Computer-Aided Reasoning for Software

Model Checking I

courses.cs.washington.edu/courses/cse507/14au/

Emina Torlak

emina@cs.washington.edu

Last lecture

Symbolic execution and concolic testing

Last lecture

Symbolic execution and concolic testing

Today

Introduction to model checking

Last lecture

Symbolic execution and concolic testing

Today

Introduction to model checking

Reminders

Homework 3 is due on Tuesday, November 18, at 11pm

Last lecture

Symbolic execution and concolic testing

Today

Introduction to model checking

Reminders

• Homework 3 is due on Tuesday, November 18, at 11pm

You are already halfway through your final project, right?

An automated technique for verifying that a concurrent finite state system satisfies a given temporal property.

$$M, s \models P$$

An automated technique for verifying that a concurrent finite state system satisfies a given temporal property.

 $M, s \models P$

A mathematical model of the system, given as a **Kripke structure** (a finite state machine).

An automated technique for verifying that a concurrent finite state system satisfies a given temporal property.

A state of the system (e.g., an initial state).

 $M, s \models P$

A mathematical model of the system, given as a **Kripke structure** (a finite state machine).

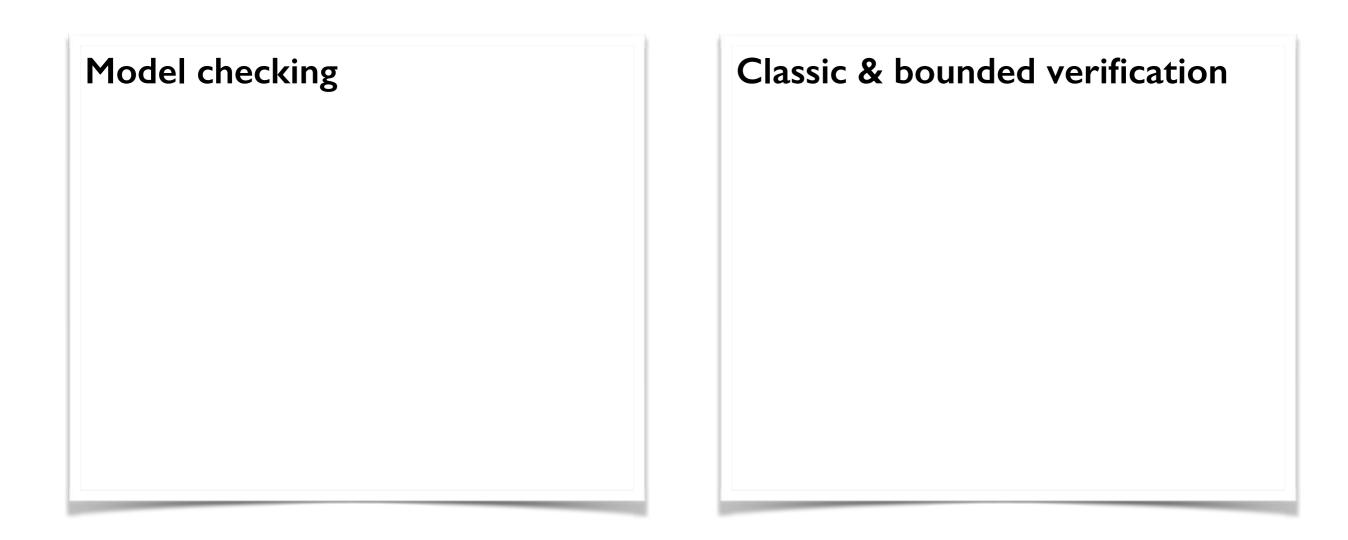
An automated technique for verifying that a concurrent finite state system satisfies a given temporal property.

A state of the system (e.g., an initial state).

A temporal logic formula (e.g., a request is eventually acknowledged).

 $M, s \models P$

A mathematical model of the system, given as a **Kripke structure** (a finite state machine).



Model checking

- Deterministic, single-threaded, possibly infinite-state, terminating programs.
- Fully described by their input/ output behavior.
- Semi-automatic or boundedautomatic checking of properties in expressive logics (e.g., FOL).

Model checking

- Reactive systems: concurrent finite-state programs with ongoing input/output behavior.
- Control-intensive but without a lot of data manipulation.
- Fully automatic checking of properties in less expressive (temporal) logics.

- Deterministic, single-threaded, possibly infinite-state, terminating programs.
- Fully described by their input/ output behavior.
- Semi-automatic or boundedautomatic checking of properties in expressive logics (e.g., FOL).

Model checking

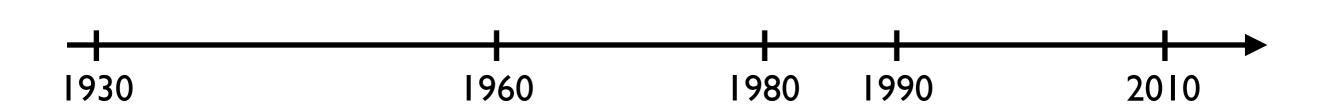
- Reactive systems: concurrent finite-state programs with ongoing input/output behavior.
- Control-intensive but without a lot of data manipulation.
- Fully automatic checking of properties in less expressive (temporal) logics.
- Microprocessors and device drivers
- Embedded controllers (e.g., cars, planes)
- Protocols (e.g., cache coherence)

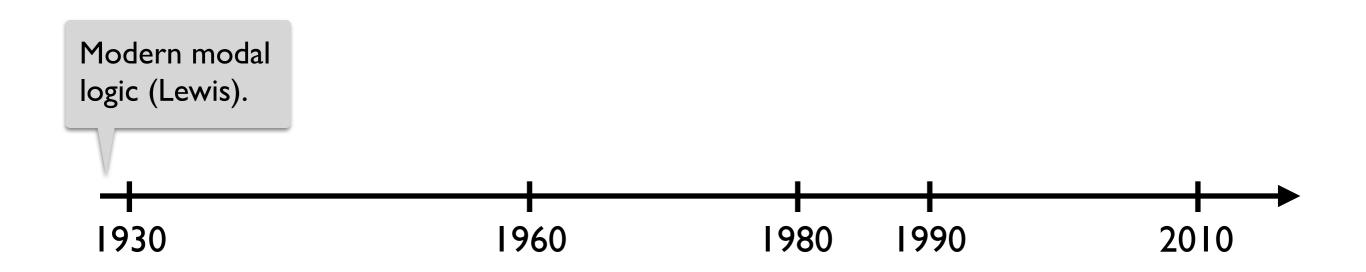
- Deterministic, single-threaded, possibly infinite-state, terminating programs.
- Fully described by their input/ output behavior.
- Semi-automatic or boundedautomatic checking of properties in expressive logics (e.g., FOL).

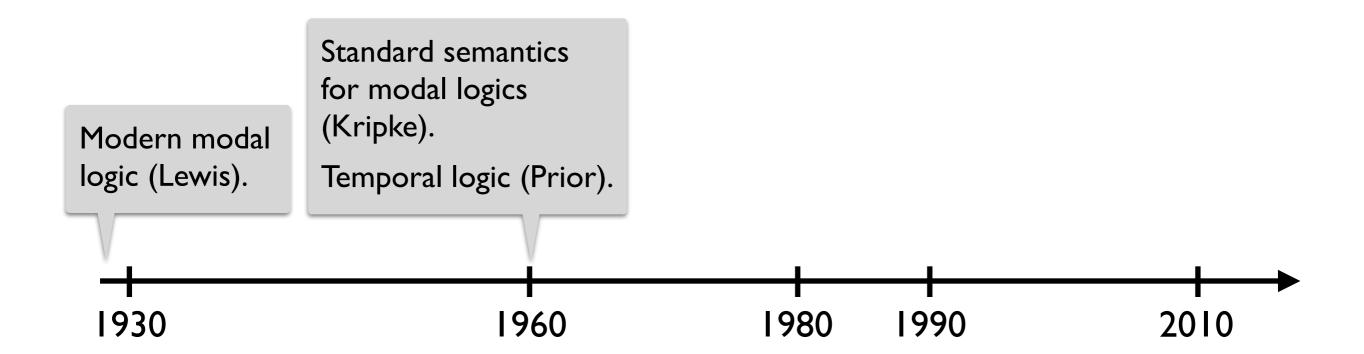
Model checking

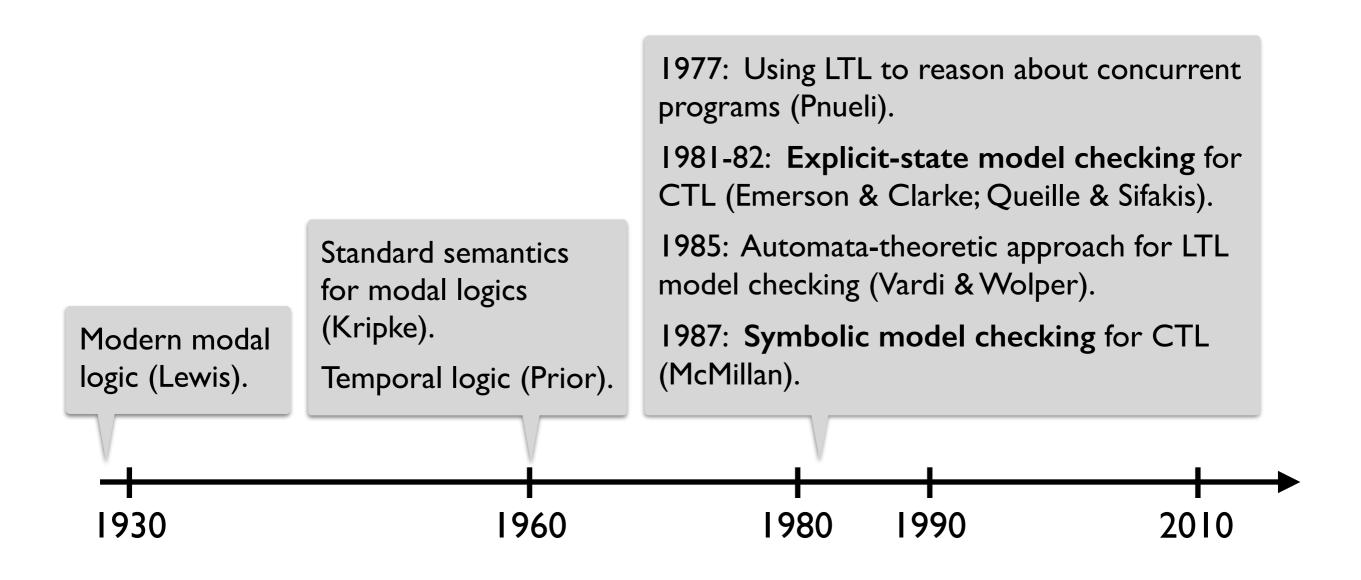
- Reactive systems: concurrent finite-state programs with ongoing input/output behavior.
- Control-intensive but without a lot of data manipulation.
- Fully automatic checking of properties in less expressive (temporal) logics.
- Microprocessors and device drivers
- Embedded controllers (e.g., cars, planes)
- Protocols (e.g., cache coherence)

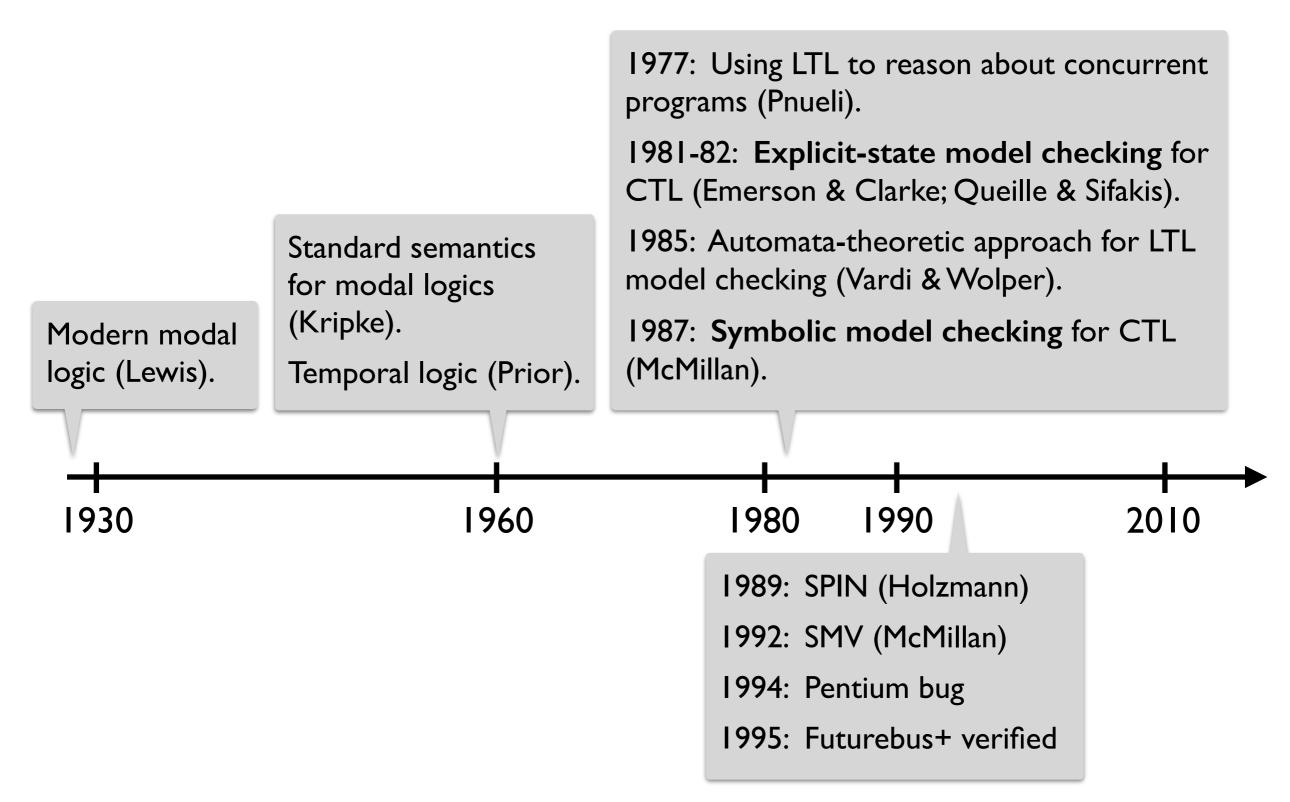
- Deterministic, single-threaded, possibly infinite-state, terminating programs.
- Fully described by their input/ output behavior.
- Semi-automatic or boundedautomatic checking of properties in expressive logics (e.g., FOL).
- Libraries and ADT implementations
- Heap-manipulating programs (e.g., OO)
- Tricky deterministic algorithms





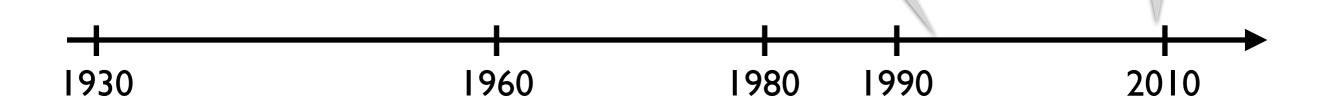






1996: Pnueli wins the Turing award "for seminal work introducing temporal logic into computing science and for outstanding contributions to program and system verification."

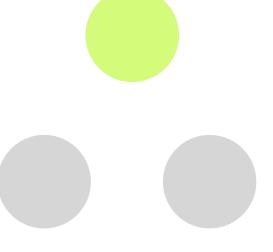
2007: Clarke, Emerson and Sifakis jointly win the Turing award "for their role in developing Model-Checking into a highly effective verification technology that is widely adopted in the hardware and software industries."



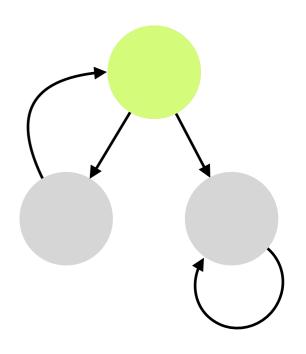
A Kripke structure is a tuple $M = \langle S, S_0, R, L \rangle$

• S is a finite set of states.

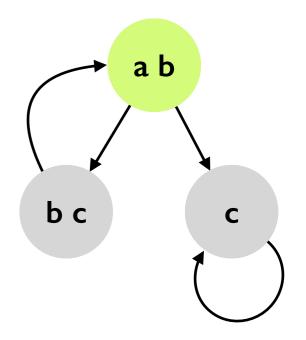
- S is a finite set of states.
- $S_0 \subseteq S$ is the set of initial states.



- S is a finite set of states.
- $S_0 \subseteq S$ is the set of initial states.
- $R \subseteq S \times S$ is the transition relation, which must be *total*.



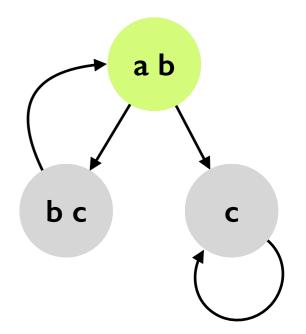
- S is a finite set of states.
- $S_0 \subseteq S$ is the set of initial states.
- $R \subseteq S \times S$ is the transition relation, which must be *total*.
- L:S \rightarrow 2^{AP} is a function that *labels* each state with a set of *atomic propositions* true in that state.

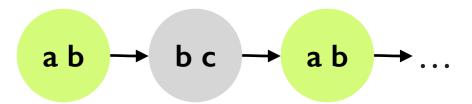


A Kripke structure is a tuple $M = \langle S, S_0, R, L \rangle$

- S is a finite set of states.
- $S_0 \subseteq S$ is the set of initial states.
- $R \subseteq S \times S$ is the transition relation, which must be *total*.
- L:S \rightarrow 2^{AP} is a function that *labels* each state with a set of *atomic propositions* true in that state.

A path in M is an infinite sequence of states $\pi = s_0 s_1 \dots$ such that for all $i \ge 0$, $(s_i, s_{i+1}) \in R$.





- In a finite-state program, system variables V range over a finite domain D: V = {x, y} and D = {0, I}.
- A state of the system is a valuation
 s: V → D.

$$S \equiv (x = 0 \lor x = 1) \land (y = 0 \lor y = 1)$$

 $S_0 \equiv (x = 1) \land (y = 1)$
 $R(x, y, x', y') \equiv (x' = (x + y) \% 2) \land (y' = y)$

- In a finite-state program, system variables V range over a finite domain D: V = {x, y} and D = {0, I}.
- A state of the system is a valuation
 s: V → D.
- Use FOL to describe the (initial) states and the transition relation.

$$S \equiv (x = 0 \lor x = 1) \land (y = 0 \lor y = 1)$$

 $S_0 \equiv (x = 1) \land (y = 1)$
 $R(x, y, x', y') \equiv (x' = (x + y) \% 2) \land (y' = y)$

- In a finite-state program, system
 variables V range over a finite
 domain D: V = {x, y} and D = {0, I}.
- A state of the system is a valuation
 s: V → D.
- Use FOL to describe the (initial) states and the transition relation.
- Extract a Kripke structure from the FOL description.

$$// x==1, y==1$$
 $x := (x + y) % 2$

$$S = (x = 0 \lor x = 1) \land (y = 0 \lor y = 1)$$

$$S_0 = (x = 1) \land (y = 1)$$

$$R(x, y, x', y') = (x' = (x + y) % 2) \land (y' = y)$$

- In a finite-state program, system
 variables V range over a finite
 domain D: V = {x, y} and D = {0, I}.
- A state of the system is a valuation
 s: V → D.
- Use FOL to describe the (initial) states and the transition relation.
- Extract a Kripke structure from the FOL description.

$$// x==1, y==1$$
 $x := (x + y) % 2$

$$S = (x = 0 \lor x = 1) \land (y = 0 \lor y = 1)$$

$$S_0 = (x = 1) \land (y = 1)$$

$$R(x, y, x', y') = (x' = (x + y) % 2) \land (y' = y)$$

- In a finite-state program, system
 variables V range over a finite
 domain D: V = {x, y} and D = {0, I}.
- A state of the system is a valuation
 s: V → D.
- Use FOL to describe the (initial) states and the transition relation.
- Extract a Kripke structure from the FOL description.

$$x=1, y=0$$

$$// x==1, y==1$$

x := (x + y) % 2

$$S \equiv (x = 0 \lor x = 1) \land (y = 0 \lor y = 1)$$

 $S_0 \equiv (x = 1) \land (y = 1)$
 $R(x, y, x', y') \equiv (x' = (x + y) \% 2) \land (y' = y)$

- In a finite-state program, system variables V range over a finite domain D: V = {x, y} and D = {0, I}.
- A state of the system is a valuation
 s: V → D.
- Use FOL to describe the (initial) states and the transition relation.
- Extract a Kripke structure from the FOL description.

$$S \equiv (x = 0 \lor x = 1) \land (y = 0 \lor y = 1)$$

 $S_0 \equiv (x = 1) \land (y = 1)$
 $R(x, y, x', y') \equiv (x' = (x + y) \% 2) \land (y' = y)$

- In a finite-state program, system
 variables V range over a finite
 domain D: V = {x, y} and D = {0, I}.
- A state of the system is a valuation
 s: V → D.
- Use FOL to describe the (initial) states and the transition relation.
- Extract a Kripke structure from the FOL description.

State explosion: Kripke structure usually exponential in the size of the program.

A Kripke structure for a concurrent program

```
P_1
10 while (true) {
11  wait(turn == 0);
   // critical section
12 turn := 1;
13 }
           P_2
20 while (true) {
21  wait(turn == 1);
    // critical section
22 turn := 0;
23 }
```

Two processes executing concurrently and asynchronously, using the shared variable turn to ensure *mutual exclusion*:

They are never in the critical section at the same time.

```
P_1
10 while (true) {
11     wait(turn == 0);
     // critical section
12 turn := 1;
13 }
           P_2
20 while (true) {
21  wait(turn == 1);
     // critical section
22 turn := 0;
23 }
```

Two processes executing concurrently and asynchronously, using the shared variable turn to ensure *mutual exclusion*:

They are never in the critical section at the same time.

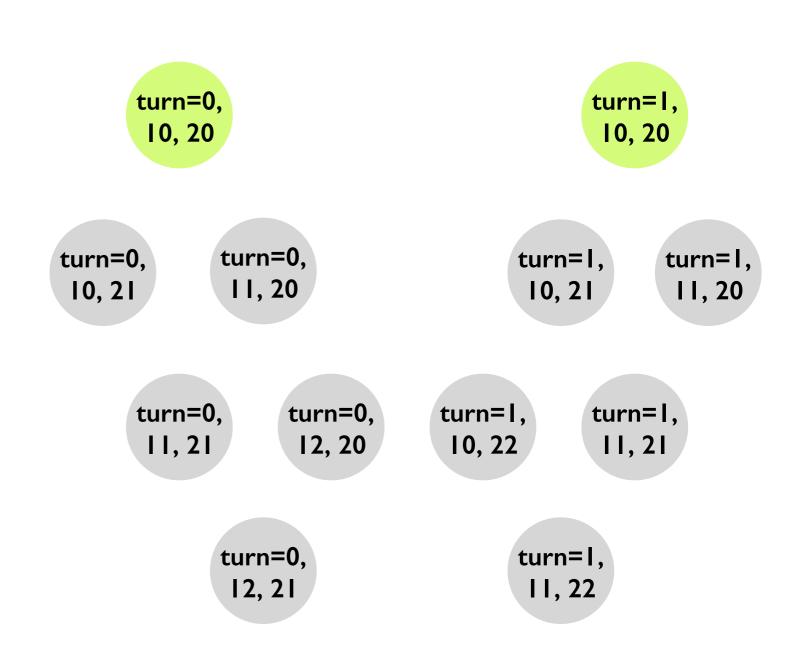
State of the program described by the variable turn and the program counters for the two processes.

```
P_1
10 while (true) {
11     wait(turn == 0);
   // critical section
12 turn := 1;
13 }
           P_2
20 while (true) {
21  wait(turn == 1);
    // critical section
22 turn := 0;
23 }
```

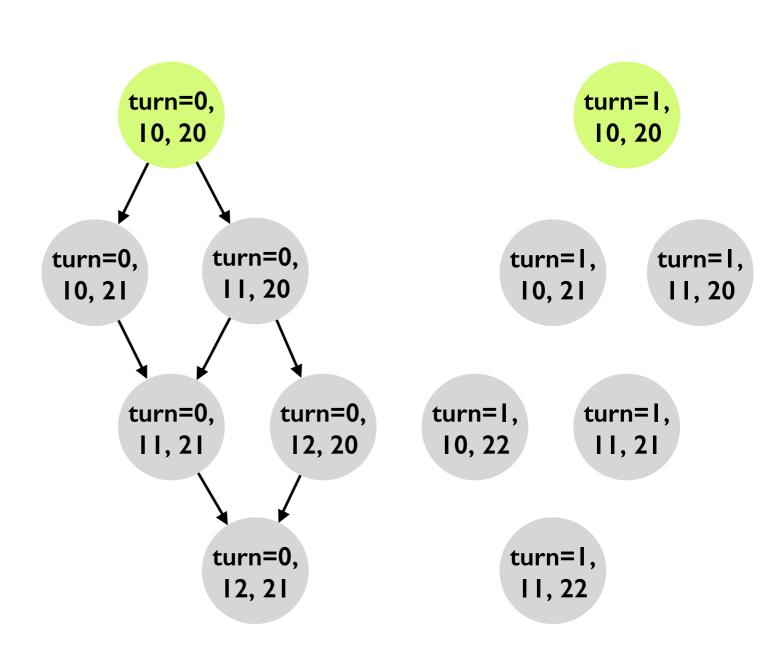
```
P_1
10 while (true) {
11     wait(turn == 0);
   // critical section
12 turn := 1;
13 }
           P_2
20 while (true) {
21  wait(turn == 1);
    // critical section
22 turn := 0;
23 }
```

turn=0, 10, 20 turn=1, 10, 20

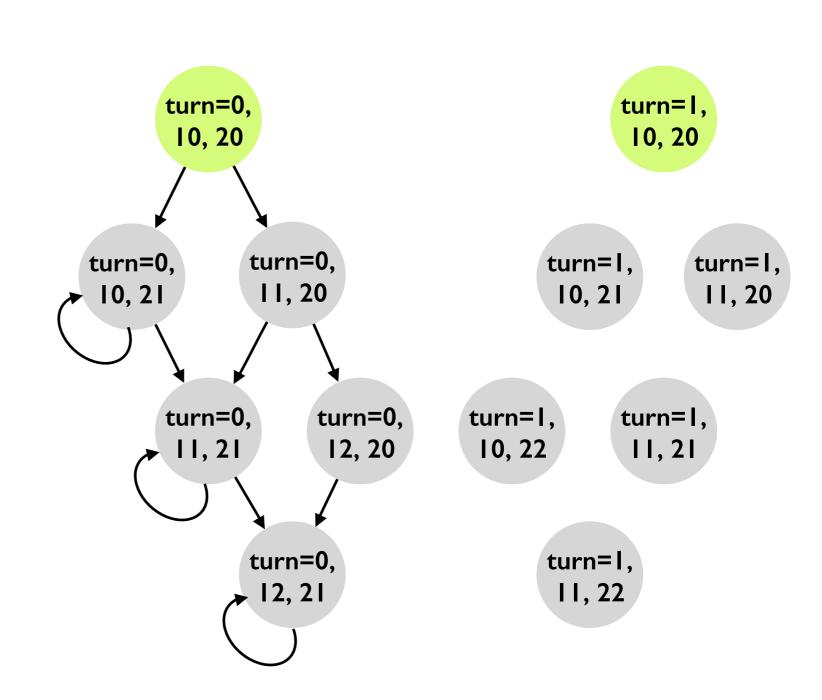
```
P_1
10 while (true) {
11
  wait(turn == 0);
     // critical section
12
   turn := 1;
13 }
           P_2
20 while (true) {
21
   wait(turn == 1);
     // critical section
22 turn := 0;
23 }
```



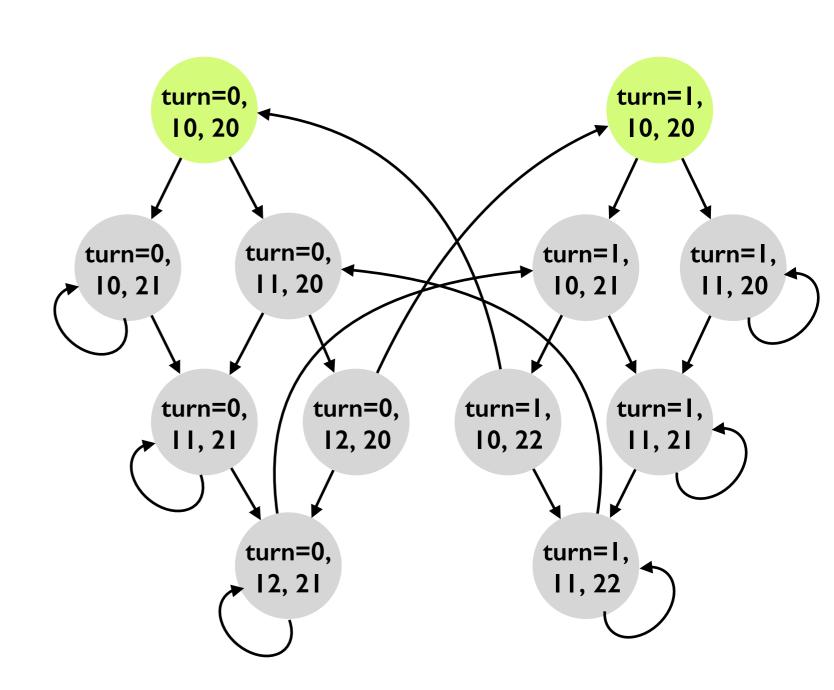
```
P_1
10 while (true) {
11
  wait(turn == 0);
    // critical section
12
   turn := 1;
13 }
           P_2
20 while (true) {
21
   wait(turn == 1);
    // critical section
22
  turn := 0;
23 }
```



```
P_1
10 while (true) {
11
   wait(turn == 0);
     // critical section
12
   turn := 1;
13 }
           P_2
20 while (true) {
21
   wait(turn == 1);
     // critical section
22
   turn := 0;
23 }
```



```
P_1
10 while (true) {
11
   wait(turn == 0);
     // critical section
12
    turn := 1;
13 }
           P_2
20 while (true) {
21
   wait(turn == 1);
     // critical section
22
   turn := 0;
23 }
```



Safety

- "Nothing bad will happen."
- φ is a safety property iff every infinite path π violating φ has a finite prefix π' such that every extension of π' violates φ.

Liveness

- "Something good will happen."
- ψ is a liveness property iff every finite path (prefix) π can be extended so that it satisfies ψ.

Safety

- "Nothing bad will happen."
- φ is a safety property iff every infinite path π violating φ has a finite prefix π' such that every extension of π' violates φ.

Liveness

- "Something good will happen."
- ψ is a liveness property iff every finite path (prefix) π can be extended so that it satisfies ψ.

Finite witnesses (counterexamples).

Reducible to checking reachability in the state transition graph.

Safety

- "Nothing bad will happen."
- φ is a safety property iff every infinite path π violating φ has a finite prefix π' such that every extension of π' violates φ.

Liveness

- "Something good will happen."
- ψ is a liveness property iff every finite path (prefix) π can be extended so that it satisfies ψ.

Finite witnesses (counterexamples).

Reducible to checking reachability in the state transition graph.

No finite witnesses (counterexamples).

Safety

- "Nothing bad will happen."
- φ is a safety property iff every infinite path π violating φ has a finite prefix π' such that every extension of π' violates φ.

Liveness

- "Something good will happen."
- ψ is a liveness property iff every finite path (prefix) π can be extended so that it satisfies ψ.

Mutual exclusion: P₁ and P₂ will never be in their critical regions simultaneously.

Safety

- "Nothing bad will happen."
- φ is a safety property iff every infinite path π violating φ has a finite prefix π' such that every extension of π' violates φ.

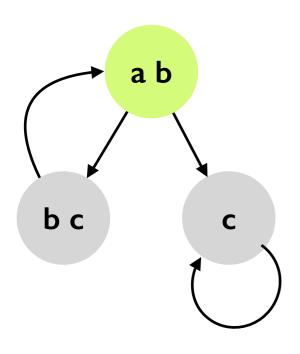
Liveness

- "Something good will happen."
- ψ is a liveness property iff every finite path (prefix) π can be extended so that it satisfies ψ.

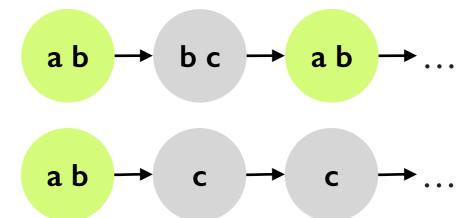
Mutual exclusion: P_1 and P_2 will never be in their critical regions simultaneously.

Starvation freedom: whenever P_1 is ready to enter its critical section, it will eventually succeed (provided that the scheduler is *fair* and does not let P_2 stay in its critical section forever).

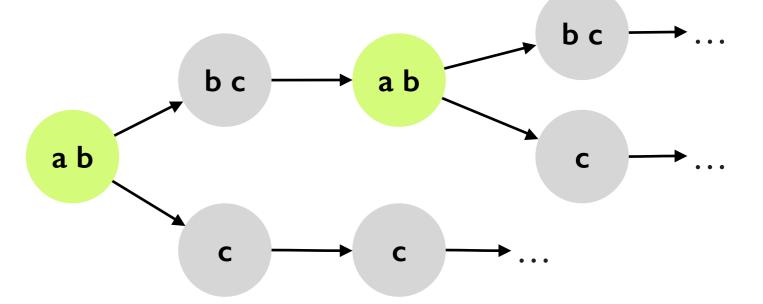
Expressing properties in temporal logics



Linear time: properties of computation paths



Branching time: properties of computation trees



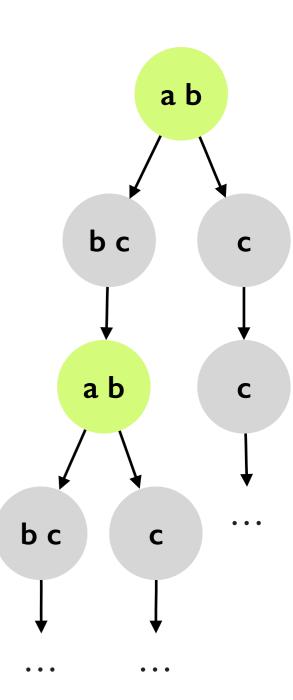
Computation tree logic CTL*

Path quantifiers describe the branching structure of the computation tree:

- A (for all paths)
- E (there exists a path)

Temporal operators describe properties of a path through a tree:

- Xp (p holds "next time")
- Fp (p holds "eventually" or "in the future")
- Gp (p holds "always" or "globally")
- p U q (p holds "until" q holds)



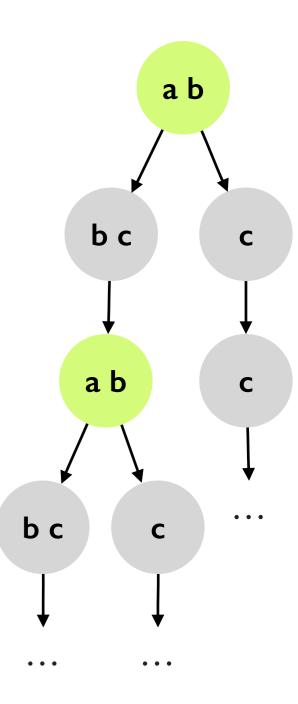
Syntax of CTL*

State formulas

- Atomic propositions: $a \in AP$
- $\neg f, f \land g, f \lor g$, where f and g are state formulas
- Ap and Ep, where p is a path formula

Path formulas

- f, where f is a state formula
- $\neg p, p \land p, p \lor q$, where p and q are path formulas
- Xp, Fp, Gp, p U q, where p and q are path formulas



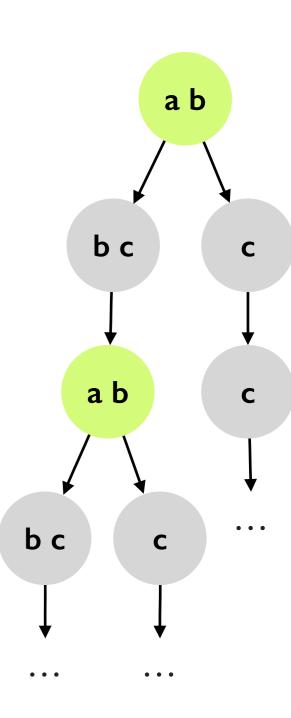
Semantics of CTL*

State formulas

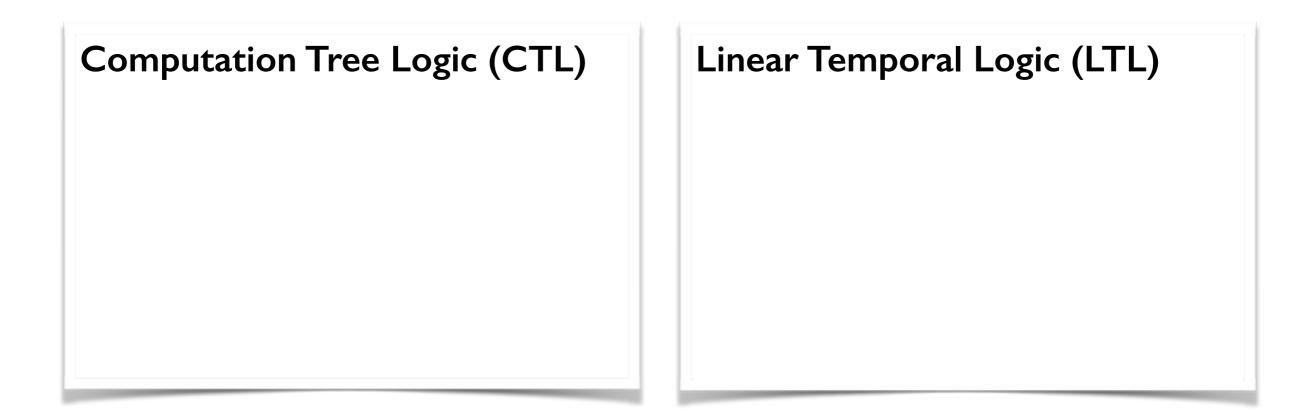
- M, $s \models a \text{ iff } a \in L(s)$
- M, $s \models Ap$ iff M, $\pi \models p$ for all paths π that start at s
- M, $s \models Ep$ iff M, $\pi \models p$ for some path π that starts at s

Path formulas (π^k is suffix of π starting at s_k)

- M, $\pi \models f$ iff M, $s \models f$ and s is the first state of π
- M, $\pi \models Xp$ iff M, $\pi^1 \models p$
- M, $\pi \models \mathbf{F} p$ iff M, $\pi^k \models p$ for some $k \ge 0$
- M, $\pi \models \mathbf{G} p$ iff M, $\pi^k \models p$ for all $k \ge 0$
- M, $\pi \models p U$ q iff M, $\pi^k \models q$ and M, $\pi^j \models q$ for some $k \ge 0$ and for all $0 \le j \le k$



CTL and Linear Temporal Logic (LTL)



CTL and Linear Temporal Logic (LTL)

Computation Tree Logic (CTL)

- Fragment of CTL* in which each temporal operator is prefixed with a path quantifier.
- AG(EF p): From any state, it is possible to get to a state where p holds.

Linear Temporal Logic (LTL)

CTL and Linear Temporal Logic (LTL)

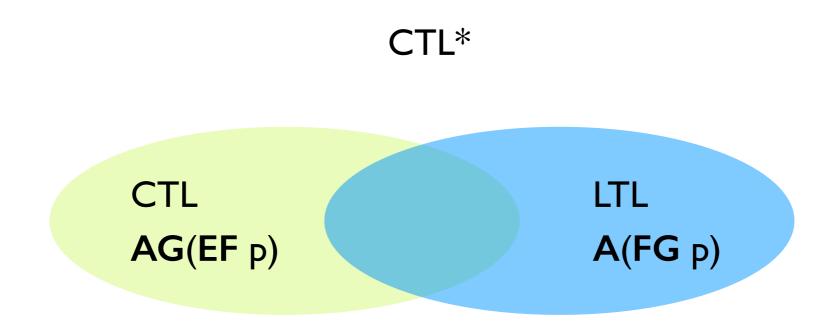
Computation Tree Logic (CTL)

- Fragment of CTL* in which each temporal operator is prefixed with a path quantifier.
- AG(EF p): From any state, it is possible to get to a state where p holds.

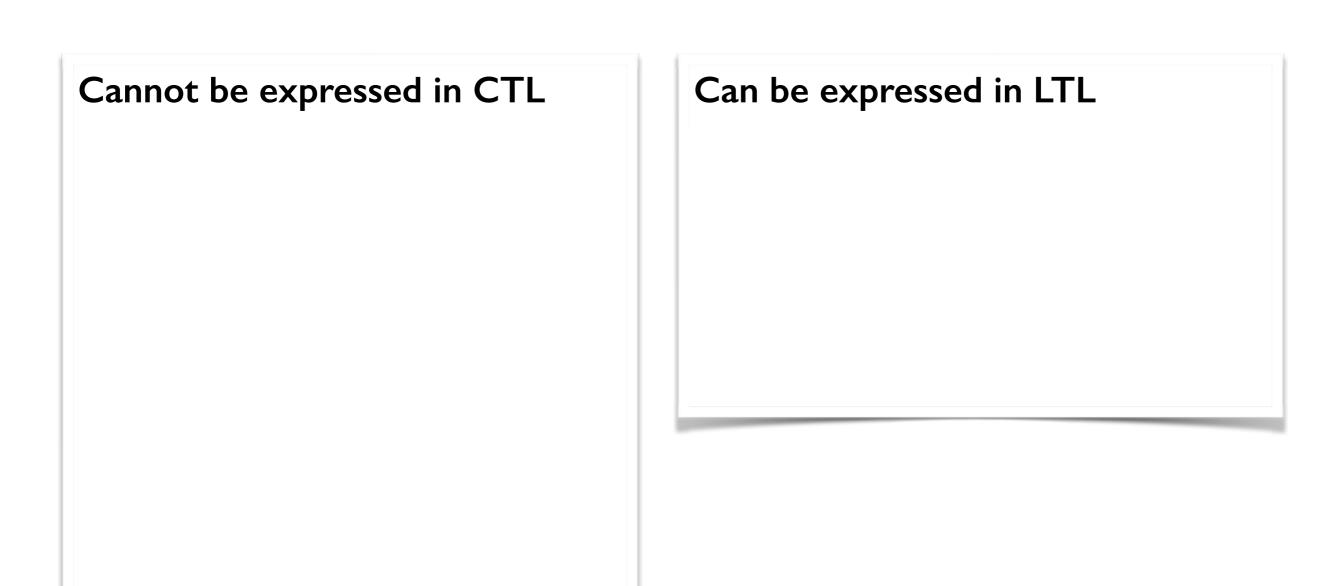
Linear Temporal Logic (LTL)

- Fragment of CTL* with formulas of the form Ap, where p contains no path quantifiers.
- A(FG p): Along every path, there
 is some state from which p will
 hold forever.

Expressive power of CTL, LTL, and CTL*



Fairness



Fairness

Cannot be expressed in CTL

- Handled by changing the semantics to use fair Kripke structures.
- A fair Kripke structure M = ⟨S, S₀,
 R, L, F⟩ includes an additional set of sets of states F ⊆ 2^S.
- For each P ∈ F, a fair path π includes some states from P infinitely often.
- Path quantifiers interpreted only with respect to fair paths.

Can be expressed in LTL

Fairness

Cannot be expressed in CTL

- Handled by changing the semantics to use fair Kripke structures.
- A fair Kripke structure M = ⟨S, S₀,
 R, L, F⟩ includes an additional set of sets of states F ⊆ 2^S.
- For each P ∈ F, a fair path π includes some states from P infinitely often.
- Path quantifiers interpreted only with respect to fair paths.

Can be expressed in LTL

- Absolute fairness: A(GF pexec)
- Strong fairness:
 A((GF p_{ready}) ⇒ (GF p_{ready} ∧ p_{exec}))
- Weak fairness: $A((FG p_{ready}) \Rightarrow (GF p_{ready} \land p_{exec}))$

Model checking complexity for CTL, LTL, CTL*

Polynomial Time for CTL

Best known algorithm: O(|M| * |f|)

PSPACE-complete for LTL

• Best known algorithm: $O(|M| * 2^{|f|})$

PSPACE-complete for CTL*

• Best known algorithm: $O(|M| * 2^{|f|})$

 $M, s \models f$

Model checking techniques for CTL and LTL

CTL

- Graph-theoretic explicit-state model checking (EMC)
- Symbolic model checking with Ordered Binary Decision Diagrams (SMV, NuSMV)
- Bounded model checking based on SAT (NuSMV)

LTL

- Automata-theoretic model checking:
 - Explicit-state (SPIN) or
 - Symbolic (NuSMV)

Summary

Today

- Basics of model checking:
 - Kripke structures
 - Temporal logics (CTL, LTL,CTL*)
 - Model checking techniques

Next lecture

Software model checking