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Today

Past 3 lectures

* The theory and mechanics of SAT solving

Today
* Practical applications of SAT
* Variants of the SAT problem

- Motivating the next lecture on SMT

But first ...
« A brief Q&A session for Homework |

- Live SAT solving (or, partial assignment of students to project teams)
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A brief history of SAT solving and applications

Bounded Model Checking. First
10,000K  presented at FMCAD’98. In an
unusual move, the Chairs included
an extra talk on BMC. A 1999 paper
| 000k describes its application at Motorola
to verify a PowerPC processor.
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Bounded Model Checking (BMCQC) &
Configuration Management



Bounded Model Checking (in general)

Given a system and a property,
BMC checks if the property is
satisfied by all executions of
the system with <k steps, on
all inputs of size <n.




Bounded Model Checking (in general)

Given a system and a property,
BMC checks if the property is
satisfied by all executions of
the system with <k steps, on
all inputs of size <n.

We will focus on safety
properties (i.e., making
sure a bad state, such as an
assertion violation, is not
reached).



Bounded Model Checking (in general)

e
/0

Testing: checks a BMC: checks all Verification: checks
few executions executions of all executions of
of arbitrary size size <k every size

low confidence high confidence

\ low human labor high human labor



BMC by example

int daysToYear(int days) {
int year = 1980;
while (days > 365) {
if (isLeapYear(year)) {
if (days > 366) {
days —= 366;
year += 1,
I3
} else {
days —= 365;
year += 1;
I3
I3

return year;

}

—



BMC by example

int daysToYear(int days) {
int year = 1980;

while (days > 365) { The Zune Bug: on December
if (isLeapYear(year)) { 31,2008, all first generation
if (days > 366) { Zune players from Microsoft
days —= 366; became unresponsive because
year += 1, : P
1 of this code. What'’s wrong?
} else {
days —= 365;
year += 1;
I3
I3

return year;

}

S — e ——



BMC by example

int daysToYear(int days) {
int year = 1980;
while (days > 365) {
if (isLeapYear(year)) {

if (days > 366) { Infinite loop triggered on the
days -= 366; last day of every leap year.
year += 1,
I3
} else {
days —= 365;
year += 1;
I3

}

return year,

}

L —



BMC by example

int daysToYear(int days) {
int year = 1980;
while (days > 365) {
int oldDays = days;
if (isLeapYear(year)) {
if (days > 366) {

days —= 366;
year += 1;
}
} else {
days —= 365;
year += 1, A desired safety property:
} the value of the days
assert days < oldDays; - variable decreases in every
; loop iteration.

return year;

}

L ——



BMC step | of 4: finitize loops & inline calls

int daysToYear(int days) {
int year = 1980;
while (days > 365) {
int oldDays = days;
if (isLeapYear(year)) {
if (days > 366) {
days —= 366;
year += 1;
I3
} else {
days —= 365;
year += 1,;
I3

assert days < oldDays;

}

return year,;

}
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int daysToYear(int days) {
int year = 1980;
if (days > 365) {
int oldDays = days;

if (isLeapYear(year)) {

if (days > 366) {
days —= 366;
year += 1;
s
} else {
days —= 365;
year += 1;
s
assert days < oldDays;
assert days <= 365;

}

return year,

¥

+ Unwind all loops k times (e.g.,

k=1),and add an unwinding
assertion after each.
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assertion after each.

- |f a CEX violates a program

assertion, we have found a
buggy behavior of length <k.
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but it may have a longer one.



BMC step | of 4: finitize loops & inline calls

int daysToYear(int days) {
int year = 1980;
if (days > 365) {
int oldDays = days;

if (isLeapYear(year)) {

if (days > 366) {

days —= 366;
year += 1;
I3
} else {
days —= 365;
year += 1;
}

assert days < oldDays;
assert days <= 365;

}

return year,

¥

— —

+ Unwind all loops k times (e.g.,

k=1),and add an unwinding
assertion after each.

- |f a CEX violates a program

assertion, we have found a
buggy behavior of length <k.

- If a CEX violates an unwinding

assertion, the program has no

buggy behavior of length <k,
but it may have a longer one.

f there is no CEX, the
program is correct for all k!




BMC step | of 4: finitize loops & inline calls

int daysToYear(int days) {
int year = 1980;
if (days > 365) { Assume call to isLeapYear is
int oldDays = days; inlined (replaced with the

if (isLeapYear(year)) < procedure body). We'll keep it
for readability.

if (days > 366) {

days —= 366;
year += 1,;
I3
} else {
days —= 365;
year += 1;
}

assert days < oldDays;
assert days <= 365;

}

return year;

¥

— e —————



BMC step 2 of 4: eliminate side effects

int daysToYear(int days) {
int year = 1980;
if (days > 365) {
int oldDays = days;
if (isLeapYear(year)) {
if (days > 366) {
days —= 366;
year += 1,;
s
} else {
days —= 365;
year += 1;
s
assert days < oldDays;
assert days <= 365;

}

return year;

¥

L — e ————————.



BMC step 2 of 4: eliminate side effects

int days;
int year = 1980;
if (days > 365) {
int oldDays = days;
if (isLeapYear(year)) {
if (days > 366) {
days = days - 3606;
year = year + 1;

Convert to Static Single
Assignment (SSA) form:

s

} else {
days = days - 365;
year = year + 1;

}

assert days < oldDays;
assert days <= 365;

}

return year,



BMC step 2 of 4: eliminate side effects

int dayse;
int yeare = 1980; Convert to Static Single

i1f (dayse > 365) { :
int oldDayse = dayso; Assignment (SSA) form:

1f (isLeapYear(yeare)) 1 - Replace each assignment to a
1fd(dayS_@ Z 366) {366' variable v with a definition of
yzgf‘i i} y:gig s 1. ’ a fresh variable vi.
} + Change uses of variables so
} else { that they refer to the correct
dayss = dayse — 365; definition (version).
years = yearg + 1;

}

assert dayss < oldDayse;
assert dayss <= 365;

}

return years;



BMC step 2 of 4: eliminate side effects

int dayse;

int yearp = 1980;

boolean go = (dayse > 365);
int oldDayse = dayse;

boolean g1 = islLeapYear(years);
boolean g, = dayse > 360;

daysi = dayse — 366;

year: = yearg + 1;

days: = ¢@(g1 && g2, daysi, dayse)
vear = ¢(g1 & g2, yeari, yearp)
dayss = dayse — 365;

years = yeare + 1;

dayss = ¢(g1, daysz, dayss)

years = ¢(g1, yearz, years)

assert dayss < oldDaysoe;
assert dayss <= 365;
return years;

Convert to Static Single
Assignment (SSA) form:

Replace each assighment to a
variable v with a definition of
a fresh variable vi.

 Change uses of variables so

that they refer to the correct
definition (version).

« Make conditional

dependences explicit with
gated P nodes.



BMC step 2 of 4: eliminate side effects

int dayse;
int yeare = 1980;
if (dayse > 365) {
int oldDayse = dayse;
if (isLeapYear(yeare)) {
if (dayse > 366) {
daysi1 = dayse — 366;
yeari = yearg + 1;
s
} else {
dayss = dayse — 365;
years = yeare + 1;
s
assert dayss < oldDayso;
assert dayss <= 365;

}

return years,

int dayse;

int yearpy = 1980;

boolean go = (dayse > 365);
int oldDayse = dayse;

boolean g1 = islLeapYear(years);
boolean g> = dayse > 306;

daysi: = dayse — 366;

yeary = yearg + 1;

days: = ¢(g1 && g2, daysi, dayse)
yearz = ¢(g1 & g2, yeari, yearp)
dayss = dayse — 3065;

years = yearp + 1;

dayss = ¢(g1, daysz, dayss)

years = ¢@(g1, yearz, years)

assert dayss < oldDaysoe;
assert dayss <= 365;
return years,;




BMC step 3 of 4: convert into equations

int dayse;

int yearp = 1980;

boolean go = (dayse > 365);
int oldDayse = dayse;

boolean g1 = isLeapYear(years);
boolean g, = dayse > 360;

daysi = dayse — 366;

year: = yearg + 1;

days2 = @(g1 && g2, daysi, dayse)
year = ¢(g1 & g2, yeari, yearo)
dayss = dayse — 365;

years = yeare + 1;

dayss = ¢(g1, daysz, dayss)

years = ¢(g1, year2, years)

assert dayss < oldDaysoe;
assert dayss <= 365;
return years;




BMC step 3 of 4: convert into equations

Y€ale = 1980 A

ge = (dayse > 365) A
oldDayse = dayse A

g1 = isLeapYear(yearg) A
g2 = dayS@ > 360 A

daysi
yeari
days:>
year:
dayss
years
dayss
yeary

dayse — 366 A
yeare + 1 A

ite(g:s A g2, daysi, dayse)
ite(g:1 A g2, yeari, yearo)

dayse — 365 A
yeare + 1 A

¢(g1, daysz, dayss)
¢(g1, yearz, years)

(-(dayss < oldDayse) V
—~(dayss <= 365))

> >

A
A

A solution to these equations
is a sound counterexample:
an interpretation for all logical
variables that satisfies the
program semantics (for up to
< unwindings) but violates at
east one of the assertions.




BMC step 4 of 4: convert into CNF

year: = yearp + 1

—— ——



BMC step 4 of 4: convert into CNF

year: = yearg + 1

yearo3; O yearo; 0O  yearoo

C32 C2 Cl

S3| S| SO



BMC step 4 of 4: convert into CNF

year: = yeare + 1

yearo3; O yearo; 0O  yearoo

C3?2 C2 C|

year|:3| <= s31 A ... A Year|) <= S| A So < Yyeari.o




BMC counterexample for k=1

int daysToYear(int days) A days = 366
int year = 1980;
while (days > 365) {
int oldDays = days;
if (isLeapYear(year)) {
if (days > 366) {
days —= 366;
year += 1;
I3
} else {
days —= 365;
year += 1;
I3

assert days < oldDays;

}

return year,;

}

—— ————



Bounded Model Checking (BMCQC) &
Configuration Management



Configuration Management

Given a configuration, consisting of a
set of components, their dependencies,
and conflicts:

* Decide if a new component can be
added to the configuration.

* Add the component while optimizing
some linear function.

* If the component cannot be added,
find way to add it by removing as few
conflicting components from the
current configuration as possible.
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Configuration Management

Given a configuration, consisting of a
set of components, their dependencies,
and conflicts:

* Decide if a new component can be
added to the configuration.

* Add the component while optimizing
some linear function.

* If the component cannot be added,
find way to add it by removing as few
conflicting components from the
current configuration as possible.

SAT

Pseudo-Boolean Constraints

Partial (VWeighted) MaxSAT
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Deciding if a component can be installed

a y a depends
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installed.
< I I \? l c needs f
d «* e f g or g.

Conflict: d and e cannot
both be installed.
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Deciding if a component can be installed
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Deciding if a component can be installed

a y a depends
| on b, c, z. | |
l | To install a, CNF constraints are:
° c] [z) zarad (72 Vb) A(wa Vo) A(maVz) A
installed. (b Vv d) A
I 1 \?l c needs f (CcvdVve) A(meviveg A
or (0d V —e) A
el L Le & a Az

L ——

Conflict: d and e cannot
both be installed.



Optimal installation
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Optimal installation

IN
(Y

Pseudo-boolean solvers
accept a linear function
to minimize, in addition

to a (weighted) CNF.

Assume f and g are 5MB and 2MB each,
and all other components are IMB. To
install a, while minimizing total size,
pseudo-boolean constraints are:
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Optimal installation

IN
(Y

mincix; + ... + cnXn

anxy + ... +anxs =bj

akIX|] t ... + aknXn =bk

Assume f and g are 5MB and 2MB each,
and all other components are IMB. To
install a, while minimizing total size,
pseudo-boolean constraints are:

mina+b+c+d+e+ 5 +2g+y

(-a+ b =0)A(-a+ c 20)A(-a+z =0) A
(-b+d=0) A

(-c+d+e=0) A(c+f+g=0) A

(-d +-e =-1) A

@az=l)A(z=])




Installation in the presence of conflicts




Installation in the presence of conflicts

N

a cannot be installed
because it requires b,
which requires d, which
conflicts with e.



Installation in the presence of conflicts

N

To install a, while minimizing the number
of removed components, Partial
MaxSAT constraints are:

hard: (FravVb)A(mavec) A(maVviz) A
(tb vd) A
(rcvdve)A(cvEiVvg A
("d V e) Aa

soft: e A z

Partial MaxSAT solver takes as input a set of
hard clauses and a set of soft clauses, and it
produces an assignment that satisfies all
hard clauses and the greatest number of

soft clauses.



Installation in the presence of conflicts

N

To install a, while minimizing the number
of removed components, Partial
MaxSAT constraints are:

hard: (FravVb)A(mavec) A(maVviz) A
(tb vd) A
(rcvdve)A(cvEiVvg A
("d V e) Aa

soft: e A z

Partial MaxSAT solver takes as input a set of
hard clauses and a set of soft clauses, and it
produces an assignment that satisfies all
hard clauses and the greatest number of

soft clauses.



summary

Today
- SAT solvers have been used successfully in many applications & domains
* But reducing problems to SAT is a lot like programming in assembly ...

* We need higher-level logics!

NeXxt lecture

* On to richer logics: introduction to Satisfiability Modulo Theories (SMT)



