Practical Applications of SAT

Emina Torlak

emina@cs.washington.edu

http://courses.cs.washington.edu/courses/cse507/14au/index.html

Today

Today

Past 3 lectures

* The theory and mechanics of SAT solving

http://courses.cs.washington.edu/courses/cse507/14au/hws.html

Today

Past 3 lectures

* The theory and mechanics of SAT solving

Today
* Practical applications of SAT
* Variants of the SAT problem

- Motivating the next lecture on SMT

http://courses.cs.washington.edu/courses/cse507/14au/hws.html

Today

Past 3 lectures

* The theory and mechanics of SAT solving

Today
* Practical applications of SAT
* Variants of the SAT problem

- Motivating the next lecture on SMT

But first ...
« A brief Q&A session for Homework |

- Live SAT solving (or, partial assignment of students to project teams)

http://courses.cs.washington.edu/courses/cse507/14au/hws.html

A brief history of SAT solving and applications

10,000K

|,000K

| 00K

Clauses

0K

IK

1995 1999 2003 2007 201 1| 2015

Based on a slide from Vijay Ganesh

A brief history of SAT solving and applications

Bounded Model Checking. First
10,000K presented at FMCAD’98. In an
unusual move, the Chairs included
an extra talk on BMC. A 1999 paper
| 000k describes its application at Motorola
to verify a PowerPC processor.

00K

Clauses

0K

|K
1995 1999 2003 2007

Based on a slide from Vijay Ganesh

201 1|

2015

A brief history of SAT solving and applications

Bounded Model Checking. First
10,000K presented at FMCAD’98. In an
unusual move, the Chairs included
an extra talk on BMC. A 1999 paper
| 000k describes its application at Motorola
to verify a PowerPC processor.

Q
é 100K SAT solver on
U board Deep
Space One.
|OK |
K
1995 1999 2003 2007 2011 2015

Based on a slide from Vijay Ganesh

A brief history of SAT solving and applications

Bounded Model Checking. First
10,000K presented at FMCAD’98. In an
unusual move, the Chairs included
an extra talk on BMC. A 1999 paper
| 000k describes its application at Motorola
to verify a PowerPC processor.

4
é 100K SAT solver on
U board Deep

Space One.

|OK |
zChaff, ‘01l
K
1995 1999 2003 2007 2011 2015

Based on a slide from Vijay Ganesh

A brief history of SAT solving and applications

Bounded Model Checking. First
10,000K presented at FMCAD’98. In an
unusual move, the Chairs included
an extra talk on BMC. A 1999 paper
| 000k describes its application at Motorola
to verify a PowerPC processor.

4
é 100K SAT solver on
U board Deep

Space One.

0K || 7 MiniSAT, ’03
zChaff, ‘01l
K
1995 1999 2003 2007 2011 2015

Based on a slide from Vijay Ganesh

A brief history of SAT solving and applications

Bounded Model Checking. First
10,000K presented at FMCAD’98. In an
unusual move, the Chairs included
an extra talk on BMC. A 1999 paper
| oook describes its application at Motorola
to verify a PowerPC processor.

4
é 100K SAT solver on
U board Deep

Space One.

10K | | ‘ 'MiniSAT, ’03 Concolic Testing, Program
Analysis, Mercedes
+Chaff. ‘0| Product Configuration
IK
1995 1999 2003 2007 2011 2015

Based on a slide from Vijay Ganesh

A brief history of SAT solving and applications

10,000K

|,000K

| 00K

Clauses

0K

IK

Bounded Model Checking. First

~presented at FMCAD’98. In an

unusual move, the Chairs included

an extra talk on BMC. A 1999 paper
~describes its application at Motorola

to verify a PowerPC processor.

Synthesis, Type Systemes,

SAT solver on | Bio, Configuration

board Deep Management, SMT

Space One.

| 'MiniSAT, ’03 Concolic Testing, Program
Analysis, Mercedes
+Chaff. ‘0| Product Configuration
1995 1999 2003 2007 2011 2015

Based on a slide from Vijay Ganesh

A brief history of SAT solving and applications

10,000K

|,000K

| 00K

Clauses

0K

IK

Bounded Model Checking. First CSE 599ET,
presented at FMCAD’98. In an | “Winter 2015!

unusual move, the Chairs included

an extra talk on BMC. A 1999 paper
~describes its application at Motorola

to verify a PowerPC processor.

Synthesis, Type Systemes,

SAT solver on | Bio, Configuration

board Deep Management, SMT

Space One.

| 'MiniSAT, ’03 Concolic Testing, Program
Analysis, Mercedes
zChaff, ‘01 Product Configuration
1995 1999 2003 2007 2011 2015

Based on a slide from Vijay Ganesh

Bounded Model Checking (BMCQC) &
Configuration Management

Bounded Model Checking (in general)

Given a system and a property,
BMC checks if the property is
satisfied by all executions of
the system with <k steps, on
all inputs of size <n.

Bounded Model Checking (in general)

Given a system and a property,
BMC checks if the property is
satisfied by all executions of
the system with <k steps, on
all inputs of size <n.

We will focus on safety
properties (i.e., making
sure a bad state, such as an
assertion violation, is not
reached).

Bounded Model Checking (in general)

e
/0

Testing: checks a BMC: checks all Verification: checks
few executions executions of all executions of
of arbitrary size size <k every size

low confidence high confidence

\ low human labor high human labor

BMC by example

int daysToYear(int days) {
int year = 1980;
while (days > 365) {
if (isLeapYear(year)) {
if (days > 366) {
days —= 366;
year += 1,
I3
} else {
days —= 365;
year += 1;
I3
I3

return year;

}

—

BMC by example

int daysToYear(int days) {
int year = 1980;

while (days > 365) { The Zune Bug: on December
if (isLeapYear(year)) { 31,2008, all first generation
if (days > 366) { Zune players from Microsoft
days —= 366; became unresponsive because
year += 1, : P
1 of this code. What'’s wrong?
} else {
days —= 365;
year += 1;
I3
I3

return year;

}

S — e ——

BMC by example

int daysToYear(int days) {
int year = 1980;
while (days > 365) {
if (isLeapYear(year)) {

if (days > 366) { Infinite loop triggered on the
days -= 366; last day of every leap year.
year += 1,
I3
} else {
days —= 365;
year += 1;
I3

}

return year,

}

L —

BMC by example

int daysToYear(int days) {
int year = 1980;
while (days > 365) {
int oldDays = days;
if (isLeapYear(year)) {
if (days > 366) {

days —= 366;
year += 1;
}
} else {
days —= 365;
year += 1, A desired safety property:
} the value of the days
assert days < oldDays; - variable decreases in every
; loop iteration.

return year;

}

L ——

BMC step | of 4: finitize loops & inline calls

int daysToYear(int days) {
int year = 1980;
while (days > 365) {
int oldDays = days;
if (isLeapYear(year)) {
if (days > 366) {
days —= 366;
year += 1;
I3
} else {
days —= 365;
year += 1,;
I3

assert days < oldDays;

}

return year,;

}

—— ————

BMC step | of 4: finitize loops & inline calls

int daysToYear(int days) {
int year = 1980;
if (days > 365) {
int oldDays = days;

if (isLeapYear(year)) {

if (days > 366) {
days —= 366;
year += 1;
s
} else {
days —= 365;
year += 1;
s
assert days < oldDays;
assert days <= 365;

}

return year,

¥

+ Unwind all loops k times (e.g.,

k=1),and add an unwinding
assertion after each.

BMC step | of 4: finitize loops & inline calls

int daysToYear(int days) {
int year = 1980;
if (days > 365) {
int oldDays = days;

if (isLeapYear(year)) {

if (days > 366) {

days —= 366;
year += 1;
I3
; else {
days —= 365;
year += 1;
s

assert days < oldDays;
assert days <= 365;

}

return year,

¥

— —

+ Unwind all loops k times (e.g.,

k=1),and add an unwinding
assertion after each.

- |f a CEX violates a program

assertion, we have found a
buggy behavior of length <k.

BMC step | of 4: finitize loops & inline calls

int daysToYear(int days) {
int year = 1980;
if (days > 365) {
int oldDays = days;

if (isLeapYear(year)) {

if (days > 366) {

days —= 366;
year += 1;
I3
} else {
days —= 365;
year += 1;
}

assert days < oldDays;
assert days <= 365;

}

return year,

¥

— —

+ Unwind all loops k times (e.g.,

k=1),and add an unwinding
assertion after each.

- |f a CEX violates a program

assertion, we have found a
buggy behavior of length <k.

- If a CEX violates an unwinding

assertion, the program has no

buggy behavior of length <k,
but it may have a longer one.

BMC step | of 4: finitize loops & inline calls

int daysToYear(int days) {
int year = 1980;
if (days > 365) {
int oldDays = days;

if (isLeapYear(year)) {

if (days > 366) {

days —= 366;
year += 1;
I3
} else {
days —= 365;
year += 1;
}

assert days < oldDays;
assert days <= 365;

}

return year,

¥

— —

+ Unwind all loops k times (e.g.,

k=1),and add an unwinding
assertion after each.

- |f a CEX violates a program

assertion, we have found a
buggy behavior of length <k.

- If a CEX violates an unwinding

assertion, the program has no

buggy behavior of length <k,
but it may have a longer one.

f there is no CEX, the
program is correct for all k!

BMC step | of 4: finitize loops & inline calls

int daysToYear(int days) {
int year = 1980;
if (days > 365) { Assume call to isLeapYear is
int oldDays = days; inlined (replaced with the

if (isLeapYear(year)) < procedure body). We'll keep it
for readability.

if (days > 366) {

days —= 366;
year += 1,;
I3
} else {
days —= 365;
year += 1;
}

assert days < oldDays;
assert days <= 365;

}

return year;

¥

— e —————

BMC step 2 of 4: eliminate side effects

int daysToYear(int days) {
int year = 1980;
if (days > 365) {
int oldDays = days;
if (isLeapYear(year)) {
if (days > 366) {
days —= 366;
year += 1,;
s
} else {
days —= 365;
year += 1;
s
assert days < oldDays;
assert days <= 365;

}

return year;

¥

L — e ————————.

BMC step 2 of 4: eliminate side effects

int days;
int year = 1980;
if (days > 365) {
int oldDays = days;
if (isLeapYear(year)) {
if (days > 366) {
days = days - 3606;
year = year + 1;

Convert to Static Single
Assignment (SSA) form:

s

} else {
days = days - 365;
year = year + 1;

}

assert days < oldDays;
assert days <= 365;

}

return year,

BMC step 2 of 4: eliminate side effects

int dayse;
int yeare = 1980; Convert to Static Single

i1f (dayse > 365) { :
int oldDayse = dayso; Assignment (SSA) form:

1f (isLeapYear(yeare)) 1 - Replace each assignment to a
1fd(dayS_@ Z 366) {366' variable v with a definition of
yzgf‘i i} y:gig s 1. ’ a fresh variable vi.
} + Change uses of variables so
} else { that they refer to the correct
dayss = dayse — 365; definition (version).
years = yearg + 1;

}

assert dayss < oldDayse;
assert dayss <= 365;

}

return years;

BMC step 2 of 4: eliminate side effects

int dayse;

int yearp = 1980;

boolean go = (dayse > 365);
int oldDayse = dayse;

boolean g1 = islLeapYear(years);
boolean g, = dayse > 360;

daysi = dayse — 366;

year: = yearg + 1;

days: = ¢@(g1 && g2, daysi, dayse)
vear = ¢(g1 & g2, yeari, yearp)
dayss = dayse — 365;

years = yeare + 1;

dayss = ¢(g1, daysz, dayss)

years = ¢(g1, yearz, years)

assert dayss < oldDaysoe;
assert dayss <= 365;
return years;

Convert to Static Single
Assignment (SSA) form:

Replace each assighment to a
variable v with a definition of
a fresh variable vi.

 Change uses of variables so

that they refer to the correct
definition (version).

« Make conditional

dependences explicit with
gated P nodes.

BMC step 2 of 4: eliminate side effects

int dayse;
int yeare = 1980;
if (dayse > 365) {
int oldDayse = dayse;
if (isLeapYear(yeare)) {
if (dayse > 366) {
daysi1 = dayse — 366;
yeari = yearg + 1;
s
} else {
dayss = dayse — 365;
years = yeare + 1;
s
assert dayss < oldDayso;
assert dayss <= 365;

}

return years,

int dayse;

int yearpy = 1980;

boolean go = (dayse > 365);
int oldDayse = dayse;

boolean g1 = islLeapYear(years);
boolean g> = dayse > 306;

daysi: = dayse — 366;

yeary = yearg + 1;

days: = ¢(g1 && g2, daysi, dayse)
yearz = ¢(g1 & g2, yeari, yearp)
dayss = dayse — 3065;

years = yearp + 1;

dayss = ¢(g1, daysz, dayss)

years = ¢@(g1, yearz, years)

assert dayss < oldDaysoe;
assert dayss <= 365;
return years,;

BMC step 3 of 4: convert into equations

int dayse;

int yearp = 1980;

boolean go = (dayse > 365);
int oldDayse = dayse;

boolean g1 = isLeapYear(years);
boolean g, = dayse > 360;

daysi = dayse — 366;

year: = yearg + 1;

days2 = @(g1 && g2, daysi, dayse)
year = ¢(g1 & g2, yeari, yearo)
dayss = dayse — 365;

years = yeare + 1;

dayss = ¢(g1, daysz, dayss)

years = ¢(g1, year2, years)

assert dayss < oldDaysoe;
assert dayss <= 365;
return years;

BMC step 3 of 4: convert into equations

Y€ale = 1980 A

ge = (dayse > 365) A
oldDayse = dayse A

g1 = isLeapYear(yearg) A
g2 = dayS@ > 360 A

daysi
yeari
days:>
year:
dayss
years
dayss
yeary

dayse — 366 A
yeare + 1 A

ite(g:s A g2, daysi, dayse)
ite(g:1 A g2, yeari, yearo)

dayse — 365 A
yeare + 1 A

¢(g1, daysz, dayss)
¢(g1, yearz, years)

(-(dayss < oldDayse) V
—~(dayss <= 365))

> >

A
A

A solution to these equations
is a sound counterexample:
an interpretation for all logical
variables that satisfies the
program semantics (for up to
< unwindings) but violates at
east one of the assertions.

BMC step 4 of 4: convert into CNF

year: = yearp + 1

—— ——

BMC step 4 of 4: convert into CNF

year: = yearg + 1

yearo3; O yearo; 0O yearoo

C32 C2 Cl

S3| S| SO

BMC step 4 of 4: convert into CNF

year: = yeare + 1

yearo3; O yearo; 0O yearoo

C3?2 C2 C|

year|:3| <= s31 A ... A Year|) <= S| A So < Yyeari.o

BMC counterexample for k=1

int daysToYear(int days) A days = 366
int year = 1980;
while (days > 365) {
int oldDays = days;
if (isLeapYear(year)) {
if (days > 366) {
days —= 366;
year += 1;
I3
} else {
days —= 365;
year += 1;
I3

assert days < oldDays;

}

return year,;

}

—— ————

Bounded Model Checking (BMCQC) &
Configuration Management

Configuration Management

Given a configuration, consisting of a
set of components, their dependencies,
and conflicts:

* Decide if a new component can be
added to the configuration.

* Add the component while optimizing
some linear function.

* If the component cannot be added,
find way to add it by removing as few
conflicting components from the
current configuration as possible.

Configuration Management

Given a configuration, consisting of a
set of components, their dependencies,
and conflicts:

* Decide if a new component can be
added to the configuration.

* Add the component while optimizing
some linear function.

* If the component cannot be added,
find way to add it by removing as few
conflicting components from the
current configuration as possible.

SAT

Configuration Management

Given a configuration, consisting of a
set of components, their dependencies,
and conflicts:

* Decide if a new component can be
added to the configuration.

* Add the component while optimizing
some linear function.

* If the component cannot be added,
find way to add it by removing as few
conflicting components from the
current configuration as possible.

SAT

Pseudo-Boolean Constraints

Configuration Management

Given a configuration, consisting of a
set of components, their dependencies,
and conflicts:

* Decide if a new component can be
added to the configuration.

* Add the component while optimizing
some linear function.

* If the component cannot be added,
find way to add it by removing as few
conflicting components from the
current configuration as possible.

SAT

Pseudo-Boolean Constraints

Partial (VWeighted) MaxSAT

Deciding if a component can be installed

a

|

|

/

C

53

Z
f g

Deciding if a component can be installed

IN
(f

z already

Z
Y installed.
f g

Deciding if a component can be installed

a

Y

/

|

!

C

53

Z
f g

a depends
on b, c,z.

z already
installed.

Deciding if a component can be installed

Y

I

|

b C Z
|

g

a depends
on b, ¢,z

z already
installed.

c needs f
or g.

Deciding if a component can be installed

a y a depends
/ l | on b, ¢, z.
|
b c 5 z already
installed.
< I I \? l c needs f
d «* e f g or g.

Conflict: d and e cannot
both be installed.

Deciding if a component can be installed

a y a depends
I on b, c, z.
l l To install a, CNF constraints are:
b c 5 z already
installed.
< I I \? l c needs f
d «* e f g or g.

Conflict: d and e cannot
both be installed.

Deciding if a component can be installed

a y a depends
| on b, c, z. | |
l | To install a, CNF constraints are:
° c] [z) zarad (Fa V) A(wa Vo) A(mavz) A
/ installed.
< \? l c needs f
d|[«* e f g or g.

Conflict: d and e cannot
both be installed.

Deciding if a component can be installed

a y a depends
| on b, c, z. | |
l | To install a, CNF constraints are:
° c] [z) zarad (72 Vb) A(wa Vo) A(maVz) A
/ installed. (b Vv d) A
< \? l c needs f
d|[«* e f g or g.

Conflict: d and e cannot
both be installed.

Deciding if a component can be installed

a y a depends
| on b, c, z. | |
l | To install a, CNF constraints are:
° c] [z) zarad (72 Vb) A(wa Vo) A(maVz) A
installed. (b Vv d) A
I 1 \?l c needs f (CcvdVve) A(meviveg A
d|[«* e f g or g.

Conflict: d and e cannot
both be installed.

Deciding if a component can be installed

a y a depends
| on b, c, z. | |
l | To install a, CNF constraints are:
b C 7 y4 a|r'ead)’ (—Ia V b) A (_Ia V C) A (—,a V Z) A
installed. (b Vv d) A
I 1 \?l c needs f (CcvdVve) A(meviveg A
d«* e f g| org (7d Vv 7e) A

L ——

Conflict: d and e cannot
both be installed.

Deciding if a component can be installed

a y a depends
| on b, c, z. | |
l | To install a, CNF constraints are:
° c] [z) zarad (72 Vb) A(wa Vo) A(maVz) A
installed. (b Vv d) A
I 1 \?l c needs f (CcvdVve) A(meviveg A
or (0d V —e) A
el L Le & a Az

L ——

Conflict: d and e cannot
both be installed.

Optimal installation

a

/

|

|

C

O

Z
f g

Optimal installation

IN
(Y

Pseudo-boolean solvers
accept a linear function
to minimize, in addition

to a (weighted) CNF.

Assume f and g are 5MB and 2MB each,
and all other components are IMB. To
install a, while minimizing total size,
pseudo-boolean constraints are:

Optimal installation

a

IN]
(et 1

mincix; + ... + cnXn

anxy + ... +anxs =bj

akIX|] t ... + aknXn =bk

Assume f and g are 5MB and 2MB each,
and all other components are IMB. To
install a, while minimizing total size,
pseudo-boolean constraints are:

Optimal installation

a

IN]
(et 1

mincix; + ... + cnXn

anxy + ... +anxs =bj

akIX|] t ... + aknXn =bk

Assume f and g are 5MB and 2MB each,
and all other components are IMB. To
install a, while minimizing total size,
pseudo-boolean constraints are:

mina+b+c+d+e+ 5 +2g+y

Optimal installation

IN
(Y

mincix; + ... + cnXn

anxy + ... +anxs =bj

akIX|] t ... + aknXn =bk

Assume f and g are 5MB and 2MB each,
and all other components are IMB. To
install a, while minimizing total size,
pseudo-boolean constraints are:

mina+b+c+d+e+ 5 +2g+y

(-a+ b =0)A(-a+ c 20)A(-a+z =0) A
(-b+d=0) A

(-c+d+e=0) A(c+f+g=0) A

(-d +-e =-1) A

@az=l)A(z=])

Installation in the presence of conflicts

Installation in the presence of conflicts

N

a cannot be installed
because it requires b,
which requires d, which
conflicts with e.

Installation in the presence of conflicts

N

To install a, while minimizing the number
of removed components, Partial
MaxSAT constraints are:

hard: (FravVb)A(mavec) A(maVviz) A
(tb vd) A
(rcvdve)A(cvEiVvg A
("d V e) Aa

soft: e A z

Partial MaxSAT solver takes as input a set of
hard clauses and a set of soft clauses, and it
produces an assignment that satisfies all
hard clauses and the greatest number of

soft clauses.

Installation in the presence of conflicts

N

To install a, while minimizing the number
of removed components, Partial
MaxSAT constraints are:

hard: (FravVb)A(mavec) A(maVviz) A
(tb vd) A
(rcvdve)A(cvEiVvg A
("d V e) Aa

soft: e A z

Partial MaxSAT solver takes as input a set of
hard clauses and a set of soft clauses, and it
produces an assignment that satisfies all
hard clauses and the greatest number of

soft clauses.

summary

Today
- SAT solvers have been used successfully in many applications & domains
* But reducing problems to SAT is a lot like programming in assembly ...

* We need higher-level logics!

NeXxt lecture

* On to richer logics: introduction to Satisfiability Modulo Theories (SMT)

