Normal Forms
|
DPLL

CSE 507
September 30, 2014

NEXPLAINED
NOTATION!
ASK QUESTIONS!

notacion inexplicable

hacer preguntas
s VIOLADORES ©' SERAN PROCESADOS

A formula is satisfiable if there exists
a function | from its variables to truth
values such that, when we replace
each variable x with 1(x), the formula
evaluates to true.

A formula is valid if for every function

| from its variables to truth values,
when we replace each variable x with
l(x), the formula evaluates to true.

A formula is satisfiable if there exists
a function | from its variables to truth
values such that, when we replace
each variable x with 1(x), the formula
evaluates to true.

A formula is valid if for every function
| from its variables to truth values,
when we replace each variable x with
l(x), the formula evaluates to true.

Formula f is valid iff !'f is

£ IS BELE By BECC N

A formula is satisfiable if there exists
a function | from its variables to truth

values such that, when we replace
each variable x with 1(x), the formula
evaluates to true.

A formula is valid if for every function
| from its variables to truth values,
when we replace each variable x with
1(x), the formula evaluates to true.

Formula f is valid iff !'f is

We can try to determine validity by
search (enumerating assignments |)

or by

Sat Solver

Sat Solver

sat f

Sat Solver

define function sat that
takes formula £ as an

sat f

Sat Solver

sat £ =
case f of

Sat Solver

analyze structure of £
sat £ =

case f of

Sat Solver

sat £ =
case f of
| T => SAT

Sat Solver

sat £ =
case f of
| T => SAT

Sat Solver

sat £ =

case f of
| => SAT
=> UNSAT

Sat Solver

sat £ =

case f of
| => SAT
=> UNSAT

Sat Solver

sat £ =
case f of
] => SAT
| => UNSAT

=>

Sat Solver

Ul all other cases...

Sat Solver

sat £ =
case f of
] => SAT
| => UNSAT
=

X = pick var £

Sat Solver

sat £ =
case f of
= choose some
=> SAT variable from f
| => UNSAT
=>

X = pick var £

Sat Solver

sat £ =
case f of
] => SAT
| => UNSAT
=

X = pick var £
1f sat f[x +—T] = SAT then

Sat Solver

Sat Solver

replace x with
T throughout f

Sat Solver

replace x with
T throughout f

X/A\NYy\N/z->y\/X)xX=T] = (T/\Ny\/z->y\/T)

Sat Solver

sat £ =
case f of
] => SAT
| => UNSAT
=

X = pick var £
1f sat f[x +—T] = SAT then

Sat Solver

sat £ =
case f of
| => SAT
| => UNSAT

=>

X = pick var £
1f sat f[x +—T] = SAT then

if we find a satisfying
assignment with x setto T

Sat Solver

sat £ =
case f of
] => SAT
| => UNSAT
=

X = pick var £

1f sat f[x +—T] = SAT then
SAT

else

Sat Solver

sat £ =
case f of
] => SAT
| => UNSAT
=

X = pick var £
1f sat f[x +—T] = SAT then

SAT then formula £ is
else

Sat Solver

sat £ =
case f of
] => SAT
| => UNSAT
=

X = pick var £

1f sat f[x +—T] = SAT then
SAT

else
sat (f[x+— 1)

Sat Solver

sat £ =
case f of
] => SAT
| => UNSAT
=

X = pick var £

try setting x to false ...

sat (f[xrH—11)

... and recurse

if sat

Sat Solver

sat £ =
case f of
] => SAT
| => UNSAT
=

X = pick var £

1f sat f[x +—T] = SAT then
SAT

else
sat (f[x+— 1)

Correct?

Sat Solver

sat £ =
case f of
] => SAT
| => UNSAT
=

X = pick var £

1f sat f[x +—T] = SAT then
SAT

else
sat (f[x+— 1)

Sat Solver

sat £ =
case f of
] => SAT
| => UNSAT
=

X = pick var £

1f sat f[x +—T] = SAT then
SAT

else
sat (f[x+— 1)

Today

Normal Forms
- desugaring
- negation normal form (NNF)
- disjunctive normal form (DNF)
- conjuctive normal form (CNF)

Today

Normal Forms
- desugaring
- negation normal form (NNF)
- disjunctive normal form (DNF)
- conjuctive normal form (CNF)

DPLL
- resolution
- binary constraint propagation
- a better sat solver

Today

clean up
Normal Form

- desugaring

- negation normal form (NNF)

- disjunctive normal form (DNF)
- conjuctive normal form (CNF)

DPLL
- resolution
- binary constraint propagation
- a better sat solver

Today

clean up
Normal Form

- desugaring

- negation normal form (NNF)

- disjunctive normal form (DNF)
- conjuctive normal form (CNF)

— 'eéSx

- binary constraint propagation
- a better sat solver

desugar f =

desugar f =
case £ of
| 1 =1

desugar f =
case f of
| 1 =1
| £1 /\ £2 => (desugar fl) /\ (desugar f2)

desugar f =
case f of
L =1
£1 /\ f2 => (desugar fl) /\ (desugar f2)
£f1 \/ f£2 => (desugar f1l) \/ (desugar f2)

desugar f =

case f of
L =1
£1 /\ f2 => (desugar fl) /\ (desugar f2)
£f1 \/ f£2 => (desugar f1l) \/ (desugar f2)
£f1 -> f£2 => desugar ((! f£1) \/ £2)

desugar f =
case f of
L =1
£1 /\ f2 => (desugar fl) /\ (desugar f2)
£f1 \/ f£2 => (desugar f1l) \/ (desugar f2)
£f1 -> f£2 => desugar ((! f£1) \/ £2)
f1 <-> f2 => desugar ((fl -> f2) /\ (f2 -> f1))

““““““““\ Illl"}

desugar £ = Correct? Efficient?
case £ of

L =1

£1 /\ f2 => (desugar fl) /\ (desugar f2)

£f1 \/ f2 => (desugar fl) \/ (desugar f2)

£f1 -> £2 => desugar ((! f£1) \/ £2)

f1 <-> f2 => desugar ((fl -> f2) /\ (f2 -> f1))

NNF

NNF

pnot £ =

NNF

pnot £ =
case £ of
| ! (- a) => a

NNF

pnot £ =
case f of
| ! (- a) => a
| ! a => ~ a

NNF

pnot £ =
case f of
! (= a) => a
! a => ~ a
1 1 f => pnot £

NNF

pnot £ =
case f of
! (= a) => a
! a => ~ a
1 1 f => pnot £
I (f1 /N £2) => pnot ((! f£1) \/ (! £2))

NNF

pnot £ =
case f of
! (= a) => a
! a => ~ a
1 1 f => pnot £
(£1 /\ £2) => pnot ((! £1) \/ (! £2))
(£1 \/ £2) => pnot ((! £1) /\ (! £2))

NNF

pnot £ =
case f of
! (~ a)
! a
L S
(£1 /\
(£f1 \/
f1 /\ f2

=> Aa

=> ~ a

=> pnot
£t2) =>
£t2) =>

f

pnot ((! £1) \/ (! £2))
pnot ((! £1) /\ (! £2))
(pnot £1) /\ (pnot £2)

NNF

pnot £ =
case f of
! (=~ a)
! a
L S
(£1 /\
(£f1 \/
f1 /\ f2
£f1 \/ £f2

=> A
=> ~ a
=> pnot
£2) =>
£2) =>

f

pnot ((! f£1) \/ (! £2))
pnot ((! f£1) /\ (! £2))
(pnot £1) /\ (pnot £2)
(pnot £1) \/ (pnot f2)

- NNF

pnot £ =
case f of
! (=~ a)
! a
L S
(£1 /\
(£f1 \/
f1 /\ f2
£f1 \/ £f2

=> Aa

=> ~ a

=> pnot
£2) =>
£2) =>

Correct? Efficient?

f

pnot ((! f£1) \/ (! £2))
pnot ((! f£1) /\ (! £2))
(pnot £1) /\ (pnot £2)
(pnot £1) \/ (pnot f2)

DNF

DNF

dnf £

dnf £ =
case f of
| 1 =1

-)

DNF

dnf £ =
case ©f of
| 1 =1
| (£1 \/ £2) /\ £3 =>dnf ((f1 /\ £3) \/ (£2 /\ £3))

-)

DNF

dnf £ =
case £ of
1 =1
(£1 \/ £2) /\ £3 => dnf ((£f1 /\ £3) \/ (£f2 /\ £3))
£1 /N (f2 \/ £3) => dnf ((f1 /\ £2) \/ (£f1 /\ £3))

-)

DNF

dnf £ =

case ©f of
L =1
(£1 \/ £2) /\ £3 => dnf ((£f1 /\ £3) \/ (£f2 /\ £3))
£1 /N (f2 \/ £3) => dnf ((f1 /\ £2) \/ (£f1 /\ £3))
£1 /\ £2 => (dnf f1) X (dnf £2)

(£1 \/ - / (f2 /\ £3))
f1 /\ (f2 \/ £3 /\ £2) \/ (f1 /\ £3))
£f1 /\ £2 => (dnf f1) X (dnf £2)

-)

DNF

dnf £ =
case f of
1 = 1

(£1 \/ £2) /\ £3 => dnf ((f1 /\ £3) \/ (£2 /\ £3))
£1 /N (£f2 \/ £3) => dnf ((£f1 /\ £2) \/ (£1 /\ £3))
£1 /\ £2 => (dnf f1) X (dnf £2)

£1 \/ f2 => (dnf f1) \/ (dnf £2)

- DNF
dnf f = Correct? Efficient?
case f of

1 =1

(£1 \/ £2) /\ £3 => dnf ((f1 /\ £3) \/ (£2 /\ £3))
£1 /N (£f2 \/ £3) => dnf ((£f1 /\ £2) \/ (£1 /\ £3))
£1 /\ £2 => (dnf f1) X (dnf £2)

£1 \/ f2 => (dnf f1) \/ (dnf £2)

CNF

CNF

cnf f

cnf £ =
case f of
| 1 =1

-)

CNF

cnf £ =
case ©f of
| 1 =1
| (£1 /\ £2) \/ £3 => cnf ((f1 \/ £3) /\ (£2 \/ £3))

-)

CNF

cnf £ =
case £ of
1 =1
(£1 /N £2) \/ £3 => enf ((£f1 \/ £3) /\ (£f2 \/ £3))
£1 N/ (f2 /\ £3) => cnf ((£f1 \/ £2) /\ (£f1 \/ £3))

-)

CNF

cnf £ =

case ©f of
L =1
(£1 /N £2) \/ £3 => enf ((£f1 \/ £3) /\ (£f2 \/ £3))
£1 N/ (f2 /\ £3) => cnf ((£f1 \/ £2) /\ (£f1 \/ £3))
£f1 \/ £2 => (cnf f1) X (cnf £2)

(£1 /\ - \ (f2 \/ £3))
f1 \/ (£f2 /\ f£3 \/ £2) /\ (f1 \/ £3))
£f1 \/ f2 => (enf f1) X (cnf £2)

-)

CNF

cnf £ =
case f of
1 = 1

(£1 /N £2) \/ £3 => enf ((£f1 \/ £3) /\ (£f2 \/ £3))
£1 N/ (£f2 /\ £3) => enf ((£f1 \/ £2) /\ (£f1 \/ £3))
£f1 \/ £2 => (cnf f1) X (cnf £2)

£f1 /N £f2 => (enf f1) /\ (cnf £2)

- CNF
cnf £ = Correct? Efficient?

case f of

1 =1

(£1 /\ £2) \/ £3 => enf ((£f1 \/ £3) /\ (£2 \/ £3))
£1 N/ (£f2 /\ £3) => enf ((£f1 \/ £2) /\ (£f1 \/ £3))
£f1 \/ £2 => (cnf f1) X (cnf £2)

£f1 /N £f2 => (enf f1) /\ (cnf £2)

- CNF
cnf £ = Correct? Efficient?

case f of
L == 1
(£1 /\ £2) \/ £3 => enf ((£f1 \/ £3) /\ (£2 \/ £3))
£f1 N/ (£2 /\ £3) => cnf ((£f1 \/ £2) /\ (£1 \/ £3))
£f1 \/ £2 => (cnf f1) X (cnf £2)
£f1 /\ £2 => (cnf f1) /\ (cnf £2)

cnf f

cnf £ =
case £ of
| 1 =>1

cnf £ =
case £ of
| 1 =>1
| £1 /\ £2 => (enf f1) /\ (cnf £2)

cnf £ =
case f of
1 =1
£f1 /\ f2 => (enf f1) /\ (cnf £2)
f1 N/ £2 =>

cnf £ =
case £ of
1 =1
£f1 /\ f2 => (enf f1) /\ (cnf £2)
£1 \/ £2 =>
(x1 \/ x2) /\
(distr or (-~ x1) (cnf £1)) /\
(distr or (~ x2) (cnf £2))

(/\
(distr or (-~ x1) (cnf f£1)) /\
(distr or (~ x2) (cnf £2))

cnf £ =
case £ of
1 =1
£f1 /\ f2 => (enf f1) /\ (cnf £2)
£1 \/ £2 =>
(x1 \/ x2) /\
(distr or (-~ x1) (cnf £1)) /\
(distr or (~ x2) (cnf £2))

Resolution

Ca ¢t (a1 \/ az \/ ... \/ p\/ ... \/ ax)
Cb ¢+ (b1 \/ b2 \/ ... \/ ~-p \/ ... \/ by)

(a1 \/ ... \/ ax \/ b1 \/ ... \/ bn)

Unit Resolution
Ca ¢ D

Co ¢ (b1 \/ b2 \/ ... \/ ~p \/ ... \/ bpn)

(bi \/ ... \/ bn

Unit Resolution

Ca ¢ D
Co ¢ (b1 \/ b2 \/ ... \/ ~p \/ ... \/ bpn)
(bi \/ ... \/ bn

(bl \/ c o o \/ bn)

Unit Resolution

Ca ¢ D
Co ¢ (b1 \/ b2 \/ ... \/ ~p \/ ... \/ bpn)
(bi \/ ... \/ bn

Boolean Constraint Propagation

Unit Resolution

Ca ¢ D
Co ¢ (b1 \/ b2 \/ ... \/ ~p \/ ... \/ bpn)
(bi \/ ... \/ bn

Boolean Constraint Propagation

bcp £ =
case pick unit clause f of
| x => becp (f[x+—T1)
| NONE => f

Davis Putnam Logemann Loveland

dpll f =

case f’' of

| => SAT
=> UNSAT
=>

X = pick var f’
1f dpll f£f'[x+—T] = SAT then
SAT

else
dpll (f'[x+—_]]1)

Pure Literal Propagation

If a literal only occurs
positively, T

If a literal only occurs
nhegatively, |

DPLL + PLP

dpll £ =
fr = (bcp f)
case f’' of
T => SAT
| => UNSAT
=

X = pick var f’
1f dpll f£f'[x+—T] = SAT then
SAT

else
dpll (f'[x+—11)

