A Survey of Theory Solvers

Emina Torlak

emina@cs.washington.edu

http://courses.cs.washington.edu/courses/cse507/14au/index.html

Today

Today

Last lecture

* Introduction to Satisfiability Modulo Theories (SMT)

Today

Last lecture

* Introduction to Satisfiability Modulo Theories (SMT)

Today
A quick survey of theory solvers

 An in-depth look at the core theory solver (Theory of Equality)

Today

Last lecture

* Introduction to Satisfiability Modulo Theories (SMT)

Today
A quick survey of theory solvers

 An in-depth look at the core theory solver (Theory of Equality)

Reminder
- Homework | due today at | Ipm
- Homework 2 coming out

 Email us your project topic and brief abstract by | | pm on Thursday

Satisfiability Modulo Theories (SMT)

SMT solver

Satisfiability Modulo Theories (SMT)

(un)satisfiable

SMT solver

Theories First-Order Logic

Satisfiability Modulo Theories (SMT)

(un)satisfiable

x = g(y)
2x+y>5 - SMT solver
(b>>2)=c
% : ——> Core solver *——
a[i] = x I
DPLL(T)

I
v v
__ Theory Theory
Theories First-Order Logic solver |-+ solver

A brief survey of common theory solvers

2x +y>5

Theory
solver

X = g(y)

Core solver

2i+j>5 (b>>2)=c

Theory Theory
solver solver

ali] = x

Theory
solver

A brief survey of common theory solvers

2x +y>5

Linear Real
Arithmetic

x = g(y)
Equality and UF

2i+j>5 (b>>2)=c
Linear Integer Fixed-Width
Arithmetic Bitvectors

ali] = x

Arrays

A brief survey of common theory solvers

x = g(y)
Equality and UF

2x +y>5 2i+j>5 (b>>12)=c ali] = x
Linear Real Linear Integer Fixed-Width
Arrays

Arithmetic Arithmetic Bitvectors

- Conjunctions of linear constraints over R

- Can be decided in polynomial time, but in
practice solved with the General
Simplex method (worst case exponential)

« Can also be decided with Fourier-
Motzkin elimination (exponential)

A brief survey of common theory solvers

x = g(y)
Equality and UF

2x +y>5 2i+j>5 (b>>12)=c
Linear Real Linear Integer Fixed-Width

Arithmetic Arithmetic Bitvectors

 Conjunctions of linear constraints over Z
* Branch-and-bound (based on Simplex)
- Omega Test (extension of Fourier-Motzkin)

- Small-Domain Encoding used for arbitrary
combinations of linear constraints over Z

* NP-complete

ali] = x

Arrays

A brief survey of common theory solvers

2x +y>5

Linear Real
Arithmetic

x = g(y)
Equality and UF

2i+j>5 (b>>12)=c ali] = x
Linear Integer Fixed-Width
Arrays

Arithmetic Bitvectors

» Arbitrary combination of constraints
over bitvectors

- Bit blasting (reduction to SAT)

* NP-complete

A brief survey of common theory solvers

x = g(y)
Equality and UF

2x +y>5 2i+j>5 (b>>12)=c ali] = x
Linear Real Linear Integer Fixed-Width

: : . . : Arrays
Arithmetic Arithmetic Bitvectors

- Conjunctions of constraints over read/
write terms in the theory of arrays

 Reduce to T= satisfiability

* NP-complete (because the reduction
introduces disjunctions)

A brief survey of common theory solvers

2x +y>5

Linear Real
Arithmetic

 Conjunctions of equality
X = g(y) constraints over

Equality and UF uninterpreted functions

« Congruence closure

* Polynomial time

2i+j>5 (b>>12)=c ali] = x
Linear Integer Fixed-Width Arravs
Arithmetic Bitvectors 4

Theory of equality and UF (T-)

Signature (all symbols)
- {=,a,b,¢,...,f,g....,p,q,...}

Axioms
reflexivity: Vvx. x =x
symmetry: VX Y. X=y 2> y=X
* transitivity: VX, ¥,Z. X=YAY=Z ?X=12Z

* congruence: VXi, ..., Xn, Y, ..., Yn. (A1<i<n Xi = ¥i) = f(x1, ..., xn) = (Y1, ..., ¥n)

* congruence: VXi, ..., Xn, ¥, -+, ¥n. (Al<i<n Xi = ¥i) = p(Xi, ..., Xn) < P(YI, ..., ¥n)

Theory of equality and UF (T-)

Replace predicates with equality

Signature (all symbols) constraints over functions:
- {=,a,b,c,...,fg XX} * introduce a fresh constant t
Axioms * for each pr.edlcate p, introduce a
o fresh function f;
reflexivity: Vvx. x =x
, _ _ * p(Xi, ..., Xn) W f5(X1, ..., Xn) = t
symmetry: VX Y. X=y 2> y=X

* transitivity:

congruence.

X congruence.

VX, Y,Z. X=YAY=Z P X=1Z

VX|’ ooy Xn, Y|, cooy)’n- (/\|Si5n Xi — YI) — f(XI, cooy Xn) — f()’h sy)’n)

VX|’ e ooy Xny Y|, Y)’n- (/\|Si5n Xi — YI) — P(X|9 Y Xn) < P(Yh ceey)’n)

Theory of equality and UF (T-)

Signature (all function symbols)
- {=,a,b,c,...,f, 8, ...}

Axioms
reflexivity: Vvx. x =x
* symmetry: VX, Y. X=y ?y=X
* transitivity: VX, ¥,Z. X=YAY=Z ?X=12Z

- congruence: VX,Y. /\(Xi =vyi) = f(x) = (y)

Theory of equality and UF (T-)

Signature (all function symbols)

- {=,a,b,c,...,f, 8, ...}

Axioms
reflexivity: Vvx. x =x
symmetry: VX Y. X=y 2> y=X
* transitivity: VX, ¥,Z. X=YAY=Z ?X=12Z

- congruence: VX, Y. A(xi = yi) = f(X) = f(y)

T= models

- all structures (U, |) that satisfy the axioms of T-

Theory of equality and UF (T-)

Signature (all function symbols) T= models?
- {=,a,b,c,...,f, 8, ...} U = {&-,)

Axioms (F) : {0, 4), (89 -00)}
- reflexivity: Vvx. x =x 2(<) :{<-I§i—,-ﬁ+i—>, < X)
©osymmetry: VX Y. X=y 2y =X 3(=) : {00, 00), (80,89,
* transitivity: VX, ¥,Z. X=YAY=Z ?X=12Z (0, 4, <“’_:+:_>}

. congruence: VX, y. A\(xi =yi) = f(X) = 1(y) — —

T= models

- all structures (U, |) that satisfy the axioms of T-

Is a conjunction of T-= literals satisfiable?

f(f(f(a))) = a A f(f(f(f(f(2))))) = a A f(a) # a

Is a conjunction of T-= literals satisfiable?

f3a) =aAnf@)=anAf(a) #a

Congruence closure algorithm

) =aAnf@)=anAf(a) #a

Congruence closure algorithm

* Place each subterm of F into its own
congruence class

f(a)
a f2(a)

) =aAnf@)=anAf(a) #a

P(a) £(a)
f*(a)

Congruence closure algorithm

* Place each subterm of F into its own
congruence class

* For each positive literal t| =t in F

f(a)
a f2(a)

) =aAf(@)=anAf(a) #a

P(a) £(a)
f*(a)

Congruence closure algorithm

* Place each subterm of F into its own
congruence class

* For each positive literal t| =t in F 3
(a)
* Merge the classes for t; and t;

f(a)
a f2(a)

) =aAf(@)=anAf(a) #a

P(a)
f*(a)

Congruence closure algorithm

* Place each subterm of F into its own
congruence class

* For each positive literal t| =t in F 3
(a)
* Merge the classes for t; and t;

- Propagate the resulting

congruences

f(a)
a f2(a)

) =aAf(@)=anAf(a) #a

P(a)
f*(a)

Congruence closure algorithm

o f4(a)
* Place each subterm of F into its own
congruence class f(a)
* For each positive literal t| =t in F f@) a P(a)
* Merge the classes for t; and t;
- Propagate the resulting , .
congruences @) =anf(a)=anfla #a

P(a)

Congruence closure algorithm

o f4(a)

* Place each subterm of F into its own

congruence class f(a)
* For each positive literal t| =t in F

f3@a) a
* Merge the classes for t; and t;
- Propagate the resulting : .
congruences @) =anf(a)=anfla #a

P@) f()

Congruence closure algorithm

o f4(a)

* Place each subterm of F into its own

congruence class f(a)
* For each positive literal t| =t in F

f3@a) a
* Merge the classes for t; and t;
- Propagate the resulting : .
congruences Fa) =anf(a)=anfa #a

P@) f()

Congruence closure algorithm

o f4(a)

* Place each subterm of F into its own

congruence class f(a)
* For each positive literal t| =t in F

* Merge the classes for t; and t;

- Propagate the resulting : .

congruences Fa) =anf(a)=anfa #a
P@) f(a)

f3(a) a

Congruence closure algorithm

* Place each subterm of F into its own
congruence class

* For each positive literal t| =t in F
* Merge the classes for t; and t;

- Propagate the resulting : .
congruences Fa) =anf(a)=anfa #a

P@ f@) f@)

f3a) a f4(a)

Congruence closure algorithm

* Place each subterm of F into its own
congruence class

* For each positive literal t| =t in F
* Merge the classes for t; and t;

- Propagate the resulting

congruences f(a) =anf(@)=anf(a) #a
* If F has a negative literal t| # t; with
both terms in the same congruence fa) @) f)

class, output UNSAT
+ Otherwise, output SAT Ba) a Ff()

Congruence closure algorithm

* Place each subterm of F into its own

congruence class UNSAT
* For each positive literal t| =t in F
* Merge the classes for t; and t;
- Propagate the resulting
congruences f(a) =anf(@)=anf(a) #a
* If F has a negative literal t| # t; with
both terms in the same congruence fa) @) f)

class, output UNSAT
+ Otherwise, output SAT Ba) a Ff()

Congruence closure algorithm: another example

* Place each subterm of F into its own
congruence class

* For each positive literal t| =t in F
* Merge the classes for t; and t;

- Propagate the resulting
congruences f(x) = f(y) Ax #y

* If F has a negative literal t| # t; with
both terms in the same congruence

class, output UNSAT
+ Otherwise, output SAT

Congruence closure algorithm: another example

* Place each subterm of F into its own
congruence class

* For each positive literal t| =t in F

X
* Merge the classes for t; and t; /
- Propagate the resulting
congruences f(x) =f(y) Ax #y
* If F has a negative literal t| # t; with
both terms in the same congruence
s f(x) f(y)

class, output UNSAT
+ Otherwise, output SAT

Congruence closure algorithm: another example

* Place each subterm of F into its own
congruence class

* For each positive literal t| =t in F

X
* Merge the classes for t; and t; /
- Propagate the resulting
congruences f(x) =f(y) A x #y
* If F has a negative literal t| # t; with
both terms in the same congruence
s f(x) f(y)

class, output UNSAT
+ Otherwise, output SAT

Congruence closure algorithm: another example

* Place each subterm of F into its own
congruence class

* For each positive literal t| =t in F

X
* Merge the classes for t; and t; /
- Propagate the resulting
congruences f(x) =f(y) A x #y
* If F has a negative literal t| # t; with
both terms in the same congruence
s f6) f(y)

class, output UNSAT
+ Otherwise, output SAT

Congruence closure algorithm: another example

* Place each subterm of F into its own
congruence class

* For each positive literal t| =t in F

X
* Merge the classes for t; and t; /
- Propagate the resulting
congruences f(x) =f(y) A x #y
* If F has a negative literal t| # t; with
both terms in the same congruence
: fx) f(y) SAT

class, output UNSAT
+ Otherwise, output SAT

Congruence closure algorithm: definitions

A binary relation R is an equivalence
relation if it is reflexive, symmetric, and
transitive.

Congruence closure algorithm: definitions

A binary relation R is an equivalence

relation if it is reflexive, symmetric, and
transitive.

An equivalence relation R is a congruence
relation iff

VX, y. AR(X;, yi) = R(f(x), f(y))

Congruence closure algorithm: definitions

A binary relation R is an equivalence
relation if it is reflexive, symmetric, and
transitive.

An equivalence relation R is a congruence
relation iff

VX, y. AR(X;, yi) = R(f(x), f(y))

The equivalence class of an element s € S
under an equivalence relation R:

{s’eS|R(s,s)}

What is the equivalence
class of 9 under =3?

Congruence closure algorithm: definitions

A binary relation R is an equivalence
relation if it is reflexive, symmetric, and
transitive.

An equivalence relation R is a congruence
relation iff

VX, y. AR(X;, yi) = R(f(x), f(y))

The equivalence class of an element s € S
under an equivalence relation R:

{s’eS|R(s,s)}

An equivalence class is called a congruence
class if R is a congruence relation.

Congruence closure algorithm: definitions

The equivalence closure RF of a
binary relation R is the smallest
equivalence relation that contains R.

Congruence closure algorithm: definitions

. E . .
The equivalence closure R* of a What is the equivalence

binary relation R is the smallest closure of R = {a, b, (b, ¢, (d, d)}?
equivalence relation that contains R.

Congruence closure algorithm: definitions

. E . .
The equivalence closure R* of a What is the equivalence

binary relation R is the smallest closure of R = {¢a, b), (b, c), (d, d)}?

equivalence relation that contains R.
RE = {(a,a), (b, b),{c, ©),{d, d)

(a, by, <b, a), <b, ¢, {c, b),
(a, ©), {c,a)}

Congruence closure algorithm: definitions

The equivalence closure RF of a
binary relation R is the smallest

equivalence relation that contains R.

The congruence closure R- of a
binary relation R is the smallest

congruence relation that contains R.

The congruence closure
algorithm computes the
congruence closure of the
equality relation over terms
asserted by a conjunctive

quantifier-free formula in T=,

Congruence closure algorithm: data structure

f(a,b) = a A f(f(a,b),b) # a

Congruence closure algorithm: data structure

f(a,b) = a A f(f(a,b),b) # a

- Represent subterms with a DAG |: f

l
/N

Congruence closure algorithm: data structure

f(a,b) = a A f(f(a,b),b) # a

- Represent subterms with a DAG

|: f
» Each node has a find pointer to l
another node in its congruence class
(or to itself if it is the representative) 0. §

Congruence closure algorithm: data structure

f(a,b) = a A f(f(a,b),b) # a

- Represent subterms with a DAG

|: f
» Each node has a find pointer to l
another node in its congruence class
(or to itself if it is the representative) 0. §
- Each representative has a ccp field
that stores all parents of all nodes in

its congruence class.

Congruence closure algorithm: union-find

f(a,b) =a A f(f(a,b),b) # a

2:f

) o

Congruence closure algorithm: union-find

f(a,b) =a A f(f(a,b),b) # a
* FIND returns the representative of a
node’s equivalence class.

/N

Congruence closure algorithm: union-find

f(a,b) =a A f(f(a,b),b) # a

* FIND returns the representative of a
node’s equivalence class.

- UNION combines equivalence classes
for nodes i| and iy:

* ni,n2 + FIND(ii), FIND(i2)

* ni.find « ny

/N

* N2.CCP N|.CCp U h2.ccp

* n.ccp < I

Congruence closure algorithm: union-find

* FIND returns the representative of a
node’s equivalence class.

- UNION combines equivalence classes
for nodes i| and iy:

* ni,n2 + FIND(ii), FIND(i2)
* ni.find < n
* N2.CCp ¢ nj.ccp U n2.ccp

* n.ccp < I

What is UNION(I, 2)?

f(a,b) =a A f(f(a,b),b) # a

/N

Congruence closure algorithm: union-find

f(a,b) =a A f(f(a,b),b) # a

* FIND returns the representative of a
node’s equivalence class.

| : f
- UNION combines equivalence classes l
for nodes i and iy:
* ni,n2 + FIND(ii), FIND(i2) 2 f
* ni.find « n / \
* N2.CCP ¢ N|.CCP U N.cCp
* n.ccp < I

Congruence closure algorithm: congruent

f(a,b) =a A f(f(a,b),b) # a

- CONGRUENT takes as input two nodes
and returns true iff their

« functions are the same

- corresponding arguments are in
the same congruence class

/N

Congruence closure algorithm: congruent

f(a,b) =a A f(f(a,b),b) # a

- CONGRUENT takes as input two nodes
and returns true iff their

« functions are the same

» corresponding arguments are in

the same congruence class / \

CONGRUENT(I, 2)?

Congruence closure algorithm: merge

MERGE (i1 , i2)

ni, n2 < FIND(ii), FIND(i2)
if n| = n2 then return
P1, P2 <~ Nni.cpp, n2.cpp
UNION(ni, n2)
for each ti,t2 € p1 X p2
if CONGRUENT(t), t2) then
MERGE(t|, t2)

f(a,b) =a A f(f(a,b),b) # a

Congruence closure algorithm: merge

MERGE (i1 , i2)

ni, n2 < FIND(ii), FIND(i2)
if n| = n2 then return
P1, P2 <~ Nni.cpp, n2.cpp
UNION(ni, n2)
for each ti,t2 € p1 X p2
if CONGRUENT(t), t2) then
MERGE(t|, t2)

f(a,b) =a A f(f(a,b),b) # a

Congruence closure algorithm: merge

MERGE (i1 , i2)

ni, n2 < FIND(ii), FIND(i2)
if n| = n2 then return
P1, P2 <~ Nni.cpp, n2.cpp
UNION(ni, n2)
for each ti,t2 € p1 X p2
if CONGRUENT(t), t2) then
MERGE(t|, t2)

f(a,b) =a A f(f(a,b),b) # a

/N

Congruence closure algorithm: merge

MERGE (i1 , i2)

ni, n2 < FIND(ii), FIND(i2)
if n| = n2 then return
P1, P2 <~ Nni.cpp, n2.cpp
UNION(ni, n2)
for each ti,t2 € p1 X p2
if CONGRUENT(t), t2) then
MERGE(t|, t2)

f(a,b) =a A f(f(a,b),b) # a

)

summary

Today
» A brief survey of theory solvers

- Congruence closure algorithm for deciding conjunctive T= formulas

NeXxt lecture

« Combining theories

