
Emina Torlak
emina@cs.washington.edu

CSE507
courses.cs.washington.edu/courses/cse507/16sp/

Computer-Aided Reasoning for Software

Model Checking I

http://courses.cs.washington.edu/courses/cse507/16sp/index.html

to
pi

cs

Today

2

Last lecture
• Symbolic execution and concolic testing

Today
• Introduction to model checking

Reminders
• Homework 3 is due next Wednesday at 11pm

What is model checking?

3

An automated technique for
verifying that a concurrent
finite state system satisfies a
given temporal property.

M, s ⊨ P

What is model checking?

3

An automated technique for
verifying that a concurrent
finite state system satisfies a
given temporal property.

M, s ⊨ P

A mathematical model of
the system, given as a
Kripke structure (a finite
state machine).

What is model checking?

3

An automated technique for
verifying that a concurrent
finite state system satisfies a
given temporal property.

M, s ⊨ P

A mathematical model of
the system, given as a
Kripke structure (a finite
state machine).

A state of the system
(e.g., an initial state).

What is model checking?

3

An automated technique for
verifying that a concurrent
finite state system satisfies a
given temporal property.

M, s ⊨ P

A mathematical model of
the system, given as a
Kripke structure (a finite
state machine).

A temporal logic
formula (e.g., a
request is eventually
acknowledged).

A state of the system
(e.g., an initial state).

Why model checking?

4

Classic & bounded verification

• Deterministic, single-threaded,
possibly infinite-state, terminating
programs.

• Fully described by their input/
output behavior.

• Semi-automatic or bounded-
automatic checking of properties
in expressive logics (e.g., FOL).

Model checking

• Reactive systems: concurrent
finite-state programs with
ongoing input/output behavior.

• Control-intensive but without a lot
of data manipulation.

• Fully automatic checking of
properties in less expressive
(temporal) logics.

Why model checking?

4

Classic & bounded verification

• Deterministic, single-threaded,
possibly infinite-state, terminating
programs.

• Fully described by their input/
output behavior.

• Semi-automatic or bounded-
automatic checking of properties
in expressive logics (e.g., FOL).

Model checking

• Reactive systems: concurrent
finite-state programs with
ongoing input/output behavior.

• Control-intensive but without a lot
of data manipulation.

• Fully automatic checking of
properties in less expressive
(temporal) logics.

• Libraries and ADT implementations

• Heap-manipulating programs (e.g., OO)

• Tricky deterministic algorithms

Why model checking?

4

Classic & bounded verification

• Deterministic, single-threaded,
possibly infinite-state, terminating
programs.

• Fully described by their input/
output behavior.

• Semi-automatic or bounded-
automatic checking of properties
in expressive logics (e.g., FOL).

Model checking

• Reactive systems: concurrent
finite-state programs with
ongoing input/output behavior.

• Control-intensive but without a lot
of data manipulation.

• Fully automatic checking of
properties in less expressive
(temporal) logics.

• Microprocessors and device drivers

• Embedded controllers (e.g., cars, planes)

• Protocols (e.g., cache coherence)

• Libraries and ADT implementations

• Heap-manipulating programs (e.g., OO)

• Tricky deterministic algorithms

A brief history of model checking

5

1930 1960 1980 1990 2010

A brief history of model checking

5

1930 1960 1980 1990 2010

Modern modal
logic (Lewis).

A brief history of model checking

5

1930 1960 1980 1990 2010

Modern modal
logic (Lewis).

Standard semantics
for modal logics
(Kripke).

Temporal logic (Prior).

1977: Using LTL to reason about concurrent
programs (Pnueli).

1981-82: Explicit-state model checking for
CTL (Emerson & Clarke; Queille & Sifakis).

1985: Automata-theoretic approach for LTL
model checking (Vardi & Wolper).

1987: Symbolic model checking for CTL
(McMillan).

A brief history of model checking

5

1930 1960 1980 1990 2010

Modern modal
logic (Lewis).

Standard semantics
for modal logics
(Kripke).

Temporal logic (Prior).

1977: Using LTL to reason about concurrent
programs (Pnueli).

1981-82: Explicit-state model checking for
CTL (Emerson & Clarke; Queille & Sifakis).

1985: Automata-theoretic approach for LTL
model checking (Vardi & Wolper).

1987: Symbolic model checking for CTL
(McMillan).

A brief history of model checking

5

1930 1960 1980 1990 2010

Modern modal
logic (Lewis).

Standard semantics
for modal logics
(Kripke).

Temporal logic (Prior).

1989: SPIN (Holzmann)

1992: SMV (McMillan)

1994: Pentium bug

1995: Futurebus+ verified

1996: Pnueli wins the
Turing award “for seminal
work introducing
temporal logic into
computing science and for
outstanding contributions
to program and system
verification.”

2007: Clarke, Emerson
and Sifakis jointly win the
Turing award “for their
role in developing Model-
Checking into a highly
effective verification
technology that is widely
adopted in the hardware
and software industries.”

A brief history of model checking

5

1930 1960 1980 1990 2010

Kripke structures

6

Kripke structures

6

A Kripke structure is a tuple M = ⟨S, S0, R, L⟩

Kripke structures

6

A Kripke structure is a tuple M = ⟨S, S0, R, L⟩

• S is a finite set of states.

Kripke structures

6

A Kripke structure is a tuple M = ⟨S, S0, R, L⟩

• S is a finite set of states.

• S0 ⊆ S is the set of initial states.

Kripke structures

6

A Kripke structure is a tuple M = ⟨S, S0, R, L⟩

• S is a finite set of states.

• S0 ⊆ S is the set of initial states.

• R ⊆ S × S is the transition relation, which
must be total.

Kripke structures

6

A Kripke structure is a tuple M = ⟨S, S0, R, L⟩

• S is a finite set of states.

• S0 ⊆ S is the set of initial states.

• R ⊆ S × S is the transition relation, which
must be total.

• L : S ➝ 2AP is a function that labels each state
with a set of atomic propositions true in that
state.

b c c

a b

Kripke structures

6

A Kripke structure is a tuple M = ⟨S, S0, R, L⟩

• S is a finite set of states.

• S0 ⊆ S is the set of initial states.

• R ⊆ S × S is the transition relation, which
must be total.

• L : S ➝ 2AP is a function that labels each state
with a set of atomic propositions true in that
state.

A path in M is an infinite sequence of
states π = s0s1… such that for all i ≥ 0,
(si, si+1) ∈ R.

b c c

a b

b ca b a b …

• In a finite-state program, system
variables V range over a finite
domain D: V = {x, y} and D = {0, 1}.

• A state of the system is a valuation
s : V → D.

• Use FOL to describe the (initial)
states and the transition relation.

• Extract a Kripke structure from the
FOL description.

Modeling systems with Kripke structures

7

// x=1, y=1
x := (x + y) % 2

S ≡ (x = 0 ∨ x = 1) ∧ (y = 0 ∨ y = 1)
S0 ≡ (x = 1) ∧ (y = 1)
R(x, y, x′, y′) ≡ (x′ = (x + y) % 2) ∧ (y′ = y)

• In a finite-state program, system
variables V range over a finite
domain D: V = {x, y} and D = {0, 1}.

• A state of the system is a valuation
s : V → D.

• Use FOL to describe the (initial)
states and the transition relation.

• Extract a Kripke structure from the
FOL description.

Modeling systems with Kripke structures

7

// x=1, y=1
x := (x + y) % 2

S ≡ (x = 0 ∨ x = 1) ∧ (y = 0 ∨ y = 1)
S0 ≡ (x = 1) ∧ (y = 1)
R(x, y, x′, y′) ≡ (x′ = (x + y) % 2) ∧ (y′ = y)

• In a finite-state program, system
variables V range over a finite
domain D: V = {x, y} and D = {0, 1}.

• A state of the system is a valuation
s : V → D.

• Use FOL to describe the (initial)
states and the transition relation.

• Extract a Kripke structure from the
FOL description.

Modeling systems with Kripke structures

7

// x=1, y=1
x := (x + y) % 2

S ≡ (x = 0 ∨ x = 1) ∧ (y = 0 ∨ y = 1)
S0 ≡ (x = 1) ∧ (y = 1)
R(x, y, x′, y′) ≡ (x′ = (x + y) % 2) ∧ (y′ = y)

• In a finite-state program, system
variables V range over a finite
domain D: V = {x, y} and D = {0, 1}.

• A state of the system is a valuation
s : V → D.

• Use FOL to describe the (initial)
states and the transition relation.

• Extract a Kripke structure from the
FOL description.

x=1, y=1

Modeling systems with Kripke structures

7

// x=1, y=1
x := (x + y) % 2

x=0, y=0x=0, y=1 x=1, y=0

S ≡ (x = 0 ∨ x = 1) ∧ (y = 0 ∨ y = 1)
S0 ≡ (x = 1) ∧ (y = 1)
R(x, y, x′, y′) ≡ (x′ = (x + y) % 2) ∧ (y′ = y)

• In a finite-state program, system
variables V range over a finite
domain D: V = {x, y} and D = {0, 1}.

• A state of the system is a valuation
s : V → D.

• Use FOL to describe the (initial)
states and the transition relation.

• Extract a Kripke structure from the
FOL description.

x=1, y=1

Modeling systems with Kripke structures

7

// x=1, y=1
x := (x + y) % 2

x=0, y=0x=1, y=1 x=0, y=1 x=1, y=0

S ≡ (x = 0 ∨ x = 1) ∧ (y = 0 ∨ y = 1)
S0 ≡ (x = 1) ∧ (y = 1)
R(x, y, x′, y′) ≡ (x′ = (x + y) % 2) ∧ (y′ = y)

• In a finite-state program, system
variables V range over a finite
domain D: V = {x, y} and D = {0, 1}.

• A state of the system is a valuation
s : V → D.

• Use FOL to describe the (initial)
states and the transition relation.

• Extract a Kripke structure from the
FOL description.

x=1, y=1

Modeling systems with Kripke structures

7

// x=1, y=1
x := (x + y) % 2

x=0, y=0x=1, y=1 x=0, y=1 x=1, y=0

S ≡ (x = 0 ∨ x = 1) ∧ (y = 0 ∨ y = 1)
S0 ≡ (x = 1) ∧ (y = 1)
R(x, y, x′, y′) ≡ (x′ = (x + y) % 2) ∧ (y′ = y)

• In a finite-state program, system
variables V range over a finite
domain D: V = {x, y} and D = {0, 1}.

• A state of the system is a valuation
s : V → D.

• Use FOL to describe the (initial)
states and the transition relation.

• Extract a Kripke structure from the
FOL description.

x=1, y=1

Modeling systems with Kripke structures

7

// x=1, y=1
x := (x + y) % 2

x=0, y=0x=1, y=1 x=0, y=1 x=1, y=0
State explosion: Kripke
structure usually exponential
in the size of the program.

A Kripke structure for a concurrent program

8

10 while (true) {
11 wait(turn == 0);
 // critical section
12 turn := 1;
13 }

20 while (true) {
21 wait(turn == 1);
 // critical section
22 turn := 0;
23 }

P1

P2

Two processes executing
concurrently and asynchronously,
using the shared variable turn to
ensure mutual exclusion:

They are never in the critical section
at the same time.

A Kripke structure for a concurrent program

8

10 while (true) {
11 wait(turn == 0);
 // critical section
12 turn := 1;
13 }

20 while (true) {
21 wait(turn == 1);
 // critical section
22 turn := 0;
23 }

P1

P2

Two processes executing
concurrently and asynchronously,
using the shared variable turn to
ensure mutual exclusion:

They are never in the critical section
at the same time.

State of the program described by the
variable turn and the program
counters for the two processes.

A Kripke structure for a concurrent program

9

10 while (true) {
11 wait(turn == 0);
 // critical section
12 turn := 1;
13 }

20 while (true) {
21 wait(turn == 1);
 // critical section
22 turn := 0;
23 }

P1

P2

A Kripke structure for a concurrent program

9

10 while (true) {
11 wait(turn == 0);
 // critical section
12 turn := 1;
13 }

20 while (true) {
21 wait(turn == 1);
 // critical section
22 turn := 0;
23 }

P1

P2

turn=0,
10, 20

turn=1,
10, 20

A Kripke structure for a concurrent program

9

10 while (true) {
11 wait(turn == 0);
 // critical section
12 turn := 1;
13 }

20 while (true) {
21 wait(turn == 1);
 // critical section
22 turn := 0;
23 }

P1

P2

turn=0,
10, 20

turn=1,
10, 20

turn=0,
10, 21

turn=0,
11, 20

turn=0,
11, 21

turn=0,
12, 20

turn=0,
12, 21

turn=1,
10, 21

turn=1,
11, 20

turn=1,
10, 22

turn=1,
11, 21

turn=1,
11, 22

A Kripke structure for a concurrent program

9

10 while (true) {
11 wait(turn == 0);
 // critical section
12 turn := 1;
13 }

20 while (true) {
21 wait(turn == 1);
 // critical section
22 turn := 0;
23 }

P1

P2

turn=0,
10, 20

turn=1,
10, 20

turn=0,
10, 21

turn=0,
11, 20

turn=0,
11, 21

turn=0,
12, 20

turn=0,
12, 21

turn=1,
10, 21

turn=1,
11, 20

turn=1,
10, 22

turn=1,
11, 21

turn=1,
11, 22

A Kripke structure for a concurrent program

9

10 while (true) {
11 wait(turn == 0);
 // critical section
12 turn := 1;
13 }

20 while (true) {
21 wait(turn == 1);
 // critical section
22 turn := 0;
23 }

P1

P2

turn=0,
10, 20

turn=1,
10, 20

turn=0,
10, 21

turn=0,
11, 20

turn=0,
11, 21

turn=0,
12, 20

turn=0,
12, 21

turn=1,
10, 21

turn=1,
11, 20

turn=1,
10, 22

turn=1,
11, 21

turn=1,
11, 22

A Kripke structure for a concurrent program

9

10 while (true) {
11 wait(turn == 0);
 // critical section
12 turn := 1;
13 }

20 while (true) {
21 wait(turn == 1);
 // critical section
22 turn := 0;
23 }

P1

P2

turn=0,
10, 20

turn=1,
10, 20

turn=0,
10, 21

turn=0,
11, 20

turn=0,
11, 21

turn=0,
12, 20

turn=0,
12, 21

turn=1,
10, 21

turn=1,
11, 20

turn=1,
10, 22

turn=1,
11, 21

turn=1,
11, 22

Safety & liveness properties of reactive systems

10

Safety

• “Nothing bad will happen.”

• φ is a safety property iff every
infinite path π violating φ has a
finite prefix π' such that every
extension of π' violates φ.

Liveness

• “Something good will happen.”

• ψ is a liveness property iff every
finite path (prefix) π can be
extended so that it satisfies ψ.

Safety & liveness properties of reactive systems

10

Safety

• “Nothing bad will happen.”

• φ is a safety property iff every
infinite path π violating φ has a
finite prefix π' such that every
extension of π' violates φ.

Liveness

• “Something good will happen.”

• ψ is a liveness property iff every
finite path (prefix) π can be
extended so that it satisfies ψ.

Finite witnesses (counterexamples).

Reducible to checking reachability in
the state transition graph.

Safety & liveness properties of reactive systems

10

Safety

• “Nothing bad will happen.”

• φ is a safety property iff every
infinite path π violating φ has a
finite prefix π' such that every
extension of π' violates φ.

Liveness

• “Something good will happen.”

• ψ is a liveness property iff every
finite path (prefix) π can be
extended so that it satisfies ψ.

Finite witnesses (counterexamples).

Reducible to checking reachability in
the state transition graph.

No finite witnesses (counterexamples).

Safety & liveness properties of reactive systems

10

Safety

• “Nothing bad will happen.”

• φ is a safety property iff every
infinite path π violating φ has a
finite prefix π' such that every
extension of π' violates φ.

Liveness

• “Something good will happen.”

• ψ is a liveness property iff every
finite path (prefix) π can be
extended so that it satisfies ψ.

Mutual exclusion: P1 and P2 will
never be in their critical regions
simultaneously.

Safety & liveness properties of reactive systems

10

Safety

• “Nothing bad will happen.”

• φ is a safety property iff every
infinite path π violating φ has a
finite prefix π' such that every
extension of π' violates φ.

Liveness

• “Something good will happen.”

• ψ is a liveness property iff every
finite path (prefix) π can be
extended so that it satisfies ψ.

Mutual exclusion: P1 and P2 will
never be in their critical regions
simultaneously.

Starvation freedom: whenever P1 is
ready to enter its critical section, it will
eventually succeed (provided that the
scheduler is fair and does not let P2 stay
in its critical section forever).

c

a b

b c

Expressing properties in temporal logics

11

Linear time: properties of computation paths

b ca b a b …

Branching time: properties of computation trees

c

a b

b c a b

c

c

b c

…

…

…

ca b c …

Computation tree logic CTL*

12

c

a b

b c

c

a b

b c

c

…

… …

Path quantifiers describe the branching
structure of the computation tree:

• A (for all paths)

• E (there exists a path)

Temporal operators describe properties
of a path through a tree:

• Xp (p holds “next time”)

• Fp (p holds “eventually” or “in the future”)

• Gp (p holds “always” or “globally”)

• p U q (p holds “until” q holds)

Syntax of CTL*

13

State formulas
• Atomic propositions: a ∈ AP

• ¬f, f ∧ g, f ∨ g, where f and g are state formulas

• Ap and Ep, where p is a path formula

Path formulas
• f, where f is a state formula

• ¬p, p ∧ p, p ∨ q, where p and q are path formulas

• Xp, Fp, Gp, p U q, where p and q are path formulas

c

a b

b c

c

a b

b c

c

…

… …

Semantics of CTL*

14

State formulas
• M, s ⊨ f iff f ∈ L(s)

• M, s ⊨ Ap iff M, π ⊨ p for all paths π that start at s

• M, s ⊨ Ep iff M, π ⊨ p for some path π that starts at s

Path formulas (πk is suffix of π starting at sk)

• M, π ⊨ f iff M, s ⊨ f and s is the first state of π
• M, π ⊨ Xp iff M, π1 ⊨ p

• M, π ⊨ Fp iff M, πk ⊨ p for some k ≥ 0

• M, π ⊨ Gp iff M, πk ⊨ p for all k ≥ 0

• M, π ⊨ p U q iff M, πk ⊨ q and M, πj ⊨ p for some k
≥ 0 and for all 0 ≤ j < k

c

a b

b c

c

a b

b c

c

…

… …

CTL and Linear Temporal Logic (LTL)

15

Computation Tree Logic (CTL)

• Fragment of CTL* in which each
temporal operator is prefixed
with a path quantifier.

• AG(EF p): From any state, it is
possible to get to a state where
p holds.

Linear Temporal Logic (LTL)

• Fragment of CTL* with formulas
of the form Ap, where p contains
no path quantifiers.

• A(FG p): Along every path, there
is some state from which p will
hold forever.

CTL and Linear Temporal Logic (LTL)

15

Computation Tree Logic (CTL)

• Fragment of CTL* in which each
temporal operator is prefixed
with a path quantifier.

• AG(EF p): From any state, it is
possible to get to a state where
p holds.

Linear Temporal Logic (LTL)

• Fragment of CTL* with formulas
of the form Ap, where p contains
no path quantifiers.

• A(FG p): Along every path, there
is some state from which p will
hold forever.

CTL and Linear Temporal Logic (LTL)

15

Computation Tree Logic (CTL)

• Fragment of CTL* in which each
temporal operator is prefixed
with a path quantifier.

• AG(EF p): From any state, it is
possible to get to a state where
p holds.

Linear Temporal Logic (LTL)

• Fragment of CTL* with formulas
of the form Ap, where p contains
no path quantifiers.

• A(FG p): Along every path, there
is some state from which p will
hold forever.

Expressive power of CTL, LTL, and CTL*

16

CTL LTL

CTL*

AG(EF p) A(FG p)

Cannot be expressed in CTL

• Handled by changing the
semantics to use fair Kripke
structures.

• A fair Kripke structure M = ⟨S, S0,
R, L, F⟩ includes an additional set
of sets of states F ⊆2S.

• For each P ∈ F, a fair path π
includes some states from P
infinitely often.

• Path quantifiers interpreted only
with respect to fair paths.

Fairness

17

Can be expressed in LTL

• Absolute fairness: A(GF pexec)

• Strong fairness:
A((GF pready) ⇒ (GF pready ∧ pexec))

• Weak fairness:
A((FG pready) ⇒ (GF pready ∧ pexec))

Cannot be expressed in CTL

• Handled by changing the
semantics to use fair Kripke
structures.

• A fair Kripke structure M = ⟨S, S0,
R, L, F⟩ includes an additional set
of sets of states F ⊆2S.

• For each P ∈ F, a fair path π
includes some states from P
infinitely often.

• Path quantifiers interpreted only
with respect to fair paths.

Fairness

17

Can be expressed in LTL

• Absolute fairness: A(GF pexec)

• Strong fairness:
A((GF pready) ⇒ (GF pready ∧ pexec))

• Weak fairness:
A((FG pready) ⇒ (GF pready ∧ pexec))

Cannot be expressed in CTL

• Handled by changing the
semantics to use fair Kripke
structures.

• A fair Kripke structure M = ⟨S, S0,
R, L, F⟩ includes an additional set
of sets of states F ⊆2S.

• For each P ∈ F, a fair path π
includes some states from P
infinitely often.

• Path quantifiers interpreted only
with respect to fair paths.

Fairness

17

Can be expressed in LTL

• Absolute fairness: A(GF pexec)

• Strong fairness:
A((GF pready) ⇒ (GF pready ∧ pexec))

• Weak fairness:
A((FG pready) ⇒ (GF pready ∧ pexec))

Model checking complexity for CTL, LTL, CTL*

18

M, s ⊨ f

Polynomial Time for CTL
• Best known algorithm: O(|M| * |f|)

PSPACE-complete for LTL
• Best known algorithm: O(|M| * 2|f|)

PSPACE-complete for CTL*
• Best known algorithm: O(|M| * 2|f|)

Model checking techniques for CTL and LTL

19

CTL
• Graph-theoretic explicit-state model checking (EMC)

• Symbolic model checking with Ordered Binary
Decision Diagrams (SMV, NuSMV)

• Bounded model checking based on SAT (NuSMV)

LTL
• Automata-theoretic model checking:

• Explicit-state (SPIN) or

• Symbolic (NuSMV)

Summary

20

Today
• Basics of model checking:

• Kripke structures
• Temporal logics (CTL, LTL,CTL*)
• Model checking techniques

Next lecture
• Software model checking

