Computer-Aided Reasoning for Software

Model Checking I

courses.cs.washington.edu/courses/cse507/16sp/

Emina Torlak

emina@cs.washington.edu

Today

Last lecture

• Symbolic execution and concolic testing

Today

• Introduction to model checking

Reminders

Homework 3 is due next Wednesday at I Ipm

An automated technique for verifying that a concurrent finite state system satisfies a given temporal property.

 $\mathsf{M},\mathsf{s} \vDash \mathsf{P}$

An automated technique for verifying that a concurrent finite state system satisfies a given temporal property.

A mathematical model of the system, given as a **Kripke structure** (a finite state machine).

A state of the system (e.g., an initial state).

An automated technique for verifying that a concurrent finite state system satisfies a given temporal property.

A mathematical model of

 $M, s \models P$

the system, given as a **Kripke structure** (a finite state machine).

An automated technique for verifying that a concurrent finite state system satisfies a given temporal property. A state of the system (e.g., an initial state).

A temporal logic formula (e.g., a request is *eventually* acknowledged).

 $\mathsf{M},\mathsf{s} \vDash \mathsf{P}$

A mathematical model of the system, given as a **Kripke structure** (a finite state machine).

Why model checking?

Why model checking?

Model checking

Classic & bounded verification

- Deterministic, single-threaded, possibly infinite-state, terminating programs.
- Fully described by their input/ output behavior.
- Semi-automatic or boundedautomatic checking of properties in expressive logics (e.g., FOL).
- Libraries and ADT implementations
- Heap-manipulating programs (e.g., OO)
- Tricky deterministic algorithms

Why model checking?

Model checking

- Reactive systems: concurrent finite-state programs with ongoing input/output behavior.
- Control-intensive but without a lot of data manipulation.
- Fully automatic checking of properties in less expressive (temporal) logics.
- Microprocessors and device drivers
- Embedded controllers (e.g., cars, planes)
- Protocols (e.g., cache coherence)

Classic & bounded verification

- Deterministic, single-threaded, possibly infinite-state, terminating programs.
- Fully described by their input/ output behavior.
- Semi-automatic or boundedautomatic checking of properties in expressive logics (e.g., FOL).
- Libraries and ADT implementations
- Heap-manipulating programs (e.g., OO)
- Tricky deterministic algorithms

A Kripke structure is a tuple $M = \langle S, S_0, R, L \rangle$

• S is a finite set of states.

- S is a finite set of states.
- $S_0 \subseteq S$ is the set of initial states.

- S is a finite set of states.
- $S_0 \subseteq S$ is the set of initial states.
- $R \subseteq S \times S$ is the transition relation, which must be *total*.

$\left(\right)$	-		
	¥	¥	
)

- S is a finite set of states.
- $S_0 \subseteq S$ is the set of initial states.
- $R \subseteq S \times S$ is the transition relation, which must be *total*.
- L : S \rightarrow 2^{AP} is a function that *labels* each state with a set of *atomic propositions* true in that state.

A Kripke structure is a tuple $M = \langle S, S_0, R, L \rangle$

- S is a finite set of states.
- $S_0 \subseteq S$ is the set of initial states.
- $R \subseteq S \times S$ is the transition relation, which must be *total*.
- L : S \rightarrow 2^{AP} is a function that *labels* each state with a set of *atomic propositions* true in that state.

A path in M is an infinite sequence of states $\pi = s_0 s_1 \dots$ such that for all $i \ge 0$, $(s_i, s_{i+1}) \in R$.

- In a finite-state program, system variables V range over a finite domain D: V = {x, y} and D = {0, 1}.
- A state of the system is a valuation $s : V \rightarrow D$.

$$S = (x = 0 \lor x = 1) \land (y = 0 \lor y = 1)$$

$$S_0 = (x = 1) \land (y = 1)$$

$$R(x, y, x', y') = (x' = (x + y) \% 2) \land (y' = y)$$

- In a finite-state program, system variables V range over a finite domain D: V = {x, y} and D = {0, 1}.
- A state of the system is a valuation $s : V \rightarrow D$.
- Use FOL to describe the (initial) states and the transition relation.

S

- In a finite-state program, system variables V range over a finite domain D: $V = \{x, y\}$ and D = $\{0, I\}$.
- A state of the system is a valuation $s: V \rightarrow D.$
- Use FOL to describe the (initial) states and the transition relation.
- Extract a Kripke structure from the FOL description.

$$x' := (x + y) \% 2$$

$$S = (x = 0 \lor x = 1) \land (y = 0 \lor y = 1)$$

$$S_0 = (x = 1) \land (y = 1)$$

$$R(x, y, x', y') = (x' = (x + y) \% 2) \land (y' = y)$$

// x=1 y=1

- In a finite-state program, system variables V range over a finite domain D: V = {x, y} and D = {0, 1}.
- A state of the system is a valuation $s : V \rightarrow D$.
- Use FOL to describe the (initial) states and the transition relation.
- Extract a Kripke structure from the FOL description.

$$// x=1, y=1 x := (x + y) & 2$$

$$S = (x = 0 \lor x = 1) \land (y = 0 \lor y = 1) S_0 = (x = 1) \land (y = 1) R(x, y, x', y') = (x' = (x + y) & 2) \land (y' = y)$$

S₀

- In a finite-state program, system variables V range over a finite domain D: $V = \{x, y\}$ and D = $\{0, I\}$.
- A state of the system is a valuation $s: V \rightarrow D.$
- Use FOL to describe the (initial) states and the transition relation.
- Extract a Kripke structure from the FOL description.

$$S = (x = 0 \lor x = 1) \land (y = 0 \lor y = 1)$$

$$S_0 = (x = 1) \land (y = 1)$$

$$R(x, y, x', y') = (x' = (x + y) \% 2) \land (y' = y)$$

- In a finite-state program, system variables V range over a finite domain D: V = {x, y} and D = {0, 1}.
- A state of the system is a valuation $s : V \rightarrow D$.
- Use FOL to describe the (initial) states and the transition relation.
- Extract a Kripke structure from the FOL description.

$$S = (x = 0 \lor x = 1) \land (y = 0 \lor y = 1)$$

$$S_0 = (x = 1) \land (y = 1)$$

$$R(x, y, x', y') = (x' = (x + y) \% 2) \land (y' = y)$$

- In a finite-state program, system variables V range over a finite domain D: V = {x, y} and D = {0, 1}.
- A state of the system is a valuation $s : V \rightarrow D$.
- Use FOL to describe the (initial) states and the transition relation.
- Extract a Kripke structure from the FOL description.

P₂

Two processes executing concurrently and asynchronously, using the shared variable turn to ensure *mutual exclusion*:

They are never in the critical section at the same time.

P₂

Two processes executing concurrently and asynchronously, using the shared variable turn to ensure *mutual exclusion*:

They are never in the critical section at the same time.

State of the program described by the variable turn and the *program* counters for the two processes.

```
Ρı
10 while (true) {
11 wait(turn == 0);
    // critical section
12 turn := 1;
13 }
           \mathbf{P}_2
20 while (true) {
21 wait(turn == 1);
    // critical section
22 turn := 0;
23 }
```



```
20 while (true) {
21     wait(turn == 1);
          // critical section
22     turn := 0;
23 }
```


turn=1,

10, 20

turn=1,

11,21

turn=1,

11,20

turn=1,

10, 21

turn=1,

11,22

P₂

Safety

- "Nothing bad will happen."
- φ is a safety property iff every infinite path π violating φ has a finite prefix π' such that every extension of π' violates φ.

Liveness

- "Something good will happen."
- ψ is a liveness property iff every finite path (prefix) π can be extended so that it satisfies ψ.

Safety

- "Nothing bad will happen."
- φ is a safety property iff every infinite path π violating φ has a finite prefix π' such that every extension of π' violates φ.

Liveness

- "Something good will happen."
- ψ is a liveness property iff every finite path (prefix) π can be extended so that it satisfies ψ.

Finite witnesses (counterexamples).

Reducible to checking reachability in the state transition graph.

Safety

- "Nothing bad will happen."
- φ is a safety property iff every infinite path π violating φ has a finite prefix π' such that every extension of π' violates φ.

Liveness

- "Something good will happen."
- ψ is a liveness property iff every finite path (prefix) π can be extended so that it satisfies ψ.

Finite witnesses (counterexamples).

Reducible to checking reachability in the state transition graph.

No finite witnesses (counterexamples).

Safety

- "Nothing bad will happen."
- φ is a safety property iff every infinite path π violating φ has a finite prefix π' such that every extension of π' violates φ.

Liveness

- "Something good will happen."
- ψ is a liveness property iff every finite path (prefix) π can be extended so that it satisfies ψ.

Mutual exclusion: P₁ and P₂ will never be in their critical regions simultaneously.

Safety

- "Nothing bad will happen."
- φ is a safety property iff every infinite path π violating φ has a finite prefix π' such that every extension of π' violates φ.

Liveness

- "Something good will happen."
- ψ is a liveness property iff every finite path (prefix) π can be extended so that it satisfies ψ.

Mutual exclusion: P₁ and P₂ will never be in their critical regions simultaneously. Starvation freedom: whenever P_1 is ready to enter its critical section, it will eventually succeed (provided that the scheduler is *fair* and does not let P_2 stay in its critical section forever).

Expressing properties in temporal logics

Linear time: properties of computation paths

Branching time: properties of computation trees

Computation tree logic CTL*

Path quantifiers describe the branching structure of the computation tree:

- A (for all paths)
- E (there exists a path)

Temporal operators describe properties of a path through a tree:

- Xp (p holds "next time")
- Fp (p holds "eventually" or "in the future")
- Gp (p holds "always" or "globally")
- p U q (p holds "until" q holds)

Syntax of CTL*

State formulas

- Atomic propositions: $a \in AP$
- ¬f, f \wedge g, f \vee g, where f and g are state formulas
- Ap and Ep, where p is a path formula

Path formulas

- f, where f is a state formula
- ¬p, p \land p, p \lor q, where p and q are path formulas
- Xp, Fp, Gp, p U q, where p and q are path formulas

Semantics of CTL*

State formulas

- M, s \models f iff f \in L(s)
- M, s \models Ap iff M, $\pi \models$ p for all paths π that start at s
- M, s \models Ep iff M, $\pi \models$ p for some path π that starts at s

Path formulas (π^k is suffix of π starting at s_k)

- $M, \pi \vDash f \text{ iff } M, s \vDash f \text{ and } s \text{ is the first state of } \pi$
- M, $\pi \models \mathbf{X}_{P}$ iff M, $\pi^{I} \models P$
- M, $\pi \vDash \mathbf{F}_{p}$ iff M, $\pi^{k} \vDash_{p}$ for some $k \ge 0$
- $M, \pi \models \mathbf{G}p \text{ iff } M, \pi^k \models p \text{ for all } k \ge 0$
- $M, \pi \models p \mathbf{U} q$ iff $M, \pi^k \models q$ and $M, \pi^j \models p$ for some k ≥ 0 and for all $0 \leq j \leq k$

CTL and Linear Temporal Logic (LTL)

CTL and Linear Temporal Logic (LTL)

Computation Tree Logic (CTL)

- Fragment of CTL* in which each temporal operator is prefixed with a path quantifier.
- AG(EF p): From any state, it is possible to get to a state where p holds.

Linear Temporal Logic (LTL)

CTL and Linear Temporal Logic (LTL)

Computation Tree Logic (CTL)

- Fragment of CTL* in which each temporal operator is prefixed with a path quantifier.
- AG(EF p): From any state, it is possible to get to a state where p holds.

Linear Temporal Logic (LTL)

- Fragment of CTL* with formulas of the form Ap, where p contains no path quantifiers.
- A(FG p): Along every path, there is some state from which p will hold forever.

Expressive power of CTL, LTL, and CTL*

Fairness

Fairness

Cannot be expressed in CTL

- Handled by changing the semantics to use fair Kripke structures.
- A fair Kripke structure $M = \langle S, S_0, R, L, F \rangle$ includes an additional set of sets of states $F \subseteq 2^S$.
- For each P ∈ F, a fair path π includes some states from P infinitely often.
- Path quantifiers interpreted only with respect to fair paths.

Can be expressed in LTL

Fairness

Cannot be expressed in CTL

- Handled by changing the semantics to use fair Kripke structures.
- A fair Kripke structure $M = \langle S, S_0, R, L, F \rangle$ includes an additional set of sets of states $F \subseteq 2^S$.
- For each P ∈ F, a fair path π includes some states from P infinitely often.
- Path quantifiers interpreted only with respect to fair paths.

Can be expressed in LTL

- Absolute fairness: A(GF pexec)
- Strong fairness: $A((GF_{Pready}) \Rightarrow (GF_{Pready} \land P_{exec}))$
- Weak fairness:
 A((FG p_{ready}) ⇒ (GF p_{ready} ∧ p_{exec}))

Model checking complexity for CTL, LTL, CTL*

Polynomial Time for CTL

• Best known algorithm: O(|M| * |f|)

PSPACE-complete for LTL

• Best known algorithm: $O(|M| * 2^{|f|})$

PSPACE-complete for CTL*

• Best known algorithm: $O(|M| * 2^{|f|})$

M, s ⊨ f	
and the second se	

Model checking techniques for CTL and LTL

CTL

- Graph-theoretic explicit-state model checking (EMC)
- Symbolic model checking with Ordered Binary Decision Diagrams (SMV, NuSMV)
- Bounded model checking based on SAT (NuSMV)

LTL

- Automata-theoretic model checking:
 - Explicit-state (SPIN) or
 - Symbolic (NuSMV)

Summary

Today

- Basics of model checking:
 - Kripke structures
 - Temporal logics (CTL, LTL, CTL*)
 - Model checking techniques

Next lecture

Software model checking