Model Checking |

Emina Torlak

emina@cs.washington.edu

http://courses.cs.washington.edu/courses/cse507/16sp/index.html

Today

Last lecture

 Symbolic execution and concolic testing

Today

* Introduction to model checking

Reminders

- Homework 3 is due next Wednesday at | |pm

What is model checking?

An automated technique for

verifying that a concurrent

finite state system satisfies a M,s =P
given temporal property.

What is model checking?

An automated technique for
verifying that a concurrent
finite state system satisfies a
given temporal property.

M,s=P

A mathematical model of
the system, given as a
Kripke structure (a finite
state machine).

What is model checking?

A state of the system
(e.g., an initial state).

An automated technique for

verifying that a concurrent

finite state system satisfies a M,s =P
given temporal property.

—

A mathematical model of
the system, given as a
Kripke structure (a finite
state machine).

What is model checking?

A temporal logic
formula (e.g., a
request is eventually
acknowledged).

A state of the system
(e.g., an initial state).

An automated technique for

verifying that a concurrent

finite state system satisfies a M,s =P
given temporal property.

— ——

A mathematical model of
the system, given as a
Kripke structure (a finite
state machine).

Why model checking?

Model checking Classic & bounded verification

Why model checking?

Model checking Classic & bounded verification

* Deterministic, single-threaded,
possibly infinite-state, terminating
programs.

* Fully described by their input/
output behavior.

* Semi-automatic or bounded-
automatic checking of properties
in expressive logics (e.g., FOL).

- Libraries and ADT implementations
+ Heap-manipulating programs (e.g., OO)

» Tricky deterministic algorithms

Why model checking?

Model checking Classic & bounded verification

* Reactive systems: concurrent * Deterministic, single-threaded,
finite-state programs with possibly infinite-state, terminating
ongoing input/output behavior. programs.

» Control-intensive but without a lot * Fully described by their input/

of data manipulation. output behavior.

* Fully automatic checking of * Semi-automatic or bounded-
properties in less expressive automatic checking of properties
(temporal) logics. in expressive logics (e.g., FOL).

— — ——

 Microprocessors and device drivers
- Embedded controllers (e.g., cars, planes)

» Protocols (e.g., cache coherence)

- Libraries and ADT implementations
+ Heap-manipulating programs (e.g., OO)

» Tricky deterministic algorithms

A brief history of model checking

B I E—— R
1930 1960 1980 1990 2010

A brief history of model checking

Modern modal
logic (Lewis).

B B I E—— E—
1930 1960 1980 1990 2010

A brief history of model checking

Standard semantics
for modal logics

Modern modal ~ (Kripke).
logic (Lewis). Temporal logic (Prior).

B B I EE— E—
1930 1960 1980 1990 2010

A brief history of model checking

1977: Using LTL to reason about concurrent
programs (Pnueli).

1981-82: Explicit-state model checking for
CTL (Emerson & Clarke; Queille & Sifakis).

Standard semantics | 985: Automata-theoretic approach for LTL
for modal logics model checking (Vardi & Wolper).
Modern modal (Kripke). |987: Symbolic model checking for CTL

logic (Lewis). Temporal logic (Prior). (McMillan).

-+
1930 1960 1980 1990 2010

A brief history of model checking

1977: Using LTL to reason about concurrent
programs (Pnueli).

1981-82: Explicit-state model checking for
CTL (Emerson & Clarke; Queille & Sifakis).

Standard semantics | 985: Automata-theoretic approach for LTL
for modal logics model checking (Vardi & Wolper).
Modern modal (Kripke). |987: Symbolic model checking for CTL

logic (Lewis). Temporal logic (Prior). (McMillan).

-+
1930 1960 1980 1990 2010

1989: SPIN (Holzmann)
1992: SMV (McMillan)

1994: Pentium bug
1995: Futurebus+ verified

A brief history of model checking

1996: Pnueli wins the 2007: Clarke, Emerson
Turing award “for seminal and Sifakis jointly win the
work introducing Turing award “for their
temporal logic into role in developing Model-
computing science and for Checking into a highly
outstanding contributions effective verification

to program and system technology that is widely
verification.” adopted in the hardware

and software industries.’

-+
1930 1960 1980 1990 2010

Kripke structures

Kripke structures

A Kripke structure is a tuple M =S, So, R, L)

Kripke structures

A Kripke structure is a tuple M =S, So, R, L)

- S s a finite set of states.

Kripke structures

A Kripke structure is a tuple M =S, So, R, L)

- S s a finite set of states.

« So C Sis the set of initial states.

Kripke structures

A Kripke structure is a tuple M =S, So, R, L)
S s a finite set of states. (:/ \
+ So C S is the set of initial states.
- R €S x S is the transition relation, which
must be total. Q

Kripke structures

A Kripke structure is a tuple M =S, So, R, L)

ab
- Sis a finite set of states. (:/ \
bc C

« So C Sis the set of initial states.

R € S x S is the transition relation, which
must be total. Q

L : S — 24P is a function that labels each state
with a set of atomic propositions true in that
state.

Kripke structures

A Kripke structure is a tuple M =S, So, R, L)

ab
- Sis a finite set of states. (:/ \
bc C

« So C Sis the set of initial states.

R € S x S is the transition relation, which
must be total. Q

L : S — 24P is a function that labels each state
with a set of atomic propositions true in that
state.

A path in M is an infinite sequence of

states 1T = sos;... such that for all i = 0,
(si, Si+1) € R

ab <+ bc & ab —...

Modeling systems with Kripke structures

* In a finite-state program, system
variables V range over a finite
domain D: V = {x,y} and D = {0, |}.

* A state of the system is a valuation
s:V — D.

< =
o®
N

Modeling systems with Kripke structures

< =
o®
N

S=x=0vx=1)A(y=0vy=1)
So=(x=1)Aa(y=1)
ROy, X, y)=(X"=(x+y)%2) Ay =)

* In a finite-state program, system

variables V range over a finite
domain D: V = {x,y} and D = {0, |}.

* A state of the system is a valuation

s:V —D.

+ Use FOL to describe the (initial)

states and the transition relation.

Modeling systems with Kripke structures

< =
o®
N

S=x=0vx=1)A(y=0vy=1)
So=(x=1)Aa(y=1)
ROy, X, y)=(X"=(x+y)%2) Ay =)

* In a finite-state program, system

variables V range over a finite
domain D: V = {x,y} and D = {0, |}.

* A state of the system is a valuation

s:V —D.

+ Use FOL to describe the (initial)

states and the transition relation.

- Extract a Kripke structure from the

FOL description.

Modeling systems with Kripke structures

< =
o®
N

* In a finite-state program, system
variables V range over a finite
domain D: V = {x,y} and D = {0, |}.

* A state of the system is a valuation
s: V= D.

+ Use FOL to describe the (initial)
states and the transition relation.

S=(x=0vx=1l)Aa(y=0vy=1)

- Extract a Kripke structure from the
FOL description.

x=1, y=1 x=0, y=1 x=0, y=0 x=1, y=0

Modeling systems with Kripke structures

< =
o®
N

* In a finite-state program, system
variables V range over a finite
domain D: V = {x,y} and D = {0, |}.

* A state of the system is a valuation

S=(x=0vx=1)A(y=0vy=1) s: V=D,
So=(x=1)A(y=1) »+ Use FOL to describe the (initial)
states and the transition relation.

- Extract a Kripke structure from the
FOL description.

x=1, y=1 x=0, y=1 x=0, y=0 x=1, y=0

Modeling systems with Kripke structures

X

II>IT
—~

< =

o

S=x=0vx=1)A(y=0vy=1)
So=Xx=hnaly=1)

ROy, X, y)=(X"=(x+y)%2) Ay =)

x=1, y=I

x=0, y=1

x=0, y=0

9

* In a finite-state program, system

variables V range over a finite
domain D: V = {x,y} and D = {0, |}.

* A state of the system is a valuation

s:V —D.

+ Use FOL to describe the (initial)

states and the transition relation.

- Extract a Kripke structure from the

x=1, y=0

0,

FOL description.

Modeling systems with Kripke structures

X

II>IT
—~

< =

o

S=x=0vx=1)A(y=0vy=1)
So=Xx=hnaly=1)

ROy, X, y)=(X"=(x+y)%2) Ay =)

x=1, y=I

x=0, y=1

x=0, y=0

9

* In a finite-state program, system

variables V range over a finite
domain D: V = {x,y} and D = {0, |}.

* A state of the system is a valuation

s:V —D.

+ Use FOL to describe the (initial)

states and the transition relation.

- Extract a Kripke structure from the

x=1, y=0

0,

FOL description.

State explosion: Kripke
structure usually exponential
in the size of the program.

A Kripke structure for a concurrent program

10
11

12
13

20
21

22
23

P
while (true) {
wait(turn == 0):
// critical section
turn = 1;
¥
)
while (true) {
wait(turn == 1);
// critical section
turn = 0;
¥

Two processes executing
concurrently and asynchronously,
using the shared variable turn to
ensure mutual exclusion:

They are never in the critical section
at the same time.

A Kripke structure for a concurrent program

Two processes executing

P concurrently and asynchronously,
10 while (true) { using the shared variable turn to
11 wait(turn == 0); ensure mutual exclusion:
// critical section . o .
12 turn := 1; They are never in the critical section
13 1} at the same time.
P, State of the program described by the

variable turn and the program

20 while (true) { counters for the two processes.

21 wait(turn == 1);

// critical section
22 turn := 0;
23}

A Kripke structure for a concurrent program

P

10 while (true) {
11 wait(turn == 0);
// critical section
12 turn = 1;
13 '}

)

20 while (true) {
21 wait(turn == 1);
// critical section
22 turn := 0;
23}

A Kripke structure for a concurrent program

10
11

12
13

20
21

22
23

P
while (true) {
wait(turn == 0):
// critical section
turn = 1;
¥
)
while (true) {
wait(turn == 1);
// critical section
turn = 0;

}

turn=0,
10, 20

turn=1,
10, 20

A Kripke structure for a concurrent program

10
11

12
13

20
21

22
23

P
while (true) {
wait(turn == 0):
// critical section
turn = 1;
)
while (true) {
wait(turn == 1);
// critical section
turn = 0;

turn=0,
10, 20
turn=0, turn=0,
10, 21 11, 20
turn=0, turn=0,
11, 21 12, 20
turn=0,

12, 21

turn=1,
10, 20
turn=1, turn=1,
10, 21 11, 20
turn=1, turn=1,
10, 22 11, 21
turn=1,
11, 22

A Kripke structure for a concurrent program

10
11

12
13

20
21

22
23

P
while (true) {
wait(turn == 0):
// critical section
turn = 1;
)
while (true) {
wait(turn == 1);
// critical section
turn = 0;

turn=0,
10, 20
turn=0, turn=0,
10, 21 11, 20
turn=0, turn=0,
11, 21 12, 20
turn=0,

12, 21

turn=1,
10, 20
turn=1, turn=1,
10, 21 11, 20
turn=1, turn=1,
10, 22 11, 21
turn=1,
11, 22

A Kripke structure for a concurrent program

10
11

12
13

20
21

22
23

P
while (true) {
wait(turn == 0):
// critical section
turn = 1;
¥
)
while (true) {
wait(turn == 1);
// critical section
turn = 0;
¥

turn=0,
10, 20
turn=0, turn=0,
<:\f32l 11, 20
turn=0, turn=0,
<:\!;2I 12, 20
turn=0,

G}

turn=1,
10, 20
turn=1, turn=1,
10, 21 11, 20
turn=1, turn=1,
10, 22 11, 21
turn=1,
11, 22

A Kripke structure for a concurrent program

10
11

12
13

20
21

22
23

P
while (true) {
wait(turn == 0):
// critical section
turn = 1;
¥
)
while (true) {
wait(turn == 1);
// critical section
turn = 0;
¥

turn=0, turn=1,
10, 20 10, 20
turn=0, turn= turn=1, turn=1,

LT DO

Safety & liveness properties of reactive systems

Safety

* “Nothing bad will happen.”

* (P is a safety property iff every
infinite path TT violating ¢ has a
finite prefix TT' such that every
extension of TT' violates .

Liveness

» “Something good will happen.”

* Y is a liveness property iff every

finite path (prefix) TT can be
extended so that it satisfies \D.

Safety & liveness properties of reactive systems

Safety Liveness

* “Nothing bad will happen.” » “Something good will happen.”

* (P is a safety property iff every * D is a liveness property iff every
infinite path TT violating ¢ has a finite path (prefix) TT can be
finite prefix TT' such that every extended so that it satisfies .

extension of TT' violates .

Finite witnesses (counterexamples).

Reducible to checking reachability in
the state transition graph.

Safety & liveness properties of reactive systems

Safety

* “Nothing bad will happen.”

* (P is a safety property iff every
infinite path TT violating ¢ has a
finite prefix TT' such that every
extension of TT' violates .

Finite witnesses (counterexamples).

Reducible to checking reachability in
the state transition graph.

Liveness

» “Something good will happen.”

* Y is a liveness property iff every

finite path (prefix) TT can be
extended so that it satisfies \D.

No finite witnesses (counterexamples).

Safety & liveness properties of reactive systems

Safety Liveness

* “Nothing bad will happen.” » “Something good will happen.”

* (P is a safety property iff every * D is a liveness property iff every
infinite path TT violating ¢ has a finite path (prefix) TT can be
finite prefix TT' such that every extended so that it satisfies .

extension of TT' violates .

Mutual exclusion: P, and P> will
never be in their critical regions
simultaneously.

Safety & liveness properties of reactive systems

Safety

“Nothing bad will happen.”

* (is a safety property iff every
infinite path 1T violating ¢ has a
finite prefix TT' such that every
extension of TT' violates .

Mutual exclusion: P, and P; will
never be in their critical regions
simultaneously.

Liveness

* “Something good will happen.”

*) is a liveness property iff every
finite path (prefix) TT can be
extended so that it satisfies .

Starvation freedom: whenever P is
ready to enter its critical section, it will
eventually succeed (provided that the
scheduler is fair and does not let P, stay

in its critical section forever).

Expressing properties in temporal logics

/N
()

Linear time: properties of computation paths

ab —& bc —& ab —...
ab *» ¢ —& ¢ —...

Branching time: properties of computation trees

bc —...

___—
\

bc — ab

ab

e
N

Computation tree logic CTL*

Path quantifiers describe the branching
structure of the computation tree:

A (for all paths)

* E (there exists a path)

Temporal operators describe properties
of a path through a tree:

« Xp (p holds “next time”)

« Fp (p holds “eventually” or “in the future”)
+ Gp (p holds “always” or “globally”)

- p U g (p holds “until” g holds)

Syntax of CTL*

State formulas

+ Atomic propositions: a € AP
- f,f A g,fVv g where fand g are state formulas

- Ap and Ep, where p is a path formula

Path formulas
- f, where f is a state formula

« Tp,p AP, P V G, Where p and q are path formulas

- Xp, Fp, Gp, p U g, where p and q are path formulas

Semantics of CTL*

State formulas
« M,sEfiff f e L(s)
« M,s = Ap iff M, TT = p for all paths TT that start at s

- M,s = Ep iff M, TT = p for some path TT that starts at s

Path formulas (11X is suffix of 1T starting at si)

- M,TTETfiff M,s =fand s is the first state of TT
- MTTEXpiffM, Tt =p

- M, T = Fp iff M, TT* = p for some k = 0

* M,TT=Gpiff M, Tik=pforallk = 0

» M, TT=p U qiff M, TT" = q and M, 111 = p for some k
> 0andforall0 <j<k

CTL and Linear Temporal Logic (LTL)

Computation Tree Logic (CTL) Linear Temporal Logic (LTL)

CTL and Linear Temporal Logic (LTL)

Computation Tree Logic (CTL) Linear Temporal Logic (LTL)

* Fragment of CTL* in which each
temporal operator is prefixed
with a path quantifier.

- AG(EF p): From any state, it is
possible to get to a state where
p holds.

— e ———— ————
.

CTL and Linear Temporal Logic (LTL)

Computation Tree Logic (CTL) Linear Temporal Logic (LTL)

* Fragment of CTL* in which each * Fragment of CTL* with formulas
temporal operator is prefixed of the form Ap, where p contains
with a path quantifier. no path quantifiers.

- AG(EF p): From any state, it is - A(FG p): Along every path, there
possible to get to a state where is some state from which p will

p holds. hold forever.

—
e ———

Expressive power of CTL, LTL, and CTL*

CTL*

CTL LTL
AG(EF p) A(FG p)

Fairness

Cannot be expressed in CTL

Can be expressed in LTL

Fairness

Cannot be expressed in CTL

- Handled by changing the
semantics to use fair Kripke
structures.

* A fair Kripke structure M = (S, So,
R, L, F> includes an additional set
of sets of states F C25.

* For each P € F a fair path Tt

includes some states from P
infinitely often.

* Path quantifiers interpreted only
with respect to fair paths.

Can be expressed in LTL

Fairness

Cannot be expressed in CTL Can be expressed in LTL
* Handled by changing the - Absolute fairness: A(GF pexec)

s:matntlcs to use fair Kripke . Strong fairness:

structures.

A((GF Pready) = (GF Pready A Pexec))

* A fair Kripke structure M = (S, So,

R, L, F) includes an additional set * Weak fairness:

of sets of states F €25, A((FG pready) = (GF pready A Pexec))

* For each P € F a fair path Tt

includes some states from P
infinitely often.

* Path quantifiers interpreted only
with respect to fair paths.

Model checking complexity for CTL, LTL, CTL*

Polynomial Time for CTL
Best known algorithm: O(|M| * |f])

PSPACE-complete for LTL

» Best known algorithm: O(|M| * 2If)

PSPACE-complete for CTL*

» Best known algorithm: O(|M| * 2If)

M,s =f

Model checking techniques for CTL and LTL

CTL

- Graph-theoretic explicit-state model checking (EMC)

+ Symbolic model checking with Ordered Binary
Decision Diagrams (SMV, NuSMV)

+ Bounded model checking based on SAT (NuSMV)

LTL
-+ Automata-theoretic model checking:
- Explicit-state (SPIN) or
» Symbolic (NuSMV)

sSummary

Today

* Basics of model checking:

- Krip

 Tem

ke structures
poral logics (CTL, LTL,CTL*)

* Mod

el checking techniques

NeXxt lecture

* Software model checking

20

