality and
uninterpreted
functions (T=)

Linear real

arithmetic (TR)(



Nelson-Oppen for convex theories

NELSON-OPPEN-CONVEX(F)
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F, are satisfiable?



Nelson-Oppen for convex theories

NELSON-OPPEN-CONVEX(F)
|. Purify Finto F| A F2

2. Run T -solver on F| and T;-solver on
F» and return UNSAT if either is
unsatisfiable

Is F satisfiable if both F| and
F, are satisfiable? No:

X=1A2=x+y A f(Xx)#f(y)
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NELSON-OPPEN-CONVEX(F)
|. Purify Finto F| A F2

2. Run T -solver on F| and T;-solver on
F» and return UNSAT if either is
unsatisfiable

3. If there are shared constants x and y
such that Fi = x =y but F; does not

l.F < FFAx=y
2. Go to step 2.
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Nelson-Oppen for convex theories: example

NELSON-OPPEN-CONVEX(F)
|. Purify Finto F| A F2
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2. Go to step 2.
4. Return SAT

f(f(x) - f(y))#f(z) Ax <y
Ay+tz=<xA0=<z
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Nelson-Oppen for convex theories: example

NELSON-OPPEN-CONVEX(F)
|. Purify Finto F| A F2

2. Run T -solver on F| and T;-solver on
F» and return UNSAT if either is
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Nelson-Oppen for convex theories: example

NELSON-OPPEN-CONVEX(F)
|. Purify Finto F| A F2

2. Run T -solver on F| and T;-solver on
F» and return UNSAT if either is
unsatisfiable

3. If there are shared constants x and y
such that Fi = x =y but F; does not
l.F < FFAx=y
2. Go to step 2.
4. Return SAT

f(f(x) - f(y))#f(z) Ax <y
Ay+tz=<xA0=<z

X<YA f(w)#f(z) A

y+tz=<xna u=f(x) A

0<zna v =1(y)

W=u-v

X=YyA X=YyA

Uu=vA Uu=vA

W=ZA W=ZA
UNSAT

2R 2=




This doesn’t work for non-convex theories ...

NELSON-OPPEN-CONVEX(F)
|. Purify Finto F| A F2

2. Run T -solver on F| and T;-solver on
F» and return UNSAT if either is
unsatisfiable

3. If there are shared constants x and y
such that Fi = x =y but F; does not
l.F < FFAx=y
2. Go to step 2.
4. Return SAT

| < xXAX<2A

f(x) = f(1) A f(x) = f(2)



This doesn’t work for non-convex theories ...

NELSON-OPPEN-CONVEX(F) | S XAX=<2A

|. Purify Finto Fi A 2 f(x) # f(I) A f(x) # f(2)

2. RunT-solver on F| and T»-solver on = xA f(x) # f(z1) A
F» and return UNSAT if either is X <2 A f(x) # f(z2)
unsatisfiable zZ1=1 A

Z) =2

3. If there are shared constants x and y

such that Fi = x =y but F; does not

l.F < FFAx=y
2. Go to step 2.
4. Return SAT




This doesn’t work for non-convex theories ...

NELSON-OPPEN-CONVEX(F)
|. Purify Finto F| A F2

2. Run T -solver on F| and T;-solver on
F» and return UNSAT if either is
unsatisfiable

3. If there are shared constants x and y
such that Fi = x =y but F; does not
l.F < FFAx=y
2. Go to step 2.
4. Return SAT

| < xXAX<2A

f(x) = f(1) A f(x) = f(2)

| < x A f(x) + f(z1) A
X<2A f(x) + f(z2)
Z1 =1 A

Z) =2

SAT SAT




This doesn’t work for non-convex theories ...

NELSON-OPPEN-CONVEX(F)
|. Purify Finto F| A F,

2. Run T -solver on F| and T;-solver on
F» and return UNSAT if either is
unsatisfiable

3. If there are shared constants x and y
such that Fi = x =y but F; does not
. Fj A Fj AX=Y
2. Go to step 2.
4. Return SAT

If T is non-convex, it may
imply a disjunction of
equalities without implying
any single equality.

We have to propagate

disj
inc

dis;

unctions as well as
ividual equalities. Which
unctions! How do we

propagate disjunctions to
theory solvers which reason
only about conjunctions!?



Nelson-Oppen for non-convex theories

NELSON-OPPEN(F)
|. Purify Finto F| A F2

2. Run T -solver on F, and T>-solver on F; and
return UNSAT if either is unsatisfiable

3. If there are shared constants x and y such that F;
= X =y but F; does not

l.FF < FFAx=y
2. Go to step 2.
4. 1f Fi = x1 =y| V...V Xn = yn but Fj does not, then
if NELSON-OPPEN(Fi A Fj A Xk = yk) outputs
SAT for any k, return SAT. Otherwise, return
UNSAT.
5. Return SAT




Nelson-Oppen for non-convex theories

NELSON-OPPEN(F)
|. Purify Finto F| A F2

2. Run T -solver on F, and T>-solver on F; and
return UNSAT if either is unsatisfiable

3. If there are shared constants x and y such that F;
= X =y but F; does not

l.FF < FFAx=y
2. Go to step 2.
4. 1f Fi = x1 =y| V...V Xn = yn but Fj does not, then
if NELSON-OPPEN(Fi A Fj A Xk = yk) outputs
SAT for any k, return SAT. Otherwise, return
UNSAT.
5. Return SAT

Propagate a minimal
disjunction.



Nelson-Oppen for hon-convex theories: example

| < xXAX<2A

f(x) = f(1) A f(x) # f(2)
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| < xXAX<2A

f(x) = f(1) A f(x) # f(2)
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X<2A f(x) # f(z2)
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Nelson-Oppen for hon-convex theories: example

| < xXAX<2A

f(x) = f(1) A f(x) # f(2)

| < x A f(x) # f(z1) A
X<2A f(x) # f(z2)
Z1= 1| A

Z) =2

(X=z1 V X=22) A

ZZ Z:

| < x A f(x) # f(z1) A

X<2A f(x) + f(z2)

Z1 =1 A

Z) =2

X = Z X=Z A
UNSAT




Nelson-Oppen for hon-convex theories: example

| < xXAX<2A

f(x) = f(1) A f(x) # f(2)

| < x A
X <2A
zZI=1 A
Z2 =2

f(x) # f(z1) A
f(x) # f(z2)

(X=z1 V X=22) A

2.7

| < x A f(x) # f(z1) A

X<2A f(x) + f(z2)

zi=1 A

Z; =2

X =Z X=7Z A
UNSAT

| < x A f(x) # f(z1) A

X<2A f(x) # f(z2)

z=1 A

Z; =2

X =12 X=1Z A

UNSAT



Soundness and completeness of Nelson-Oppen

If the theories T| and T: satisfy
Nelson-Open restrictions, then the
combination procedure returns
UNSAT for aformula Fin T, U T2 iff F

is unsatisfiable modulo T; U T»,.

20



Complexity of Nelson-Oppen

If decision procedures for convex
theories T| and T> have polynomial
time complexity, so does their
Nelson-Oppen combination.

If decision procedures for non-convex
theories T| and T2 have NP time
complexity, so does their Nelson-
Oppen combination.

21



sSummary

Today

* Sound and complete procedure for a
combination of restricted theories

- Stably infinite, conjunctive, quantifier-free with
signatures that are disjoint except for =

NeXxt lecture

* Deciding satisfiability of arbitrary boolean
combinations of quantifier-free first-order
formulas

22



