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Last lecture	

• Introduction to Satisfiability Modulo Theories (SMT)

Today  	

• A quick survey of theory solvers	


• An in-depth look at the core theory solver (Theory of Equality)

Reminder	

• Homework 1 due today at 11pm	


• Homework 2 coming out	


• Email us your project topic and brief abstract by 11pm on Thursday 
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x = g(y) 

2x + y > 5 (b >> 2) = c a[i] = x

Equality and UF

Linear Real 
Arithmetic

Linear Integer 
Arithmetic

Fixed-Width 
Bitvectors

Arrays

2i + j > 5 

• Conjunctions of linear constraints over R	


• Can be decided in polynomial time, but in 
practice solved with the General 
Simplex method (worst case exponential) 	


• Can also be decided with Fourier-
Motzkin elimination (exponential)
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Linear Real 
Arithmetic

Linear Integer 
Arithmetic

Fixed-Width 
Bitvectors

Arrays

2i + j > 5 

• Conjunctions of linear constraints over Z	


• Branch-and-bound (based on Simplex) 	


• Omega Test (extension of Fourier-Motzkin)	


• Small-Domain Encoding used for arbitrary 
combinations of linear constraints over Z	


• NP-complete
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2i + j > 5 

• Arbitrary combination of constraints 
over bitvectors 	


• Bit blasting (reduction to SAT)	


• NP-complete
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x = g(y) 

2x + y > 5 (b >> 2) = c a[i] = x

Equality and UF

Linear Real 
Arithmetic

Linear Integer 
Arithmetic

Fixed-Width 
Bitvectors

Arrays

2i + j > 5 

• Conjunctions of constraints over read/
write terms in the theory of arrays	


• Reduce to T= satisfiability	


• NP-complete (because the reduction 
introduces disjunctions)



A brief survey of common theory solvers

5

x = g(y) 

2x + y > 5 (b >> 2) = c a[i] = x

Equality and UF

Linear Real 
Arithmetic

Linear Integer 
Arithmetic

Fixed-Width 
Bitvectors

Arrays

2i + j > 5 

• Conjunctions of equality 
constraints over 
uninterpreted functions	


• Congruence closure 

• Polynomial time



Theory of equality and UF (T=)
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Signature (all symbols)	

• {=, a, b, c, …, f, g, …, p, q, …}	


Axioms	

• reflexivity: 	
	
 	
∀x.  x = x 	


• symmetry:    	
∀x, y.  x = y → y = x	


• transitivity:   	
∀x, y, z.  x = y ∧ y = z → x = z  	


• congruence: 	
∀x1, …, xn, y1, …, yn. (∧1≤i≤n xi = yi) → f(x1, …, xn) = f(y1, …, yn)	


• congruence:	
∀x1, …, xn, y1, …, yn. (∧1≤i≤n xi = yi) → p(x1, …, xn) ↔ p(y1, …, yn)	


!
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!

Replace predicates with equality 
constraints over functions:	


• introduce a fresh constant t	


• for each predicate p, introduce a 
fresh function fp	


• p(x1, …, xn) ⟿ fp(x1, …, xn) = t

✗

✗✗



Signature (all function symbols)	

• {=, a, b, c, …, f, g, …}	


Axioms	

• reflexivity: 	
	
 	
∀x.  x = x 	


• symmetry:    	
∀x, y.  x = y → y = x	


• transitivity:   	
∀x, y, z.  x = y ∧ y = z → x = z  	


• congruence: 	
∀x, y. ⋀(xi = yi) → f(x) = f(y)	


T= models	

• all structures ⟨U, I⟩ that satisfy the axioms of T=	


!
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Theory of equality and UF (T=)
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U = {☀, ☁}	


I1(=) : {⟨☀,☁⟩, ⟨☁,☀⟩}	


I2(=) : {⟨☀,☀⟩, ⟨☁,☁⟩}	


I3(=) : {⟨☀,☀⟩, ⟨☁,☁⟩, 

	
     ⟨☀,☁⟩, ⟨☁,☀⟩}

T= models?

¯ ¯ ¯ ¯



f(f(f(a))) = a ∧ f(f(f(f(f(a))))) = a ∧ f(a) ≠ a

Is a conjunction of T= literals satisfiable?
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f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

Is a conjunction of T= literals satisfiable?
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Congruence closure algorithm

9

f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a



• Place each subterm of F into its own 
congruence class
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• Place each subterm of F into its own 
congruence class

• For each positive literal t1 = t2 in F
• Merge the classes for t1 and t2

• Propagate the resulting 
congruences 

• If F has a negative literal t1 ≠ t2 with 
both terms in the same congruence 
class, output UNSAT

• Otherwise, output SAT
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f(x) = f(y) ∧ x ≠ y

• Place each subterm of F into its own 
congruence class	


• For each positive literal t1 = t2 in F	

• Merge the classes for t1 and t2	

• Propagate the resulting 

congruences 	

• If F has a negative literal t1 ≠ t2 with 

both terms in the same congruence 
class, output UNSAT	


• Otherwise, output SAT

Congruence closure algorithm:  another example
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A binary relation R is an equivalence 
relation if it is reflexive, symmetric, and 
transitive.	


An equivalence relation R is a congruence 
relation iff	


∀x, y. ⋀R(xi, yi) → R(f(x), f(y))	


The equivalence class of an element s ∈ S 
under an equivalence relation R:	


{ s’ ∈ S | R(s, s’) }	


An equivalence class is called a congruence 
class if R is a congruence relation.

Congruence closure algorithm:  definitions

11
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What is the equivalence 
class of 9 under ≡3? 
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The equivalence closure RE of a 
binary relation R is the smallest 
equivalence relation that contains R.	


The congruence closure RC of a 
binary relation R is the smallest 
congruence relation that contains R.

Congruence closure algorithm:  definitions
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What is the equivalence 
closure of R = {⟨a, b⟩, ⟨b, c⟩, ⟨d, d⟩}?	
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The congruence closure 
algorithm computes the 
congruence closure of the 
equality relation over terms 
asserted by a conjunctive 
quantifier-free formula in T=.

The equivalence closure RE of a 
binary relation R is the smallest 
equivalence relation that contains R.	


The congruence closure RC of a 
binary relation R is the smallest 
congruence relation that contains R.

Congruence closure algorithm:  definitions
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Congruence closure algorithm:  data structure

13

f(a, b) = a ∧ f(f(a, b), b) ≠ a



3: a
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• Represent subterms with a DAG
• Each node has a find pointer to 

another node in its congruence class 
(or to itself if it is the representative)   
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• Represent subterms with a DAG
• Each node has a find pointer to 

another node in its congruence class 
(or to itself if it is the representative)   

• Each representative has a ccp field 
that stores all parents of all nodes in 
its congruence class.   

f(a, b) = a ∧ f(f(a, b), b) ≠ a
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1: f
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Congruence closure algorithm:  union-find
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2: f

1: f

4: b



• FIND returns the representative of a 
node’s equivalence class. {}
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Congruence closure algorithm:  union-find
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• FIND returns the representative of a 
node’s equivalence class.

• UNION combines equivalence classes 
for nodes i1 and i2:	

• n1, n2 ← FIND(i1), FIND(i2) 	

• n1.find ← n2 	


• n2.ccp ← n1.ccp ∪ n2.ccp	
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f(a, b) = a ∧ f(f(a, b), b) ≠ a

4: b

2: f

1: f

4: b

What is UNION(1, 2)?
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Congruence closure algorithm:  congruent
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• CONGRUENT takes as input two nodes 
and returns true iff their	

• functions are the same	

• corresponding arguments are in 

the same congruence class

f(a, b) = a ∧ f(f(a, b), b) ≠ a
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CONGRUENT(1, 2)?  



{ 2 }

{1}

{}
MERGE (i1 , i2)	


n1, n2 ← FIND(i1), FIND(i2)	

if n1 = n2 then return	

p1, p2 ← n1.cpp, n2.cpp	

UNION(n1, n2)	

for each t1, t2 ∈ p1 × p2	


if CONGRUENT(t1, t2) then 	

   MERGE(t1, t2)

Congruence closure algorithm:  merge
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f(a, b) = a ∧ f(f(a, b), b) ≠ a
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3: a3: a 4: b

2: f
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Summary
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Today	

• A brief survey of theory solvers	


• Congruence closure algorithm for deciding conjunctive T= formulas	


Next lecture	

• Combining theories


