
CSE507
Emina Torlak
emina@cs.washington.edu	

courses.cs.washington.edu/courses/cse507/14au/

Computer-Aided Reasoning for Software

A Survey of Theory Solvers

http://courses.cs.washington.edu/courses/cse507/14au/index.html

Today

2

Today

2

Last lecture	

• Introduction to Satisfiability Modulo Theories (SMT)

Today

2

Last lecture	

• Introduction to Satisfiability Modulo Theories (SMT)

Today 	

• A quick survey of theory solvers	

• An in-depth look at the core theory solver (Theory of Equality)

Today

2

Last lecture	

• Introduction to Satisfiability Modulo Theories (SMT)

Today 	

• A quick survey of theory solvers	

• An in-depth look at the core theory solver (Theory of Equality)

Reminder	

• Homework 1 due today at 11pm	

• Homework 2 coming out	

• Email us your project topic and brief abstract by 11pm on Thursday

SMT solver

Satisfiability Modulo Theories (SMT)

3

⋀

∨

¬

∨
⋀

x = g(y)

2x + y > 5

(b >> 2) = c

a[i] = x

⋮ ⋮

⋮

SMT solver

Satisfiability Modulo Theories (SMT)

3

⋀

∨

¬

∨
⋀

x = g(y)

2x + y > 5

(b >> 2) = c

a[i] = x

⋮ ⋮

⋮

First-Order Logic

(un)satisfiable

Theories

SMT solver

Satisfiability Modulo Theories (SMT)

3

⋀

∨

¬

∨
⋀

x = g(y)

2x + y > 5

(b >> 2) = c

a[i] = x

⋮ ⋮

⋮

First-Order Logic

(un)satisfiable

Theories

Core solver

DPLL(T)

Theory
solver

Theory
solver…

A brief survey of common theory solvers

4

x = g(y)

Core solver

Theory
solver

Theory
solver

Theory
solver

Theory
solver

2x + y > 5 (b >> 2) = c a[i] = x2i + j > 5

A brief survey of common theory solvers

5

x = g(y)

2x + y > 5 (b >> 2) = c a[i] = x

Equality and UF

Linear Real
Arithmetic

Linear Integer
Arithmetic

Fixed-Width
Bitvectors

Arrays

2i + j > 5

A brief survey of common theory solvers

5

x = g(y)

2x + y > 5 (b >> 2) = c a[i] = x

Equality and UF

Linear Real
Arithmetic

Linear Integer
Arithmetic

Fixed-Width
Bitvectors

Arrays

2i + j > 5

• Conjunctions of linear constraints over R	

• Can be decided in polynomial time, but in
practice solved with the General
Simplex method (worst case exponential) 	

• Can also be decided with Fourier-
Motzkin elimination (exponential)

A brief survey of common theory solvers

5

x = g(y)

2x + y > 5 (b >> 2) = c a[i] = x

Equality and UF

Linear Real
Arithmetic

Linear Integer
Arithmetic

Fixed-Width
Bitvectors

Arrays

2i + j > 5

• Conjunctions of linear constraints over Z	

• Branch-and-bound (based on Simplex) 	

• Omega Test (extension of Fourier-Motzkin)	

• Small-Domain Encoding used for arbitrary
combinations of linear constraints over Z	

• NP-complete

A brief survey of common theory solvers

5

x = g(y)

2x + y > 5 (b >> 2) = c a[i] = x

Equality and UF

Linear Real
Arithmetic

Linear Integer
Arithmetic

Fixed-Width
Bitvectors

Arrays

2i + j > 5

• Arbitrary combination of constraints
over bitvectors 	

• Bit blasting (reduction to SAT)	

• NP-complete

A brief survey of common theory solvers

5

x = g(y)

2x + y > 5 (b >> 2) = c a[i] = x

Equality and UF

Linear Real
Arithmetic

Linear Integer
Arithmetic

Fixed-Width
Bitvectors

Arrays

2i + j > 5

• Conjunctions of constraints over read/
write terms in the theory of arrays	

• Reduce to T= satisfiability	

• NP-complete (because the reduction
introduces disjunctions)

A brief survey of common theory solvers

5

x = g(y)

2x + y > 5 (b >> 2) = c a[i] = x

Equality and UF

Linear Real
Arithmetic

Linear Integer
Arithmetic

Fixed-Width
Bitvectors

Arrays

2i + j > 5

• Conjunctions of equality
constraints over
uninterpreted functions	

• Congruence closure

• Polynomial time

Theory of equality and UF (T=)

6

Signature (all symbols)	

• {=, a, b, c, …, f, g, …, p, q, …}	

Axioms	

• reflexivity: 	
	
 	
∀x. x = x 	

• symmetry: 	
∀x, y. x = y → y = x	

• transitivity: 	
∀x, y, z. x = y ∧ y = z → x = z 	

• congruence: 	
∀x1, …, xn, y1, …, yn. (∧1≤i≤n xi = yi) → f(x1, …, xn) = f(y1, …, yn)	

• congruence:	
∀x1, …, xn, y1, …, yn. (∧1≤i≤n xi = yi) → p(x1, …, xn) ↔ p(y1, …, yn)	

!

Theory of equality and UF (T=)

6

Signature (all symbols)	

• {=, a, b, c, …, f, g, …, p, q, …}	

Axioms	

• reflexivity: 	
	
 	
∀x. x = x 	

• symmetry: 	
∀x, y. x = y → y = x	

• transitivity: 	
∀x, y, z. x = y ∧ y = z → x = z 	

• congruence: 	
∀x1, …, xn, y1, …, yn. (∧1≤i≤n xi = yi) → f(x1, …, xn) = f(y1, …, yn)	

• congruence:	
∀x1, …, xn, y1, …, yn. (∧1≤i≤n xi = yi) → p(x1, …, xn) ↔ p(y1, …, yn)	

!

Replace predicates with equality
constraints over functions:	

• introduce a fresh constant t	

• for each predicate p, introduce a
fresh function fp	

• p(x1, …, xn) ⟿ fp(x1, …, xn) = t

✗

✗✗

Signature (all function symbols)	

• {=, a, b, c, …, f, g, …}	

Axioms	

• reflexivity: 	
	
 	
∀x. x = x 	

• symmetry: 	
∀x, y. x = y → y = x	

• transitivity: 	
∀x, y, z. x = y ∧ y = z → x = z 	

• congruence: 	
∀x, y. ⋀(xi = yi) → f(x) = f(y)	

T= models	

• all structures ⟨U, I⟩ that satisfy the axioms of T=	

!

Theory of equality and UF (T=)

7

¯ ¯ ¯ ¯

Signature (all function symbols)	

• {=, a, b, c, …, f, g, …}	

Axioms	

• reflexivity: 	
	
 	
∀x. x = x 	

• symmetry: 	
∀x, y. x = y → y = x	

• transitivity: 	
∀x, y, z. x = y ∧ y = z → x = z 	

• congruence: 	
∀x, y. ⋀(xi = yi) → f(x) = f(y)	

T= models	

• all structures ⟨U, I⟩ that satisfy the axioms of T=	

!

Theory of equality and UF (T=)

7

¯ ¯ ¯ ¯

Signature (all function symbols)	

• {=, a, b, c, …, f, g, …}	

Axioms	

• reflexivity: 	
	
 	
∀x. x = x 	

• symmetry: 	
∀x, y. x = y → y = x	

• transitivity: 	
∀x, y, z. x = y ∧ y = z → x = z 	

• congruence: 	
∀x, y. ⋀(xi = yi) → f(x) = f(y)	

T= models	

• all structures ⟨U, I⟩ that satisfy the axioms of T=	

!

Theory of equality and UF (T=)

7

U = {☀, ☁}	

I1(=) : {⟨☀,☁⟩, ⟨☁,☀⟩}	

I2(=) : {⟨☀,☀⟩, ⟨☁,☁⟩}	

I3(=) : {⟨☀,☀⟩, ⟨☁,☁⟩,

	
 ⟨☀,☁⟩, ⟨☁,☀⟩}

T= models?

¯ ¯ ¯ ¯

f(f(f(a))) = a ∧ f(f(f(f(f(a))))) = a ∧ f(a) ≠ a

Is a conjunction of T= literals satisfiable?

8

f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

Is a conjunction of T= literals satisfiable?

8

Congruence closure algorithm

9

f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

• Place each subterm of F into its own
congruence class

Congruence closure algorithm

9

f2(a)

f3(a)

f4(a)

f5(a)

a

f(a)

f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

• Place each subterm of F into its own
congruence class

• For each positive literal t1 = t2 in F

Congruence closure algorithm

9

f2(a)

f3(a)

f4(a)

f5(a)

a

f(a)

f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

• Place each subterm of F into its own
congruence class

• For each positive literal t1 = t2 in F
• Merge the classes for t1 and t2

Congruence closure algorithm

9

f2(a)f3(a)

f4(a)

f5(a)

a

f(a)

f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

• Place each subterm of F into its own
congruence class

• For each positive literal t1 = t2 in F
• Merge the classes for t1 and t2

• Propagate the resulting
congruences

Congruence closure algorithm

9

f2(a)f3(a)

f4(a)

f5(a)

a

f(a)

f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

• Place each subterm of F into its own
congruence class

• For each positive literal t1 = t2 in F
• Merge the classes for t1 and t2

• Propagate the resulting
congruences

Congruence closure algorithm

9

f2(a)f3(a)

f4(a)

f5(a)

a

f(a)

f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

• Place each subterm of F into its own
congruence class

• For each positive literal t1 = t2 in F
• Merge the classes for t1 and t2

• Propagate the resulting
congruences

Congruence closure algorithm

9

f2(a)

f3(a)

f4(a)

f5(a)

a

f(a)

f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

• Place each subterm of F into its own
congruence class

• For each positive literal t1 = t2 in F
• Merge the classes for t1 and t2

• Propagate the resulting
congruences

Congruence closure algorithm

9

f2(a)

f3(a)

f4(a)

f5(a)

a

f(a)

f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

• Place each subterm of F into its own
congruence class

• For each positive literal t1 = t2 in F
• Merge the classes for t1 and t2

• Propagate the resulting
congruences

Congruence closure algorithm

9

f2(a)

f3(a)

f4(a)

f5(a)

a

f(a)

f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

• Place each subterm of F into its own
congruence class

• For each positive literal t1 = t2 in F
• Merge the classes for t1 and t2

• Propagate the resulting
congruences

Congruence closure algorithm

9

f2(a)

f3(a) f4(a)

f5(a)

a

f(a)

f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

• Place each subterm of F into its own
congruence class

• For each positive literal t1 = t2 in F
• Merge the classes for t1 and t2

• Propagate the resulting
congruences

• If F has a negative literal t1 ≠ t2 with
both terms in the same congruence
class, output UNSAT

• Otherwise, output SAT

Congruence closure algorithm

9

f2(a)

f3(a) f4(a)

f5(a)

a

f(a)

f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

• Place each subterm of F into its own
congruence class

• For each positive literal t1 = t2 in F
• Merge the classes for t1 and t2

• Propagate the resulting
congruences

• If F has a negative literal t1 ≠ t2 with
both terms in the same congruence
class, output UNSAT

• Otherwise, output SAT

Congruence closure algorithm

9

f2(a)

f3(a) f4(a)

f5(a)

a

f(a)

f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

UNSAT

f(x) = f(y) ∧ x ≠ y

• Place each subterm of F into its own
congruence class	

• For each positive literal t1 = t2 in F	

• Merge the classes for t1 and t2	

• Propagate the resulting

congruences 	

• If F has a negative literal t1 ≠ t2 with

both terms in the same congruence
class, output UNSAT	

• Otherwise, output SAT

Congruence closure algorithm: another example

10

f(x) = f(y) ∧ x ≠ y

• Place each subterm of F into its own
congruence class	

• For each positive literal t1 = t2 in F	

• Merge the classes for t1 and t2	

• Propagate the resulting

congruences 	

• If F has a negative literal t1 ≠ t2 with

both terms in the same congruence
class, output UNSAT	

• Otherwise, output SAT

Congruence closure algorithm: another example

10

y

f(y)f(x)

x

f(x) = f(y) ∧ x ≠ y

• Place each subterm of F into its own
congruence class	

• For each positive literal t1 = t2 in F	

• Merge the classes for t1 and t2	

• Propagate the resulting

congruences 	

• If F has a negative literal t1 ≠ t2 with

both terms in the same congruence
class, output UNSAT	

• Otherwise, output SAT

Congruence closure algorithm: another example

10

y

f(y)f(x)

x

f(x) = f(y) ∧ x ≠ y

• Place each subterm of F into its own
congruence class	

• For each positive literal t1 = t2 in F	

• Merge the classes for t1 and t2	

• Propagate the resulting

congruences 	

• If F has a negative literal t1 ≠ t2 with

both terms in the same congruence
class, output UNSAT	

• Otherwise, output SAT

Congruence closure algorithm: another example

10

y

f(y)f(x)

x

f(x) = f(y) ∧ x ≠ y

• Place each subterm of F into its own
congruence class	

• For each positive literal t1 = t2 in F	

• Merge the classes for t1 and t2	

• Propagate the resulting

congruences 	

• If F has a negative literal t1 ≠ t2 with

both terms in the same congruence
class, output UNSAT	

• Otherwise, output SAT

Congruence closure algorithm: another example

10

y

f(y)f(x)

x

SAT

A binary relation R is an equivalence
relation if it is reflexive, symmetric, and
transitive.	

An equivalence relation R is a congruence
relation iff	

∀x, y. ⋀R(xi, yi) → R(f(x), f(y))	

The equivalence class of an element s ∈ S
under an equivalence relation R:	

{ s’ ∈ S | R(s, s’) }	

An equivalence class is called a congruence
class if R is a congruence relation.

Congruence closure algorithm: definitions

11

¯ ¯ ¯ ¯

A binary relation R is an equivalence
relation if it is reflexive, symmetric, and
transitive.	

An equivalence relation R is a congruence
relation iff	

∀x, y. ⋀R(xi, yi) → R(f(x), f(y))	

The equivalence class of an element s ∈ S
under an equivalence relation R:	

{ s’ ∈ S | R(s, s’) }	

An equivalence class is called a congruence
class if R is a congruence relation.

Congruence closure algorithm: definitions

11

¯ ¯ ¯ ¯

A binary relation R is an equivalence
relation if it is reflexive, symmetric, and
transitive.	

An equivalence relation R is a congruence
relation iff	

∀x, y. ⋀R(xi, yi) → R(f(x), f(y))	

The equivalence class of an element s ∈ S
under an equivalence relation R:	

{ s’ ∈ S | R(s, s’) }	

An equivalence class is called a congruence
class if R is a congruence relation.

Congruence closure algorithm: definitions

11

¯ ¯ ¯ ¯

What is the equivalence
class of 9 under ≡3?

A binary relation R is an equivalence
relation if it is reflexive, symmetric, and
transitive.	

An equivalence relation R is a congruence
relation iff	

∀x, y. ⋀R(xi, yi) → R(f(x), f(y))	

The equivalence class of an element s ∈ S
under an equivalence relation R:	

{ s’ ∈ S | R(s, s’) }	

An equivalence class is called a congruence
class if R is a congruence relation.

Congruence closure algorithm: definitions

11

¯ ¯ ¯ ¯

The equivalence closure RE of a
binary relation R is the smallest
equivalence relation that contains R.	

The congruence closure RC of a
binary relation R is the smallest
congruence relation that contains R.

Congruence closure algorithm: definitions

12

What is the equivalence
closure of R = {⟨a, b⟩, ⟨b, c⟩, ⟨d, d⟩}?	

RE = {	
⟨a, a⟩, ⟨b, b⟩, ⟨c, c⟩,⟨d, d⟩	
	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 ⟨a, b⟩, ⟨b, a⟩, ⟨b, c⟩, ⟨c, b⟩, 	
	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 ⟨a, c⟩, ⟨c, a⟩}

The equivalence closure RE of a
binary relation R is the smallest
equivalence relation that contains R.	

The congruence closure RC of a
binary relation R is the smallest
congruence relation that contains R.

Congruence closure algorithm: definitions

12

What is the equivalence
closure of R = {⟨a, b⟩, ⟨b, c⟩, ⟨d, d⟩}?	

RE = {	
⟨a, a⟩, ⟨b, b⟩, ⟨c, c⟩,⟨d, d⟩	
	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 ⟨a, b⟩, ⟨b, a⟩, ⟨b, c⟩, ⟨c, b⟩, 	
	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 ⟨a, c⟩, ⟨c, a⟩}

The equivalence closure RE of a
binary relation R is the smallest
equivalence relation that contains R.	

The congruence closure RC of a
binary relation R is the smallest
congruence relation that contains R.

Congruence closure algorithm: definitions

12

The congruence closure
algorithm computes the
congruence closure of the
equality relation over terms
asserted by a conjunctive
quantifier-free formula in T=.

The equivalence closure RE of a
binary relation R is the smallest
equivalence relation that contains R.	

The congruence closure RC of a
binary relation R is the smallest
congruence relation that contains R.

Congruence closure algorithm: definitions

12

Congruence closure algorithm: data structure

13

f(a, b) = a ∧ f(f(a, b), b) ≠ a

3: a

Congruence closure algorithm: data structure

13

• Represent subterms with a DAG

f(a, b) = a ∧ f(f(a, b), b) ≠ a

4: b

2: f

1: f

3: a3: a

Congruence closure algorithm: data structure

13

• Represent subterms with a DAG
• Each node has a find pointer to

another node in its congruence class
(or to itself if it is the representative)

f(a, b) = a ∧ f(f(a, b), b) ≠ a

4: b

2: f

1: f

4: b

{ 1, 2 }{ 1, 2 }

3: a3: a

Congruence closure algorithm: data structure

13

• Represent subterms with a DAG
• Each node has a find pointer to

another node in its congruence class
(or to itself if it is the representative)

• Each representative has a ccp field
that stores all parents of all nodes in
its congruence class.

f(a, b) = a ∧ f(f(a, b), b) ≠ a

4: b

2: f

1: f

4: b

{}

{ 1, 2 }{ 1, 2 }

3: a3: a

Congruence closure algorithm: union-find

14

f(a, b) = a ∧ f(f(a, b), b) ≠ a

4: b

2: f

1: f

4: b

• FIND returns the representative of a
node’s equivalence class. {}

{ 1, 2 }{ 1, 2 }

3: a3: a

Congruence closure algorithm: union-find

14

f(a, b) = a ∧ f(f(a, b), b) ≠ a

4: b

2: f

1: f

4: b

• FIND returns the representative of a
node’s equivalence class.

• UNION combines equivalence classes
for nodes i1 and i2:	

• n1, n2 ← FIND(i1), FIND(i2) 	

• n1.find ← n2 	

• n2.ccp ← n1.ccp ∪ n2.ccp	

• n1.ccp ← ∅

{}

{ 1, 2 }{ 1, 2 }

3: a3: a

Congruence closure algorithm: union-find

14

f(a, b) = a ∧ f(f(a, b), b) ≠ a

4: b

2: f

1: f

4: b

• FIND returns the representative of a
node’s equivalence class.

• UNION combines equivalence classes
for nodes i1 and i2:	

• n1, n2 ← FIND(i1), FIND(i2) 	

• n1.find ← n2 	

• n2.ccp ← n1.ccp ∪ n2.ccp	

• n1.ccp ← ∅

{}

{ 1, 2 }{ 1, 2 }

3: a3: a

Congruence closure algorithm: union-find

14

f(a, b) = a ∧ f(f(a, b), b) ≠ a

4: b

2: f

1: f

4: b

What is UNION(1, 2)?

• FIND returns the representative of a
node’s equivalence class.

• UNION combines equivalence classes
for nodes i1 and i2:	

• n1, n2 ← FIND(i1), FIND(i2) 	

• n1.find ← n2 	

• n2.ccp ← n1.ccp ∪ n2.ccp	

• n1.ccp ← ∅

1: f

{ 1, 2 }{ 1, 2 }

3: a3: a

Congruence closure algorithm: union-find

14

f(a, b) = a ∧ f(f(a, b), b) ≠ a

4: b

2: f

4: b

1: f{}

{ 1, 2 }{ 1, 2 }

3: a3: a

Congruence closure algorithm: congruent

15

• CONGRUENT takes as input two nodes
and returns true iff their	

• functions are the same	

• corresponding arguments are in

the same congruence class

f(a, b) = a ∧ f(f(a, b), b) ≠ a

4: b

2: f

1: f

4: b

1: f{}

{ 1, 2 }{ 1, 2 }

3: a3: a

Congruence closure algorithm: congruent

15

• CONGRUENT takes as input two nodes
and returns true iff their	

• functions are the same	

• corresponding arguments are in

the same congruence class

f(a, b) = a ∧ f(f(a, b), b) ≠ a

4: b

2: f

1: f

4: b

CONGRUENT(1, 2)?

{ 2 }

{1}

{}
MERGE (i1 , i2)	

n1, n2 ← FIND(i1), FIND(i2)	

if n1 = n2 then return	

p1, p2 ← n1.cpp, n2.cpp	

UNION(n1, n2)	

for each t1, t2 ∈ p1 × p2	

if CONGRUENT(t1, t2) then 	

 MERGE(t1, t2)

Congruence closure algorithm: merge

16

f(a, b) = a ∧ f(f(a, b), b) ≠ a

{ 1, 2 }

3: a3: a 4: b

2: f

1: f

4: b

2: f

1: f

{ 2 }

{1}

{}
MERGE (i1 , i2)	

n1, n2 ← FIND(i1), FIND(i2)	

if n1 = n2 then return	

p1, p2 ← n1.cpp, n2.cpp	

UNION(n1, n2)	

for each t1, t2 ∈ p1 × p2	

if CONGRUENT(t1, t2) then 	

 MERGE(t1, t2)

Congruence closure algorithm: merge

16

f(a, b) = a ∧ f(f(a, b), b) ≠ a

{ 1, 2 }

3: a3: a 4: b

2: f

1: f

4: b

2: f

1: f

{ 2 }{ 1, 2 }

{}
MERGE (i1 , i2)	

n1, n2 ← FIND(i1), FIND(i2)	

if n1 = n2 then return	

p1, p2 ← n1.cpp, n2.cpp	

UNION(n1, n2)	

for each t1, t2 ∈ p1 × p2	

if CONGRUENT(t1, t2) then 	

 MERGE(t1, t2)

Congruence closure algorithm: merge

16

f(a, b) = a ∧ f(f(a, b), b) ≠ a

{ 1, 2 }

3: a3: a 4: b

2: f

1: f

4: b

1: f

{ 2 }{ 1, 2 }

MERGE (i1 , i2)	

n1, n2 ← FIND(i1), FIND(i2)	

if n1 = n2 then return	

p1, p2 ← n1.cpp, n2.cpp	

UNION(n1, n2)	

for each t1, t2 ∈ p1 × p2	

if CONGRUENT(t1, t2) then 	

 MERGE(t1, t2)

Congruence closure algorithm: merge

16

f(a, b) = a ∧ f(f(a, b), b) ≠ a

{ 1, 2 }

3: a3: a 4: b

2: f

1: f

4: b

Summary

17

Today	

• A brief survey of theory solvers	

• Congruence closure algorithm for deciding conjunctive T= formulas	

Next lecture	

• Combining theories

