Satisfiability Modulo Theories

Emina Torlak

emina@cs.washington.edu

http://courses.cs.washington.edu/courses/cse507/14au/index.html

Today

Today

Last lecture

* Practical applications of SAT and the need for a richer logic

Today

Last lecture

* Practical applications of SAT and the need for a richer logic

Today
* Introduction to Satisfiability Modulo Theories (SMT)
- Syntax and semantics of (quantifier-free) first-order logic

« Overview of key theories

Today

Last lecture

* Practical applications of SAT and the need for a richer logic

Today
* Introduction to Satisfiability Modulo Theories (SMT)
- Syntax and semantics of (quantifier-free) first-order logic

« Overview of key theories

Reminder

+ Email us the names of your team members by | |pm today

Satisfiability Modulo Theories (SMT)

SMT solver

Satisfiability Modulo Theories (SMT)

X = g(y)
2x+y>5

(b>>2)=c

SMT solver

.
e
.t
e
"""
.
.
'l
e

First-Order Logic

Satisfiability Modulo Theories (SMT)

SMT solver

Theories First-Order Logic

Satisfiability Modulo Theories (SMT)

(un)satisfiable

SMT solver

Theories First-Order Logic

Satisfiability Modulo Theories (SMT)

(un)satisfiable

x = g(y)
2x+y>5 - SMT solver
(b>>2)=c
% : ——> Core solver *——
a[i] = x I
DPLL(T)

I
v v
__ Theory Theory
Theories First-Order Logic solver |-+ solver

First-Order Logic (FOL)

Logical symbols
« Connectives: 7, A, V, =, &
- Parentheses: ()

* Quantifiers: Vv, 3

Non-logical symbols
- Constants: Xx,Y,z
- N-ary functions: f, g
* N-ary predicates: p, q

* Variables: u,v,w

First-Order Logic (FOL)

Logical symbols
« Connectives: 7, A, V, =, &

- Parentheses: ()

X Quantifiers: v, 3

Non-logical symbols
- Constants: Xx,Y,z
- N-ary functions: f, g
* N-ary predicates: p, q

* Variables: u,v,w

We will only consider the
quantifier free fragment of FOL.

First-Order Logic (FOL)

Logical symbols
« Connectives: 7, A, V, =, &

- Parentheses: ()

X Quantifiers: v, 3

Non-logical symbols
- Constants: Xx,Y,z
- N-ary functions: f, g
* N-ary predicates: p, q
XVariabIes: u, V, W

We will only consider the
quantifier free fragment of FOL.

No variables, just constants.

First-Order Logic (FOL)

Logical symbols .
A term is a constant, or an n-ary

. nnectives: 7, A, V, =, & : i
Connectives: 7, A, v, =, function applied to n terms.

* Parentheses: () An atom is T, L, or an n-ary

predicate applied to n terms.

Non-logical symbols A literal is an atom or its negation.

literal or the application of logical

« N-ary functions: f, ,
4 8 connectives to formulas.

* N-ary predicates: p, q

First-Order Logic (FOL)

Logical symbols
« Connectives: 7, A, V, =, &

- Parentheses: ()

Non-logical symbols
- Constants: Xx,Y,z
- N-ary functions: f, g
* N-ary predicates: p, q

isPrime(x) = - isInteger(sqrt(x))

Semantics of FOL: first-order structures (U, I)

Universe

Interpretation

Semantics of FOL: first-order structures (U, I)

Universe

- A non-empty set of values
- Finite or (un)countably infinite

Interpretation

Semantics of FOL: first-order structures (U, I)

Universe

- A non-empty set of values

- Finite or (un)countably infinite
Interpretation

* Maps a constant symbol ¢ to an
element of |: I[c] e U

- Maps an n-ary function symbol f
to a function fi: U" = U

* Maps an n-ary predicate symbol
p to an n-ary relation p; € U"

Semantics of FOL: first-order structures (U, I)

Universe

A non-empty set of values

* Finite or (un)countably infinite
Interpretation

+ Maps a constant symbol ¢ to an
element of |: I[c] e U

» Maps an n-ary function symbol f
to a function fi: U" = U

 Maps an n-ary predicate symbol
p to an n-ary relation p; € U"

I[f(ti, ..., ta)] = I[f]([ti], ..., I[tn])
I[p(ti, ..., ta)] = I[p](I[t1], ..., I[tn])

U DET
U, D L
WU, D Ep(t, ..., t) iff l[p(ti, ..., tn)] = true

U, D E-Fiff (U D B F

Semantics of FOL: first-order structures (U, I)

Universe

- A non-empty set of values

- Finite or (un)countably infinite U ={’s, #}
. (x) = o
Interpretation
(y) = ®
» Maps a constant symbol ¢ to an
element of I: I[c] € U (f) = {0 > &0 & > 0}
* Maps an n-ary function symbol f (p) = {<-j¢j—’-j¢j->, <-j¢:-,..>}

1 . n —
to a function f; : U U U1y = p(f(y), F(FQ) ?
* Maps an n-ary predicate symbol

p to an n-ary relation p; € U"

FOL satisfiability and validity

F is satisfiable iff M = F for some
structure M = U, |).

F is valid iff M = F for all structures
M= WU, D.

Duality of satisfiability and validity:

F is valid iff =F is unsatisfiable.

Components of a first-order theory T

Signature 2t

Set of T-models

Components of a first-order theory T

Signature 2t

- Set of constant, predicate, and
function symbols

Set of T-models

Components of a first-order theory T

Signature 2t

- Set of constant, predicate, and
function symbols

Set of T-models

* One or more (possibly infinitely
many) models that fix the
interpretation of the symbols in 21

- Can also view a theory as a set of
axioms over 21 (and 2t-models are
the models of the theory axioms)

Components of a first-order theory T

Signature 2t

- Set of constant, predicate, and
function symbols

Set of T-models

* One or more (possibly infinitely
many) models that fix the
interpretation of the symbols in 21

- Can also view a theory as a set of
axioms over 21 (and 2t-models are
the models of the theory axioms)

A formula F is satisfiable modulo
T iff M = F for some T-model M.

A formula F is valid modulo T iff
M = F for all T-models M.

Common theories

Equality (and uninterpreted functions)

© X =g(y)
Fixed-width bitvectors
- (b>1)=c

Linear arithmetic (over R and Z)
* 2x+y>5

Arrays

- afi] = x

Theory of equality (QF_UF)

Extends FOL with the equality predicate =

Theory of equality (QF_UF)

Extends FOL with the equality predicate =

Signature (all symbols)
- = xv%2...,fg...p.q, ...}

Theory of equality (QF_UF)

Extends FOL with the equality predicate =

Signature (all symbols)
- =xvz...,g...pq,...}
Axioms
- = is reflexive, symmetric, transitive
* VXl eees Xny Yy ooy Yo (XI = YT A woo A Xn = Yn) = (F(X1, ..oy Xn) = (Y1, ..., ¥n))
* VUXIyee s Xy Yy ee o Yoo (XIS VI A oot AXn =Yn) = (P(XIy ..oy Xn) < P(YIy --., Yn))

Theory of equality (QF_UF)

Extends FOL with the equality predicate =

Signature (all symbols)
- = xv%2...,fg...p.q, ...}

Axioms

- = is reflexive, symmetric, transitive
* VXl eees Xny Yy ooy Yo (XI = YT A woo A Xn = Yn) = (F(X1, ..oy Xn) = (Y1, ..., ¥n))
* VUXIyee s Xy Yy ee o Yoo (XIS VI A oot AXn =Yn) = (P(XIy ..oy Xn) < P(YIy --., Yn))

Decidable in polynomial time

QF_UF example:

int funl(int y) {
int x, z;
z = y;
y = Xj
X = Z;
return Xxxx;

}

int fun2(int y) {
return yxy;

}

Example from Sanjit Seshia

checking program equivalence

An QF UF formula that is satisfiable iff
programs are not equivalent:

QF_UF example: checking program equivalence

int funl(int y) < An QF UF formula that is satisfiable iff
int x, z; programs are not equivalent:
Z =Y,
y = X
X = Z, ZISYoOAYI =X0AX =Z AT =X™) A
return Xxxkx; @ =yony ’ | | |)
b (r2 = yo* yo) A
int fun2(int y) { (2 = 1)
return yxy;

}

Example from Sanjit Seshia

QF_UF example: checking program equivalence

int funl(int y) {
int x, z;
z = y;
y = X;
X = Z;
return Xxxx;

}

int fun2(int y) {
return yxy;

}

Example from Sanjit Seshia

An QF UF formula that is satisfiable iff
programs are not equivalent:

(ZI= Yo AYI =Xo AXI =Z AT =X™X) A

(r2 = yo™ yo) A

a(r2 =)

Using 32-bit integers, a SAT
solver fails to return an answer in
5 min.

QF_UF example: checking program equivalence

int funl(int y) < An QF UF formula that is satisfiable iff
int X, z; programs are not equivalent:
Z = Y;
y = X;
);e;ui:] ok (ZI=yo Ayl =Xo AXI =2z Ar=sq(xi)) A
} (ret2 = sq(yo)) A
int fun2(int y) { 7(retz = ret))
return yxy;

}

Example from Sanjit Seshia

QF_UF example: checking program equivalence

int funl(int y) {
int x, z;
z = y;
y = X;
X = Z;
return Xxxx;

}

int fun2(int y) {
return yxy;

}

Example from Sanjit Seshia

An QF UF formula that is satisfiable iff
programs are not equivalent:

(ZI =yo Ayl =Xo AXI =2z ATl =5sq(X1)) A

(retz = sq(Yo)) A

~(retz2 = ret))

Using QF UFE an SMT solver
proves unsatisfiability in a fraction
of a second.

QF_UF example:

int funl(int y) {
int x;

X =X "y,
y =X 7y,
X =X "Yyj;
return Xxxx;

}

int fun2(int y) {
return yxy;

}

— ——

Example from Sanjit Seshia

checking program equivalence

Is the uninterpreted function abstraction
going to work in this case?

QF_UF example: checking program equivalence

int funl(int y) A Is the uninterpreted function abstraction
int X; going to work in this case?
X =X 7y; .
y = x ~ y; No, we need the theory of fixed-width
X = X ™ y; bitvectors to reason about " (xor).
return Xxxx;

}

int fun2(int y) {
return yxy;

}

—— —

Example from Sanijit Seshia 10

Theory of fixed-width bitvectors (QF_BYV)

Signature
- constants
- fixed-width words (modeling machine ints, longs, etc.)
» arithmetic operations (+, -, *, /, etc.)
- bitwise operations (&, |, *, etc.)

* comparison operators (<, >, etc.)

- equality (&)

Satisfiability problem: NP-complete

Theory of linear arithmetic (QF_LIA)

Theory of linear arithmetic (QF_LIA)

Signature
- {..,-LOol,...,-2:,2-, .., + = >XYZ...}

- Constants, integers, multiplication by an integer
constant, addition, subtraction, equality, greater-than

Theory of linear arithmetic (QF_LIA)

Signature
- {..,-L,0,1,..,-2-,2-, .., +, - =>XY,1Z...}
- Constants, integers, multiplication by an integer

constant, addition, subtraction, equality, greater-than

Satisfiability problem: NP-complete

Theory of linear arithmetic (QF_LIA)

Signature
- {..,-L,0,1,..,-2-,2-, .., +, - =>XY,1Z...}
- Constants, integers, multiplication by an integer
constant, addition, subtraction, equality, greater-than

Satisfiability problem: NP-complete

Theory of reals (QF_LRA) can be decided in
polynomial time.

Theory of linear arithmetic (QF_LIA)

Signature
- {..,-L,0,1,..,-2-,2-, .., +, - =>XY,1Z...}
- Constants, integers, multiplication by an integer
constant, addition, subtraction, equality, greater-than

Satisfiability problem: NP-complete

Theory of reals (QF_LRA) can be decided in
polynomial time.

Difference Logic (QF_DIA) can also be
decided in polynomial time

* Conjunctions of the form x - y < ¢, where c is an
Integer constant

QF_LIA example: compiler optimization

for (i=1; i<=10; i++) {
alj+il = aljl;
¥ An QF LIA formula that is satisfiable
S - iff this transformation is invalid:

int v = aljl;

for (i=1; i<=10; i++) {
alj+i]l = v;

I3

— S —

QF_LIA example: compiler optimization

for (i=1: i<=10: i++) {
alj+i] = aljl;

¥ An QF LIA formula that is satisfiable
S iff this transformation is invalid:

—

i=1)A(@=<10) A
(+i=j)
int v = aljl; Polyhedral model
for (i=1; i<=10; i++) {
alj+i]l = v;
5

Theory of arrays

Theory of arrays

Signhature

» {read, write, =, x,Y, z, ..

.}

Theory of arrays

Signhature

+ {read, write, =, X, Y,2, ...}

Axioms
* Vi.read(write(a,i, v),i) = v
* Vi, j. (i =j) = (read(write(a, i, V),) = read(a, j))
* (Vi.read(a, i) = read(b,i)) > a=b

Theory of arrays

Signature

+ {read, write, =, X, Y,2, ...}
Axioms
* Vi.read(write(a,i, v),i) = v
* Vi, j. (i =j) = (read(write(a, i, V),) = read(a, j))
* (Vi.read(a, i) = read(b,i)) > a=b

Satisfiability problem: NP-complete

Theory of arrays

Signature

» {read, write, =, x,y,2, ...}
Axioms
* Vi.read(write(a,i, v),i) = v
* Vi, j. (i =j) = (read(write(a, i, V),) = read(a, j))
* (Vi.read(a, i) = read(b,i)) > a=b

Satisfiability problem: NP-complete

Used in many software verification tools to
model memory (e.g., Dafny)

summary

Today
* Introduction to SMT
+ Quantifier-free FOL (syntax & semantics)

« QOverview of common theories

NeXxt lecture

* Survey of theory solvers

