
Emina Torlak
emina@cs.washington.edu

CSE507
courses.cs.washington.edu/courses/cse507/16sp/

Computer-Aided Reasoning for Software

Bounded Verification

http://courses.cs.washington.edu/courses/cse507/16sp/index.html

Today

2

Last lecture
• Full functional verification with Dafny, Boogie, and Z3

Today
• Bounded verification with Kodkod (Forge, Miniatur, TACO)

Announcements
• HW3 is out; start early.

to
pi

cs

C
on

fid
en

ce

Cost (programmer effort, time, expertise)

The spectrum of program verification tools

3

VerificationStatic Analysis

Extended
Static
Checking

Concolic Testing &
Whitebox Fuzzing

Ad-hoc Testing

Bounded Verification
& Symbolic Execution

E.g., Dafny, Coq, Leon:

• support for rich (FOL+)
correctness properties

• high annotation overhead
(pre/post conditions,
loop invariants, etc.)

• total correctness

C
on

fid
en

ce

Cost (programmer effort, time, expertise)

The spectrum of program verification tools

4

VerificationStatic Analysis

Extended
Static
Checking

Concolic Testing &
Whitebox Fuzzing

Ad-hoc Testing

Bounded Verification
& Symbolic Execution

C
on

fid
en

ce

Cost (programmer effort, time, expertise)

E.g., Astree:

• small set of fixed
properties (e.g., “no null
dereferences”)

• no annotations but must
deal with false positives

• no false negatives

The spectrum of program verification tools

5

VerificationStatic Analysis

Extended
Static
Checking

Concolic Testing &
Whitebox Fuzzing

Ad-hoc Testing

Bounded Verification
& Symbolic Execution

C
on

fid
en

ce

Cost (programmer effort, time, expertise)

E.g., Calysto, Saturn:

• user-defined assertions
supported but optional

• no annotations

• some/low false positives

• false negatives

The spectrum of program verification tools

6

VerificationStatic Analysis

Extended
Static
Checking

Concolic Testing &
Whitebox Fuzzing

Ad-hoc Testing

Bounded Verification
& Symbolic Execution

C
on

fid
en

ce

Cost (programmer effort, time, expertise)

E.g., CBMC, Miniatur, Forge,
TACO, JPF, Klee:

• optional user-defined
harnesses, assertions,
and/or FOL+ properties

• no/low annotations

• no/low false positives

• false negatives

The spectrum of program verification tools

7

VerificationStatic Analysis

Extended
Static
Checking

Concolic Testing &
Whitebox Fuzzing

Ad-hoc Testing

Bounded Verification
& Symbolic Execution

C
on

fid
en

ce

Cost (programmer effort, time, expertise)

E.g., SAGE, Pex, CUTE,
DART:

• test harnesses and/or
user-defined assertions

• no annotations

• no false positives

• false negatives

The spectrum of program verification tools

8

VerificationStatic Analysis

Extended
Static
Checking

Concolic Testing &
Whitebox Fuzzing

Ad-hoc Testing

Bounded Verification
& Symbolic Execution

C
on

fid
en

ce

Cost (programmer effort, time, expertise)

The spectrum of program verification tools

9

VerificationStatic Analysis

Extended
Static
Checking

Concolic Testing &
Whitebox Fuzzing

Ad-hoc Testing

Bounded Verification
& Symbolic Execution

Bounded verification

10

Bound everything

• Execution length

• Bitwidth

• Heap size (number of objects per type)

Sound counterexamples but no proof
• Exhaustive search within bounded scope

Empirical “small-scope hypothesis”

• Bugs usually have small manifestations

Bounded verification by example

11

class List {
Node head;

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;

}
}

class Node {
Node next;
String data; }

this
n2

data: s1
head null

n1

data: s2
next n0

data: null
next next

this
n0

data: null
headnull

n1

data: s2
nextn2

data: s1
nextnext

Bounded verification by example

11

class List {
Node head;

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;

}
}

class Node {
Node next;
String data; }

this
n2

data: s1
head null

n1

data: s2
next n0

data: null
next next

this
n0

data: null
headnull

n1

data: s2
nextn2

data: s1
nextnext

Express the property either by writing a test
harness or by providing FOL+ contracts.

Specifying contracts: class invariants

12

class List {
Node head;

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;

}
}

class Node {
Node next;
String data;

}

@invariant
 no ^next ∩ iden

this
n2

data: s1
head null

n1

data: s2
next n0

data: null
next next

this
n0

data: null
headnull

n1

data: s2
nextn2

data: s1
nextnext

Specifying contracts: preconditions

13

class List {
Node head;

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;

}
}

class Node {
Node next;
String data;

}

@invariant
 no ^next ∩ iden

@requires
 this.head != null and
 this.head.next != null

this
n2

data: s1
head null

n1

data: s2
next n0

data: null
next next

this
n0

data: null
headnull

n1

data: s2
nextn2

data: s1
nextnext

Specifying contracts: postconditions

14

class List {
Node head;

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;

}
}

class Node {
Node next;
String data;

}

@invariant
 no ^next ∩ iden

@requires
 this.head != null and
 this.head.next != null

@ensures
 this.head.*next = this.old(head).*old(next) and
 let N = this.old(head).*old(next) - null |
 next = old(next) ++
 this.old(head)×null ++
 ~(old(next) ∩ N×N)

this
n2

data: s1
head null

n1

data: s2
next n0

data: null
next next

this
n0

data: null
headnull

n1

data: s2
nextn2

data: s1
nextnext

Specifying contracts: postconditions

14

class List {
Node head;

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;

}
}

class Node {
Node next;
String data;

}

@invariant Inv(next)

@requires Pre(this, head, next)

@ensures Post(this, old(head), head, old(next), next)

this
n2

data: s1
head null

n1

data: s2
next n0

data: null
next next

this
n0

data: null
headnull

n1

data: s2
nextn2

data: s1
nextnext

A relational model of memory (heap)

15

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;

}

this
n2

data: s1
head null

n1

data: s2
next n0

data: null
next next

Fields as binary relations
‣ head : { ⟨this, n2⟩ }, next : { ⟨n2, n1⟩, … }

A relational model of memory (heap)

15

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;

}

this
n2

data: s1
head null

n1

data: s2
next n0

data: null
next next

Fields as binary relations
‣ head : { ⟨this, n2⟩ }, next : { ⟨n2, n1⟩, … }

Types as sets (unary relations)
‣ List : { ⟨this⟩ }, Node : { ⟨n0⟩, ⟨n1⟩, ⟨n2⟩ }

A relational model of memory (heap)

15

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;

}

this
n2

data: s1
head null

n1

data: s2
next n0

data: null
next next

Fields as binary relations
‣ head : { ⟨this, n2⟩ }, next : { ⟨n2, n1⟩, … }

Types as sets (unary relations)
‣ List : { ⟨this⟩ }, Node : { ⟨n0⟩, ⟨n1⟩, ⟨n2⟩ }

Objects as scalars (singleton sets)
‣ this : { ⟨this⟩ }, null : { ⟨null⟩ }

A relational model of memory (heap)

15

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;

}

this
n2

data: s1
head null

n1

data: s2
next n0

data: null
next next

Fields as binary relations
‣ head : { ⟨this, n2⟩ }, next : { ⟨n2, n1⟩, … }

Types as sets (unary relations)
‣ List : { ⟨this⟩ }, Node : { ⟨n0⟩, ⟨n1⟩, ⟨n2⟩ }

Objects as scalars (singleton sets)
‣ this : { ⟨this⟩ }, null : { ⟨null⟩ }

Field read as relational join (.)
‣ this.head : { ⟨this⟩ } . { ⟨this, n2⟩ } = { ⟨n2⟩ }

A relational model of memory (heap)

15

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;

}

this
n2

data: s1
head null

n1

data: s2
next n0

data: null
next next

Fields as binary relations
‣ head : { ⟨this, n2⟩ }, next : { ⟨n2, n1⟩, … }

Types as sets (unary relations)
‣ List : { ⟨this⟩ }, Node : { ⟨n0⟩, ⟨n1⟩, ⟨n2⟩ }

Objects as scalars (singleton sets)
‣ this : { ⟨this⟩ }, null : { ⟨null⟩ }

Field read as relational join (.)
‣ this.head : { ⟨this⟩ } . { ⟨this, n2⟩ } = { ⟨n2⟩ }

Field write as relational override (++)
‣ this.head = null : head ++ (this -> null) =

{ ⟨this, n2⟩ } ++ { ⟨this, null⟩ } = { ⟨this, null⟩ }

A relational model of memory (heap)

15

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;

}

this
n2

data: s1
head null

n1

data: s2
next n0

data: null
next next

Bounded verification: step 1/4

16

@invariant Inv(next)

@requires Pre(this, head, next)

@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;

}

@invariant Inv(next)

@requires Pre(this, head, next)

@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
if (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}
assume far == null;

mid.next = near;
head = mid;

}

Bounded verification: step 1/4

17

Execution finitization
(inlining, unrolling, SSA)

Bounded verification: step 1/4

18

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

Execution finitization
(inlining, unrolling, SSA)

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

Bounded verification: step 2/4

19

Forward VCG

Execution finitization
(inlining, unrolling, SSA)

Symbolic interpretation of the
code with respect to the
relational heap model.

this ⊆ List ∧ one this ∧
head ⊆ List ↦ (Node ∪ null) ∧
next ⊆ Node ↦ (Node ∪ null) ∧
data ⊆ Node ↦ (String ∪ null) ∧

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

next0 = next ++ (near0 × far0),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2) |

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
¬ (Inv(next3) ∧ Post(this, head, head0, next, next3))

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

Bounded verification: step 2/4

20

Bounded verification: step 3/4

21

this ⊆ List ∧ one this ∧
head ⊆ List ↦ (Node ∪ null) ∧
next ⊆ Node ↦ (Node ∪ null) ∧
data ⊆ Node ↦ (String ∪ null) ∧

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

next0 = next ++ (near0 × far0),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2) |

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
¬ (Inv(next3) ∧ Post(this, head, head0, next, next3))

Forward VCG

Execution finitization
(inlining, unrolling, SSA)

Heap finitization
(bounds for types, fields)

{ this, n0, n1, n2, s0, s1, s2, null }

{ ⟨null⟩ } ⊆ null ⊆ { ⟨null⟩ }

{} ⊆ this ⊆ { ⟨ this ⟩ }
{} ⊆ List ⊆ { ⟨ this ⟩ }
{} ⊆ Node ⊆ { ⟨n0⟩, ⟨n1⟩, ⟨n2⟩ }
{} ⊆ String ⊆ { ⟨s0⟩, ⟨s1⟩, ⟨s2⟩ }

{} ⊆ head ⊆ { this } × { n0, n1, n2, null }
{} ⊆ next ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ data ⊆ { n0, n1, n2 } × { s0, s1, s2, null }

Bounded verification: step 3/4

22

this ⊆ List ∧ one this ∧
head ⊆ List ↦ (Node ∪ null) ∧
next ⊆ Node ↦ (Node ∪ null) ∧
data ⊆ Node ↦ (String ∪ null) ∧

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

next0 = next ++ (near0 × far0),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2) |

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
¬ (Inv(next3) ∧ Post(this, head, head0, next, next3))

{ this, n0, n1, n2, s0, s1, s2, null }

{ ⟨null⟩ } ⊆ null ⊆ { ⟨null⟩ }

{} ⊆ this ⊆ { ⟨ this ⟩ }
{} ⊆ List ⊆ { ⟨ this ⟩ }
{} ⊆ Node ⊆ { ⟨n0⟩, ⟨n1⟩, ⟨n2⟩ }
{} ⊆ String ⊆ { ⟨s0⟩, ⟨s1⟩, ⟨s2⟩ }

{} ⊆ head ⊆ { this } × { n0, n1, n2, null }
{} ⊆ next ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ data ⊆ { n0, n1, n2 } × { s0, s1, s2, null }

Bounded verification: step 3/4

22

this ⊆ List ∧ one this ∧
head ⊆ List ↦ (Node ∪ null) ∧
next ⊆ Node ↦ (Node ∪ null) ∧
data ⊆ Node ↦ (String ∪ null) ∧

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

next0 = next ++ (near0 × far0),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2) |

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
¬ (Inv(next3) ∧ Post(this, head, head0, next, next3))

Finite universe of
uninterpreted
symbols.

{ this, n0, n1, n2, s0, s1, s2, null }

{ ⟨null⟩ } ⊆ null ⊆ { ⟨null⟩ }

{} ⊆ this ⊆ { ⟨ this ⟩ }
{} ⊆ List ⊆ { ⟨ this ⟩ }
{} ⊆ Node ⊆ { ⟨n0⟩, ⟨n1⟩, ⟨n2⟩ }
{} ⊆ String ⊆ { ⟨s0⟩, ⟨s1⟩, ⟨s2⟩ }

{} ⊆ head ⊆ { this } × { n0, n1, n2, null }
{} ⊆ next ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ data ⊆ { n0, n1, n2 } × { s0, s1, s2, null }

Bounded verification: step 3/4

22

this ⊆ List ∧ one this ∧
head ⊆ List ↦ (Node ∪ null) ∧
next ⊆ Node ↦ (Node ∪ null) ∧
data ⊆ Node ↦ (String ∪ null) ∧

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

next0 = next ++ (near0 × far0),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2) |

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
¬ (Inv(next3) ∧ Post(this, head, head0, next, next3))

Finite universe of
uninterpreted
symbols.

Upper bound
on each relation:
tuples it may
contain.

{ this, n0, n1, n2, s0, s1, s2, null }

{ ⟨null⟩ } ⊆ null ⊆ { ⟨null⟩ }

{} ⊆ this ⊆ { ⟨ this ⟩ }
{} ⊆ List ⊆ { ⟨ this ⟩ }
{} ⊆ Node ⊆ { ⟨n0⟩, ⟨n1⟩, ⟨n2⟩ }
{} ⊆ String ⊆ { ⟨s0⟩, ⟨s1⟩, ⟨s2⟩ }

{} ⊆ head ⊆ { this } × { n0, n1, n2, null }
{} ⊆ next ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ data ⊆ { n0, n1, n2 } × { s0, s1, s2, null }

Bounded verification: step 3/4

22

this ⊆ List ∧ one this ∧
head ⊆ List ↦ (Node ∪ null) ∧
next ⊆ Node ↦ (Node ∪ null) ∧
data ⊆ Node ↦ (String ∪ null) ∧

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

next0 = next ++ (near0 × far0),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2) |

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
¬ (Inv(next3) ∧ Post(this, head, head0, next, next3))

Finite universe of
uninterpreted
symbols.

Upper bound
on each relation:
tuples it may
contain.

Lower bound
on each relation:
tuples it must
contain.

Bounded verification: step 4/4

23

Forward VCG

Execution finitization
(inlining, unrolling, SSA)

Heap finitization
(bounds for types, fields)

Solver

this ⊆ List ∧ one this ∧
head ⊆ List ↦ (Node ∪ null) ∧
next ⊆ Node ↦ (Node ∪ null) ∧
data ⊆ Node ↦ (String ∪ null) ∧

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

next0 = next ++ (near0 × far0),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2) |

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
¬ (Inv(next3) ∧ Post(this, head, head0, next, next3))

{ this, n0, n1, n2, s0, s1, s2, null }

{ ⟨null⟩ } ⊆ null ⊆ { ⟨null⟩ }

{} ⊆ this ⊆ { ⟨ this ⟩ }
{} ⊆ List ⊆ { ⟨ this ⟩ }
{} ⊆ Node ⊆ { ⟨n0⟩, ⟨n1⟩, ⟨n2⟩ }
{} ⊆ String ⊆ { ⟨s0⟩, ⟨s1⟩, ⟨s2⟩ }

{} ⊆ head ⊆ { this } × { n0, n1, n2, null }
{} ⊆ next ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ data ⊆ { n0, n1, n2 } × { s0, s1, s2, null }

Bounded verification: counterexample

24

this
n0

data: null
head

n1

data: s2 next
n2

data: s1

next

next

this
n2

data: s1
head null

n1

data: s2
next n0

data: null
next next

Bounded verification: optimization

25

Forward VCG

Execution finitization
(inlining, unrolling, SSA)

Heap finitization
(bounds for types, fields)

Solver

Finitized program after inlining
may be huge.

Full inlining is rarely needed to
check partial correctness.

Optimization: Counterexample-
Guided Abstraction Refinement
with Unsatisfiable Cores
[Taghdiri, 2004]

From bounded verification to fault localization

26

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

From bounded verification to fault localization

26

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

Given a buggy program and a failure-
triggering input, find a minimal subset
of program statements that prevents
the execution on the given input from
producing a correct output.

From bounded verification to fault localization

26

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

Given a buggy program and a failure-
triggering input, find a minimal subset
of program statements that prevents
the execution on the given input from
producing a correct output.

Introduce additional “indicator”
relations into the encoding.

From bounded verification to fault localization

26

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

Given a buggy program and a failure-
triggering input, find a minimal subset
of program statements that prevents
the execution on the given input from
producing a correct output.

Introduce additional “indicator”
relations into the encoding.

The resulting formula, together with
the input partial model, is unsatisfiable.

From bounded verification to fault localization

26

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

Given a buggy program and a failure-
triggering input, find a minimal subset
of program statements that prevents
the execution on the given input from
producing a correct output.

Introduce additional “indicator”
relations into the encoding.

The resulting formula, together with
the input partial model, is unsatisfiable.

A minimal unsatisfiable core of this
formula represents an irreducible
cause of the program’s failure to meet
the specification.

this ⊆ List ∧ one this ∧
head ⊆ List ↦ (Node ∪ null) ∧
next ⊆ Node ↦ (Node ∪ null) ∧
data ⊆ Node ↦ (String ∪ null) ∧

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

next0 = next ++ (near0 × far0),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2) |

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
¬ (Inv(next3) ∧ Post(this, head, head0, next, next3))

Fault localization: encoding

27

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

Start with the
encoding for bounded
verification.

this ⊆ List ∧ one this ∧
head ⊆ List ↦ (Node ∪ null) ∧
next ⊆ Node ↦ (Node ∪ null) ∧
data ⊆ Node ↦ (String ∪ null) ∧

let near0 = this.head,
mid0 = near0.next,
far0 = mid0.next,

next0 = next ++ (near0 × far0),
guard = (far0 != null),
next1 = next0 ++ (mid0 × near0),
near1 = mid0,
mid1 = far0,
far1 = far0.next1,

near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0,
next3 = next2 ++ (mid2 × near2)
head0 = head ++ (this × mid2) |

far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
¬ (Inv(next3) ∧ Post(this, head, head0, next, next3))

this ⊆ List ∧ one this ∧
head ⊆ List ↦ (Node ∪ null) ∧
next ⊆ Node ↦ (Node ∪ null) ∧
data ⊆ Node ↦ (String ∪ null) ∧

near0 = this.head ∧
mid0 = near0.next ∧
far0 = mid0.next ∧

next0 = next ++ (near0 × far0) ∧
next1 = next0 ++ (mid0 × near0) ∧
near1 = mid0 ∧
mid1 = far0 ∧
far1 = far0.next1 ∧

let guard = (far0 != null),
near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0 |

next3 = next2 ++ (mid2 × near2) ∧
head0 = head ++ (this × mid2) ∧
far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
Inv(next3) ∧ Post(this, head, head0, next, next3)

Fault localization: encoding

27

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

Introduce fresh
relations for source-
level expressions.

this ⊆ List ∧ one this ∧
head ⊆ List ↦ (Node ∪ null) ∧
next ⊆ Node ↦ (Node ∪ null) ∧
data ⊆ Node ↦ (String ∪ null) ∧

near0 = this.head ∧
mid0 = near0.next ∧
far0 = mid0.next ∧

next0 = next ++ (near0 × far0) ∧
next1 = next0 ++ (mid0 × near0) ∧
near1 = mid0 ∧
mid1 = far0 ∧
far1 = far0.next1 ∧

let guard = (far0 != null),
near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0 |

next3 = next2 ++ (mid2 × near2) ∧
head0 = head ++ (this × mid2) ∧
far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
Inv(next3) ∧ Post(this, head, head0, next, next3)

Fault localization: bounds

28

{ this, n0, n1, n2, s0, s1, s2, null }

null = { <null> }
this = { <this> }
List = { <this> }
Node = { <n0>, <n1>, <n2> }
String = { <s1>, <s2> }

head = { <this, n2> }
next = { <n2, n1>, <n1, n0>, <n0, null> }
data = { <n2, s1>, <n1, s2>, <n0, null> }

{} ⊆ head0 ⊆ { this } × { n0, n1, n2, null }
{} ⊆ next0 ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ next1 ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ next3 ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ near0 ⊆ { n0, n1, n2, null }
{} ⊆ near1 ⊆ { n0, n1, n2, null }
{} ⊆ mid0 ⊆ { n0, n1, n2, null }
{} ⊆ mid1 ⊆ { n0, n1, n2, null }
{} ⊆ far0 ⊆ { n0, n1, n2, null }
{} ⊆ far1 ⊆ { n0, n1, n2, null }

Input
expressed as a
partial model.

this ⊆ List ∧ one this ∧
head ⊆ List ↦ (Node ∪ null) ∧
next ⊆ Node ↦ (Node ∪ null) ∧
data ⊆ Node ↦ (String ∪ null) ∧

near0 = this.head ∧
mid0 = near0.next ∧
far0 = mid0.next ∧

next0 = next ++ (near0 × far0) ∧
next1 = next0 ++ (mid0 × near0) ∧
near1 = mid0 ∧
mid1 = far0 ∧
far1 = far0.next1 ∧

let guard = (far0 != null),
near2 = if guard then near1 else near0,
mid2 = if guard then mid1 else mid0,
far2 = if guard then far1 else far0,
next2 = if guard then next1 else next0 |

next3 = next2 ++ (mid2 × near2) ∧
head0 = head ++ (this × mid2) ∧
far2 = null ∧ Inv(next) ∧ Pre(this, head, next) ∧
Inv(next3) ∧ Post(this, head, head0, next, next3)

Fault localization: minimal unsat core

29

{ this, n0, n1, n2, s0, s1, s2, null }

null = { <null> }
this = { <this> }
List = { <this> }
Node = { <n0>, <n1>, <n2> }
String = { <s1>, <s2> }

head = { <this, n2> }
next = { <n2, n1>, <n1, n0>, <n0, null> }
data = { <n2, s1>, <n1, s2>, <n0, null> }

{} ⊆ head0 ⊆ { this } × { n0, n1, n2, null }
{} ⊆ next0 ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ next1 ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ next3 ⊆ { n0, n1, n2 } × { n0, n1, n2, null }
{} ⊆ near0 ⊆ { n0, n1, n2, null }
{} ⊆ near1 ⊆ { n0, n1, n2, null }
{} ⊆ mid0 ⊆ { n0, n1, n2, null }
{} ⊆ mid1 ⊆ { n0, n1, n2, null }
{} ⊆ far0 ⊆ { n0, n1, n2, null }
{} ⊆ far1 ⊆ { n0, n1, n2, null }

Fault localization: minimal unsat core

30

@invariant Inv(next)
@requires Pre(this, head, next)
@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near0 = this.head;
Node mid0 = near0.next;
Node far0 = mid0.next;

next0 = update(next, near0, far0);
boolean guard = (far0 != null);
next1 = update(next0, mid0, near0);
near1 = mid0;
mid1 = far0;
far1 = far0.next1;

near2 = phi(guard, near1, near0);
mid2 = phi(guard, mid1, mid0);
far2 = phi(guard, far1, far0);
next2 = phi(guard, next1, next0);

assume far2 == null;

next3 = update(next2, mid2, near2);
head0 = update(head, this, mid2);

}

Fault localization: minimal unsat core

31

@invariant Inv(next)

@requires Pre(this, head, next)

@ensures Post(this, old(head), head, old(next), next)

void reverse() {
Node near = head;
Node mid = near.next;
Node far = mid.next;

near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}

mid.next = near;
head = mid;

}

Summary

32

Today
• Bounded verification

• A relational model of the heap
• CEGAR with unsat cores
• Fault localization

Next lecture
• Symbolic execution and concolic testing

