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A formula is satisfiable if there exists
a function | from its variables to truth
values such that, when we replace
each variable x with 1(x), the formula
evaluates to true.

A formula is valid if for every function

| from its variables to truth values,
when we replace each variable x with
l(x), the formula evaluates to true.
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evaluates to true.

A formula is valid if for every function
| from its variables to truth values,
when we replace each variable x with
1(x), the formula evaluates to true.

Formula f is valid iff !'f is

We can try to determine validity by
search (enumerating assignments |)

or by
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sat £ =
case f of
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| => UNSAT
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X = pick var £

try setting x to false ...

sat (f[xrH—11)

... and recurse

if sat
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desugar £ = Correct? Efficient?
case £ of

L =1

£1 /\ f2 => (desugar fl) /\ (desugar f2)
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Resolution

Ca ¢t (a1 \/ az \/ ... \/ p\/ ... \/ ax)
Cb ¢+ (b1 \/ b2 \/ ... \/ ~-p \/ ... \/ by)

(a1 \/ ... \/ ax \/ b1 \/ ... \/ bn)
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Unit Resolution

Ca ¢ D
Co ¢ (b1 \/ b2 \/ ... \/ ~p \/ ... \/ bpn)
(bi \/ ... \/ bn

Boolean Constraint Propagation

bcp £ =
case pick unit clause f of
| x => becp (f[x+—T1)
| NONE => f



Davis Putnam Logemann Loveland

dpll f =

case f’' of

| => SAT
=> UNSAT
=>

X = pick var f’
1f dpll f£f'[x+—T] = SAT then
SAT

else
dpll (f'[x+—_]]1)



Pure Literal Propagation

If a literal only occurs
positively, T

If a literal only occurs
nhegatively, |



DPLL + PLP

dpll £ =
fr = (bcp f)
case f’' of
T => SAT
| => UNSAT
=

X = pick var f’
1f dpll f£f'[x+—T] = SAT then
SAT

else
dpll (f'[x+—11)



