
CSE507
Emina Torlak
emina@cs.washington.edu

courses.cs.washington.edu/courses/cse507/14au/

Computer-Aided Reasoning for Software

Model Checking II

http://courses.cs.washington.edu/courses/cse507/14au/index.html

Today

2

Today

2

Last lecture
• Model checking basics

http://courses.cs.washington.edu/courses/cse507/14au/hws.html

Today

2

Last lecture
• Model checking basics

Today
• Software model checking with SLAM

Based on lectures by Tom
Ball and Sriram K. Rajamani.
See the SLAM project
webpage for details.

http://courses.cs.washington.edu/courses/cse507/14au/hws.html
http://research.microsoft.com/en-us/projects/slam/

Today

2

Last lecture
• Model checking basics

Today
• Software model checking with SLAM

Reminders
• Homework 3 is due on today at 11pm

• Project demos will be held on Dec 08, 10:30-12:20, in MGH 254

Based on lectures by Tom
Ball and Sriram K. Rajamani.
See the SLAM project
webpage for details.

http://courses.cs.washington.edu/courses/cse507/14au/hws.html
http://research.microsoft.com/en-us/projects/slam/

Overview of SLAM

3

Program P

Safety
property S

A trace of P
that violates S

✓SLAM
Software, programming Languages,
Abstraction, and Model checking

Overview of SLAM

3

Program P

Safety
property S

A trace of P
that violates S

✓SLAM
Software, programming Languages,
Abstraction, and Model checking

A sequential program
(device driver)
implemented in C.

Overview of SLAM

3

Program P

Safety
property S

A trace of P
that violates S

✓SLAM
Software, programming Languages,
Abstraction, and Model checking

A sequential program
(device driver)
implemented in C.

Temporal property (an API
usage rule) written in SLIC,
such as “a lock should be
alternatively acquired and
released.”

Overview of SLAM

3

Program P

Safety
property S

A trace of P
that violates S

✓SLAM
Software, programming Languages,
Abstraction, and Model checking

Ships in Microsoft’s Static
Driver Verifier (SDV) tool.

Most influential PLDI paper
award and the 2011 CAV award.

The SLAM process

4

Instrumentation

Program P

Safety
property S

P’

The SLAM process

4

Instrumentation

Program P

Safety
property S

Abstraction

P’

boolean
program B

The SLAM process

4

Instrumentation

Program P

Safety
property S

Abstraction

Model checkingP’

boolean
program B

The SLAM process

4

Instrumentation

Program P

Safety
property S

Abstraction

Model checkingP’

boolean
program B

✓

The SLAM process

4

Instrumentation

Program P

Safety
property S

Abstraction

Model checking

Trace validation

P’

boolean
program B

error trace
for B

✓

The SLAM process

4

Instrumentation

Program P

Safety
property S

Abstraction

Model checking

Trace validation

P’

boolean
program B

error trace
for B

A trace of P
that violates S

✓

The SLAM process

4

Instrumentation

Program P

Safety
property S

Abstraction

Model checking

Trace validation

P’

boolean
program B

error trace
for B

A trace of P
that violates S

✓
new
predicates

The SLAM process

4

Instrumentation

Program P

Safety
property S

Abstraction

Model checking

Trace validation

P’

boolean
program B

error trace
for B

A trace of P
that violates S

✓
new
predicates

C2BP

Bebop

Newton

The SLAM process: specifying safety properties

5

Instrumentation

Program P

Safety
property S

C2BP

Bebop

Newton

P’

boolean
program B

error trace
for B

A trace of P
that violates S

✓
new
predicates

Specification Language for Interface Checking

6

Specification Language for Interface Checking

6

A finite state language for stating rules for
API usage

• Temporal safety properties expressed as safety
automata that monitor program’s execution
behavior at the level of function calls and returns.

• Familiar C syntax.

Specification Language for Interface Checking

6

A finite state language for stating rules for
API usage

• Temporal safety properties expressed as safety
automata that monitor program’s execution
behavior at the level of function calls and returns.

• Familiar C syntax.

Suitable for control-dominated properties
• E.g., ordering of function calls with associated

constraints on data values at the API boundary.

A locking protocol in SLIC

7

Locked

Error

Unlocked

release

acquire

release acquire

state {
 enum {Locked, Unlocked}
 state = Unlocked;
}

KeAcquireSpinLock.return {
 if (state == Locked)
 abort;
 else
 state = Locked;
}

KeReleaseSpinLock.return {
 if (state == Unlocked)
 abort;
 else
 state = Unlocked;
}

The global state
structure defines a static
set of state variables.

A locking protocol in SLIC

7

Locked

Error

Unlocked

release

acquire

release acquire

state {
 enum {Locked, Unlocked}
 state = Unlocked;
}

KeAcquireSpinLock.return {
 if (state == Locked)
 abort;
 else
 state = Locked;
}

KeReleaseSpinLock.return {
 if (state == Unlocked)
 abort;
 else
 state = Unlocked;
}

A locking protocol in SLIC

7

Locked

Error

Unlocked

release

acquire

release acquire

Transfer functions
define events and
event handlers that
describe state
transitions on events.

The SLAM process: instrumentation

8

Instrumentation

Program P

Safety
property S

C2BP

Bebop

Newton

P’

boolean
program B

error trace
for B

A trace of P
that violates S

✓
new
predicates

Instrumentation by example: 2 steps

9

state {
 enum {Locked, Unlocked}
 state = Unlocked;
}

KeAcquireSpinLock.return {
 if (state == Locked)
 abort;
 else
 state = Locked;
}

KeReleaseSpinLock.return {
 if (state == Unlocked)
 abort;
 else
 state = Unlocked;
}

void example() {
 do {
 KeAcquireSpinLock();

 nOld = nPackets;

 if (request) {
 request = request->next;
 KeReleaseSpinLock();
 nPackets++;
 }
 } while (nPackets != nOld);

 KeReleaseSpinLock();
}

Program PSafety

property S Simplified
code for a PCI
device driver.

Step 1: translate the SLIC spec S to C

10

state {
 enum {Locked, Unlocked}
 state = Unlocked;
}

KeAcquireSpinLock.return {
 if (state == Locked)
 abort;
 else
 state = Locked;
}

KeReleaseSpinLock.return {
 if (state == Unlocked)
 abort;
 else
 state = Unlocked;
}

enum {Locked=0, Unlocked=1}
 state = Unlocked;

void slic_abort() {
 SLIC_ERROR: ;
}

void KeAcquireSpinLock_return {
 if (state == Locked)
 slic_abort();
 else
 state = Locked;
}

void KeReleaseSpinLock_return {
 if (state == Unlocked)
 slic_abort();
 else
 state = Unlocked;
}

Distinguished
error label.

Safety

property S

Step 2: insert calls to SLIC functions into P

11

void example() {
 do {
 KeAcquireSpinLock();

 nOld = nPackets;

 if (request) {
 request = request->next;
 KeReleaseSpinLock();
 nPackets++;
 }
 } while (nPackets != nOld);

 KeReleaseSpinLock();
}

Program P

void example() {
 do {
 KeAcquireSpinLock();
 KeAcquireSpinLock_return();

 nOld = nPackets;

 if (request) {
 request = request->next;
 KeReleaseSpinLock();
 KeReleaseSpinLock_return();
 nPackets++;
 }
 } while (nPackets != nOld);

 KeReleaseSpinLock();
 KeReleaseSpinLock_return();
}

Program P’

P satisfies S iff SLIC_ERROR is unreachable in P’

12

void example() {
 do {
 KeAcquireSpinLock();
 KeAcquireSpinLock_return();

 nOld = nPackets;

 if (request) {
 request = request->next;
 KeReleaseSpinLock();
 KeReleaseSpinLock_return();
 nPackets++;
 }
 } while (nPackets != nOld);

 KeReleaseSpinLock();
 KeReleaseSpinLock_return();
}

Program P’

enum {Locked=0, Unlocked=1}
 state = Unlocked;

void slic_abort() {
 SLIC_ERROR: ;
}

void KeAcquireSpinLock_return {
 if (state == Locked)
 slic_abort();
 else
 state = Locked;
}

void KeReleaseSpinLock_return {
 if (state == Unlocked)
 slic_abort();
 else
 state = Unlocked;
}

The SLAM process: predicate abstraction

13

Instrumentation

Program P

Safety
property S

C2BP

Bebop

Newton

P’

boolean
program B

error trace
for B

A trace of P
that violates S

✓
new
predicates

Predicate abstraction of C Programs

14

Predicate abstraction of C Programs

14

Given a program P and a finite set E of predicates,
C2BP creates a boolean program B that is a sound
over-approximation of P.

• B has the same control-flow structure as P, but only |E|
boolean variables.

• For any path p feasible in P, there is a corresponding
feasible path in B.

Predicate abstraction of C Programs

14

Given a program P and a finite set E of predicates,
C2BP creates a boolean program B that is a sound
over-approximation of P.

• B has the same control-flow structure as P, but only |E|
boolean variables.

• For any path p feasible in P, there is a corresponding
feasible path in B.

Suitable abstraction for checking control-
dominated properties (such as SLIC rules).

• Models control flow in P precisely.

• Models only a few predicates about data relevant to each
rule being checked (so limits state explosion).

Predicate abstraction by example: 5+ steps

15

void example() {
 do {
 KeAcquireSpinLock();
 KeAcquireSpinLock_return();

 nOld = nPackets;

 if (request) {
 request = request->next;
 KeReleaseSpinLock();
 KeReleaseSpinLock_return();
 nPackets++;
 }
 } while (nPackets != nOld);

 KeReleaseSpinLock();
 KeReleaseSpinLock_return();
}

enum {Locked=0, Unlocked=1}
 state = Unlocked;

void slic_abort() {
 SLIC_ERROR: ; }

void KeAcquireSpinLock_return {
 if (state == Locked)
 slic_abort();
 else
 state = Locked; }

void KeReleaseSpinLock_return {
 if (state == Unlocked)
 slic_abort();
 else
 state = Unlocked; }

Program P’

(state == Locked)

(state == Unlocked)

Step 1: extract initial predicates from SLIC rules

16

void example() {
 do {
 KeAcquireSpinLock();
 KeAcquireSpinLock_return();

 nOld = nPackets;

 if (request) {
 request = request->next;
 KeReleaseSpinLock();
 KeReleaseSpinLock_return();
 nPackets++;
 }
 } while (nPackets != nOld);

 KeReleaseSpinLock();
 KeReleaseSpinLock_return();
}

Program P’
(state == Unlocked)
(state == Locked)

enum {Locked=0, Unlocked=1}
 state = Unlocked;

void slic_abort() {
 SLIC_ERROR: ; }

void KeAcquireSpinLock_return {
 if (state == Locked)
 slic_abort();
 else
 state = Locked; }

void KeReleaseSpinLock_return {
 if (state == Unlocked)
 slic_abort();
 else
 state = Unlocked; }

b(state==Locked), b(state==Unlocked) := F, T;

void slic_abort() {
 SLIC_ERROR: ; }

void KeAcquireSpinLock_return {
 if b(state==Locked)
 slic_abort();
 else
 state = Locked;
}

void KeReleaseSpinLock_return {
 if b(state==Unlocked)
 slic_abort();
 else
 state = Unlocked; }

Step 2: introduce boolean variables for E

17

void example() {
 do {
 KeAcquireSpinLock();
 KeAcquireSpinLock_return();

 nOld = nPackets;

 if (request) {
 request = request->next;
 KeReleaseSpinLock();
 KeReleaseSpinLock_return();
 nPackets++;
 }
 } while (nPackets != nOld);

 KeReleaseSpinLock();
 KeReleaseSpinLock_return();
}

(state == Unlocked)
(state == Locked)

Step 3: skip statements with no effect on E

18

void example() {
 do {
 skip;
 KeAcquireSpinLock_return();

 skip;

 if (request) {
 skip;
 skip;
 KeReleaseSpinLock_return();
 skip;
 }
 } while (nPackets != nOld);

 skip;
 KeReleaseSpinLock_return();
}

b(state==Locked), b(state==Unlocked) := F, T;

void slic_abort() {
 SLIC_ERROR: ; }

void KeAcquireSpinLock_return {
 if b(state==Locked)
 slic_abort();
 else
 state = Locked;
}

void KeReleaseSpinLock_return {
 if b(state==Unlocked)
 slic_abort();
 else
 state = Unlocked; }

(state == Unlocked)
(state == Locked)

void example() {
 do {
 skip;
 KeAcquireSpinLock_return();

 skip;

 if (request) {
 skip;
 skip;
 KeReleaseSpinLock_return();
 skip;
 }
 } while (nPackets != nOld);

 skip;
 KeReleaseSpinLock_return();
}

Step 4: encode the effects of assignments on E

19

b(state==Locked), b(state==Unlocked) := F, T;

void slic_abort() {
 SLIC_ERROR: ; }

void KeAcquireSpinLock_return {
 if b(state==Locked)
 slic_abort();
 else
 b(state==Locked),
 b(state==Unlocked) := T, F; }

void KeReleaseSpinLock_return {
 if b(state==Unlocked)
 slic_abort();
 else
 b(state==Locked),
 b(state==Unlocked) := F, T; }

(state == Unlocked)
(state == Locked)

void example() {
 do {
 skip;
 KeAcquireSpinLock_return();

 skip;

 if (*) {
 skip;
 skip;
 KeReleaseSpinLock_return();
 skip;
 }
 } while (*);

 skip;
 KeReleaseSpinLock_return();
}

Step 5: use non-determinism for conditions

20

b(state==Locked), b(state==Unlocked) := F, T;

void slic_abort() {
 SLIC_ERROR: ; }

void KeAcquireSpinLock_return {
 if b(state==Locked)
 slic_abort();
 else
 b(state==Locked),
 b(state==Unlocked) := T, F; }

void KeReleaseSpinLock_return {
 if b(state==Unlocked)
 slic_abort();
 else
 b(state==Locked),
 b(state==Unlocked) := F, T; }

(state == Unlocked)
(state == Locked)

void example() {
 do {
 skip;
 KeAcquireSpinLock_return();

 skip;

 if (*) {
 skip;
 skip;
 KeReleaseSpinLock_return();
 skip;
 }
 } while (*);

 skip;
 KeReleaseSpinLock_return();
}

Step 5: use non-determinism for conditions

20

b(state==Locked)

void
 SLIC_ERROR: ; }

void

 slic_abort();

 b
 b

void

 slic_abort();

 b
 b

(state == Unlocked)
(state == Locked)

This is a highly simplified example of
predicate abstraction. The process is
much more complex in reality. For
details, see Automatic predicate
abstraction of C programs.

http://dl.acm.org/citation.cfm?id=378846

The SLAM process: model checking

21

Instrumentation

Program P

Safety
property S

C2BP

Bebop

Newton

P’

boolean
program B

error trace
for B

A trace of P
that violates S

✓
new
predicates

Model checking of boolean programs

22

Model checking of boolean programs

22

Given a boolean program B and a statement s in B,
Bebop determines if s is reachable in B.

• Produces a shortest trace in B (if any) leading to S.

http://dl.acm.org/citation.cfm?id=199462
http://dl.acm.org/citation.cfm?id=672077

Model checking of boolean programs

22

Given a boolean program B and a statement s in B,
Bebop determines if s is reachable in B.

• Produces a shortest trace in B (if any) leading to S.

Performs symbolic reachability analysis using BDDs.
• Adapts the interprocedural dataflow analysis of Reps,

Horwitz and Sagiv (RHS) to decide the reachability of s in B.

• Uses BDDs to represent the procedure summaries in RHS,
which are binary relations between sets of states.

http://dl.acm.org/citation.cfm?id=199462
http://dl.acm.org/citation.cfm?id=672077

Model checking of boolean programs

22

Given a boolean program B and a statement s in B,
Bebop determines if s is reachable in B.

• Produces a shortest trace in B (if any) leading to S.

Performs symbolic reachability analysis using BDDs.
• Adapts the interprocedural dataflow analysis of Reps,

Horwitz and Sagiv (RHS) to decide the reachability of s in B.

• Uses BDDs to represent the procedure summaries in RHS,
which are binary relations between sets of states.

For details, see Bebop: A Symbolic Model Checker for
Boolean Programs.

http://dl.acm.org/citation.cfm?id=199462
http://dl.acm.org/citation.cfm?id=672077

Model checking of the example program

23

void example() {
 do {
 skip;
 KeAcquireSpinLock_return();

 skip;

 if (*) {
 skip;
 skip;
 KeReleaseSpinLock_return();
 skip;
 }
 } while (*);

 skip;
 KeReleaseSpinLock_return();
}

b(state==Locked), b(state==Unlocked) := F, T;

void slic_abort() {
 SLIC_ERROR: ; }

void KeAcquireSpinLock_return {
 if b(state==Locked)
 slic_abort();
 else
 b(state==Locked),
 b(state==Unlocked) := T, F; }

void KeReleaseSpinLock_return {
 if b(state==Unlocked)
 slic_abort();
 else
 b(state==Locked),
 b(state==Unlocked) := F, T; }

The SLAM process: trace validation

24

Instrumentation

Program P

Safety
property S

C2BP

Bebop

Newton

P’

boolean
program B

error trace
for B

A trace of P
that violates S

✓
new
predicates

Error trace validation & abstraction refinement

25

Error trace validation & abstraction refinement

25

Given a program P’ and a candidate error trace,
Newton determines if the trace is feasible.

• Uses verification condition generation for feasibility checking.

• If feasible, the error trace corresponds to a real bug.

• If not, returns a small set of predicates that explain why the
path is infeasible. Based on greedy minimal unsatisfiable core
computation.

http://research.microsoft.com/apps/pubs/default.aspx?id=69909

Error trace validation & abstraction refinement

25

Given a program P’ and a candidate error trace,
Newton determines if the trace is feasible.

• Uses verification condition generation for feasibility checking.

• If feasible, the error trace corresponds to a real bug.

• If not, returns a small set of predicates that explain why the
path is infeasible. Based on greedy minimal unsatisfiable core
computation.

For details, see Generating Abstract Explanations of
Spurious Counterexamples in C Programs.

http://research.microsoft.com/apps/pubs/default.aspx?id=69909

void example() {
 do {
 KeAcquireSpinLock();
 KeAcquireSpinLock_return();

 nOld = nPackets;

 if (request) {
 request = request->next;
 KeReleaseSpinLock();
 KeReleaseSpinLock_return();
 nPackets++;
 }
 } while (nPackets != nOld);

 KeReleaseSpinLock();
 KeReleaseSpinLock_return();
}

Validation & refinement for the example

26

enum {Locked=0, Unlocked=1}
 state = Unlocked;

void slic_abort() {
 SLIC_ERROR: ; }

void KeAcquireSpinLock_return {
 if (state == Locked)
 slic_abort();
 else
 state = Locked; }

void KeReleaseSpinLock_return {
 if (state == Unlocked)
 slic_abort();
 else
 state = Unlocked; }

(state == Unlocked)
(state == Locked)

void example() {
 do {
 KeAcquireSpinLock();
 KeAcquireSpinLock_return();

 nOld = nPackets;

 if (request) {
 request = request->next;
 KeReleaseSpinLock();
 KeReleaseSpinLock_return();
 nPackets++;
 }
 } while (nPackets != nOld);

 KeReleaseSpinLock();
 KeReleaseSpinLock_return();
}

Validation & refinement for the example

26

enum {Locked=0, Unlocked=1}
 state = Unlocked;

void slic_abort() {
 SLIC_ERROR: ; }

void KeAcquireSpinLock_return {
 if (state == Locked)
 slic_abort();
 else
 state = Locked; }

void KeReleaseSpinLock_return {
 if (state == Unlocked)
 slic_abort();
 else
 state = Unlocked; }

(state == Unlocked)
(state == Locked)
(nPackets == nOld)

✗✗✗✗✗

void example() {
 do {
 skip;
 KeAcquireSpinLock_return();

 b(nOld==nPackets) := T;

 if (*) {
 skip;
 skip;
 KeReleaseSpinLock_return();
 b(nOld==nPackets) :=
 b(nOld==nPackets) ? F : *;
 }
 } while (!b(nOld==nPackets));

 skip;
 KeReleaseSpinLock_return();
}

Back to C2BP and Bebop …

27
(state == Unlocked)
(state == Locked)
(nPackets == nOld)

b(state==Locked), b(state==Unlocked) := F, T;

void slic_abort() {
 SLIC_ERROR: ; }

void KeAcquireSpinLock_return {
 if b(state==Locked)
 slic_abort();
 else
 b(state==Locked),
 b(state==Unlocked) := T, F; }

void KeReleaseSpinLock_return {
 if b(state==Unlocked)
 slic_abort();
 else
 b(state==Locked),
 b(state==Unlocked) := F, T; }

void example() {
 do {
 skip;
 KeAcquireSpinLock_return();

 b(nOld==nPackets) := T;

 if (*) {
 skip;
 skip;
 KeReleaseSpinLock_return();
 b(nOld==nPackets) :=
 b(nOld==nPackets) ? F : *;
 }
 } while (!b(nOld==nPackets));

 skip;
 KeReleaseSpinLock_return();
}

Back to C2BP and Bebop …

27

b(state==Locked), b(state==Unlocked) := F, T;

void slic_abort() {
 SLIC_ERROR: ; }

void KeAcquireSpinLock_return {
 if b(state==Locked)
 slic_abort();
 else
 b(state==Locked),
 b(state==Unlocked) := T, F; }

void KeReleaseSpinLock_return {
 if b(state==Unlocked)
 slic_abort();
 else
 b(state==Locked),
 b(state==Unlocked) := F, T; }

✓

Summary

28

Today
• Software model checking with SLAM

• Predicate abstraction of C programs
• Model checking of boolean programs
• Trace validation and abstraction refinement

Next lecture
• Guest lecture by Zach Tatlock!

• Verifying compiler optimizations with SMT solvers

