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Last lecture
• Symbolic execution and concolic testing

Today  
• Introduction to model checking

Reminders
• Homework 3 is due next Wednesday at 11pm
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What is model checking?
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An automated technique for 
verifying that a concurrent 
finite state system satisfies a 
given temporal property.

M, s ⊨ P

A mathematical model of 
the system, given as a 
Kripke structure (a finite 
state machine).

A temporal logic 
formula (e.g., a 
request is eventually 
acknowledged).

A state of the system 
(e.g., an initial state).
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Classic & bounded verification 

• Deterministic, single-threaded, 
possibly infinite-state, terminating 
programs. 

• Fully described by their input/
output behavior.

• Semi-automatic or bounded-
automatic checking of properties 
in expressive logics (e.g., FOL).

Model checking

• Reactive systems:  concurrent 
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ongoing input/output behavior. 

• Control-intensive but without a lot 
of data manipulation.

• Fully automatic checking of 
properties in less expressive 
(temporal) logics.
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possibly infinite-state, terminating 
programs. 

• Fully described by their input/
output behavior.

• Semi-automatic or bounded-
automatic checking of properties 
in expressive logics (e.g., FOL).

Model checking

• Reactive systems:  concurrent 
finite-state programs with 
ongoing input/output behavior. 

• Control-intensive but without a lot 
of data manipulation.

• Fully automatic checking of 
properties in less expressive 
(temporal) logics.

• Microprocessors and device drivers

• Embedded controllers (e.g., cars, planes)

• Protocols (e.g., cache coherence)

• Libraries and ADT implementations

• Heap-manipulating programs (e.g., OO)

• Tricky deterministic algorithms
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1977:  Using LTL to reason about concurrent 
programs (Pnueli).

1981-82:  Explicit-state model checking for 
CTL (Emerson & Clarke; Queille & Sifakis).

1985:  Automata-theoretic approach for LTL 
model checking (Vardi & Wolper).

1987:  Symbolic model checking for CTL 
(McMillan).
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A brief history of model checking

5

1930 1960 1980 1990 2010

Modern modal 
logic (Lewis).

Standard semantics 
for modal logics 
(Kripke).

Temporal logic (Prior).

1989:  SPIN (Holzmann)

1992:  SMV (McMillan)

1994:  Pentium bug

1995:  Futurebus+ verified



1996:  Pnueli wins the 
Turing award “for seminal 
work introducing 
temporal logic into 
computing science and for 
outstanding contributions 
to program and system 
verification.”

2007:  Clarke, Emerson 
and Sifakis jointly win the 
Turing award “for their 
role in developing Model-
Checking into a highly 
effective verification 
technology that is widely 
adopted in the hardware 
and software industries.”

A brief history of model checking

5
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A Kripke structure is a tuple M = ⟨S, S0, R, L⟩

• S is a finite set of states.

• S0 ⊆ S is the set of initial states.

• R ⊆ S × S is the transition relation, which 
must be total.

• L : S ➝ 2AP is a function that labels each state 
with a set of atomic propositions true in that 
state.

A path in M is an infinite sequence of 
states π = s0s1… such that for all i ≥ 0,      
(si, si+1) ∈ R.

b c c

a b

b ca b a b …



• In a finite-state program, system 
variables V range over a finite 
domain D:  V = {x, y} and D = {0, 1}.

• A state of the system is a valuation  
s :  V → D.

• Use FOL to describe the (initial) 
states and the transition relation.

• Extract a Kripke structure from the 
FOL description.

Modeling systems with Kripke structures
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x := (x + y) % 2
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R(x, y, x′, y′) ≡ (x′ = (x + y) % 2) ∧ (y′ = y)
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// x=1, y=1 
x := (x + y) % 2

x=0, y=0x=1, y=1 x=0, y=1 x=1, y=0
State explosion:  Kripke 
structure usually exponential 
in the size of the program.
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10  while (true) { 
11    wait(turn == 0); 
      // critical section 
12    turn := 1; 
13  } 

20  while (true) { 
21    wait(turn == 1); 
      // critical section 
22    turn := 0; 
23  } 

P1

P2

Two processes executing 
concurrently and asynchronously, 
using the shared variable turn to 
ensure mutual exclusion:

They are never in the critical section 
at the same time.
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10  while (true) { 
11    wait(turn == 0); 
      // critical section 
12    turn := 1; 
13  } 

20  while (true) { 
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P1

P2

Two processes executing 
concurrently and asynchronously, 
using the shared variable turn to 
ensure mutual exclusion:

They are never in the critical section 
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variable turn and the program 
counters for the two processes.
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Safety

• “Nothing bad will happen.”

• φ is a safety property iff every 
infinite path π violating φ has a 
finite prefix π' such that every  
extension of π' violates φ.

Liveness

• “Something good will happen.”

• ψ is a liveness property iff every 
finite path (prefix) π can be 
extended so that it satisfies ψ.
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Safety

• “Nothing bad will happen.”

• φ is a safety property iff every 
infinite path π violating φ has a 
finite prefix π' such that every  
extension of π' violates φ.

Liveness

• “Something good will happen.”

• ψ is a liveness property iff every 
finite path (prefix) π can be 
extended so that it satisfies ψ.

Mutual exclusion:  P1 and P2 will 
never be in their critical regions 
simultaneously. 

Starvation freedom:  whenever P1 is 
ready to enter its critical section, it will 
eventually succeed (provided that the 
scheduler is fair and does not let P2 stay 
in its critical section forever).
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Expressing properties in temporal logics
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Linear time:  properties of computation paths

b ca b a b …

Branching time:  properties of computation trees

c

a b

b c a b

c

c

b c

…

…

…

ca b c …



Computation tree logic CTL*
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a b

b c
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a b

b c
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…

… …

Path quantifiers describe the branching 
structure of the computation tree:

• A (for all paths)

• E (there exists a path)

Temporal operators describe properties 
of a path through a tree:

• Xp (p holds “next time”)

• Fp (p holds “eventually” or “in the future”)

• Gp (p holds “always” or “globally”)

• p U q (p holds “until” q holds)



Syntax of CTL*
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State formulas
• Atomic propositions:  a ∈ AP

• ¬f, f ∧ g, f ∨ g, where f and g are state formulas

• Ap and Ep, where p is a path formula

Path formulas
• f, where f is a state formula

• ¬p, p ∧ p, p ∨ q, where p and q are path formulas

• Xp, Fp, Gp, p U q, where p and q are path formulas

c

a b

b c

c

a b

b c

c

…

… …



Semantics of CTL* 
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State formulas
• M, s ⊨ f iff f ∈ L(s)

• M, s ⊨ Ap iff M, π ⊨ p for all paths π that start at s

• M, s ⊨ Ep iff M, π ⊨ p for some path π that starts at s

Path formulas (πk is suffix of π starting at sk)

• M, π ⊨ f iff M, s ⊨ f and s is the first state of π
• M, π ⊨ Xp iff M, π1 ⊨ p

• M, π ⊨ Fp iff M, πk ⊨ p for some k ≥ 0

• M, π ⊨ Gp iff M, πk ⊨ p for all k ≥ 0

• M, π ⊨ p U q iff M, πk ⊨ q and M, πj ⊨ p for some k 
≥ 0 and for all 0 ≤ j < k

c

a b

b c

c

a b

b c

c

…

… …



CTL and Linear Temporal Logic (LTL)
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Computation Tree Logic (CTL)

• Fragment of CTL* in which each 
temporal operator is prefixed 
with a path quantifier.

• AG(EF p):  From any state, it is 
possible to get to a state where 
p holds.

Linear Temporal Logic (LTL)

• Fragment of CTL* with formulas 
of the form Ap, where p contains 
no path quantifiers.

• A(FG p):  Along every path, there 
is some state from which p will 
hold forever.
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Expressive power of CTL, LTL, and CTL*
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CTL LTL

CTL*

AG(EF p) A(FG p)



Cannot be expressed in CTL

• Handled by changing the 
semantics to use fair Kripke 
structures.

• A fair Kripke structure M = ⟨S, S0, 
R, L, F⟩ includes an additional set 
of sets of states F ⊆2S.

• For each P ∈ F, a fair path π 
includes some states from P 
infinitely often.

• Path quantifiers interpreted only 
with respect to fair paths.

Fairness

17

Can be expressed in LTL

• Absolute fairness:  A(GF pexec)

• Strong fairness:      
A((GF pready) ⇒ (GF pready ∧ pexec)) 

• Weak fairness:      
A((FG pready) ⇒ (GF pready ∧ pexec)) 
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Model checking complexity for CTL, LTL, CTL*
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M, s ⊨ f

Polynomial Time for CTL
• Best known algorithm:  O(|M| * |f|)

PSPACE-complete for LTL
• Best known algorithm:  O(|M| * 2|f|)

PSPACE-complete for CTL*
• Best known algorithm:  O(|M| * 2|f|)



Model checking techniques for CTL and LTL

19

CTL
• Graph-theoretic explicit-state model checking (EMC)

• Symbolic model checking with Ordered Binary 
Decision Diagrams (SMV, NuSMV)

• Bounded model checking based on SAT (NuSMV)

LTL
• Automata-theoretic model checking:  

• Explicit-state (SPIN) or 

• Symbolic (NuSMV)



Summary

20

Today
• Basics of model checking:

• Kripke structures
• Temporal logics (CTL, LTL,CTL*)
• Model checking techniques

Next lecture
• Software model checking


