Symbolic Execution

Emina Torlak

emina@cs.washington.edu

http://courses.cs.washington.edu/courses/cse507/14au/index.html

Today

Today

Last lecture

- Bounded verification: forward VCG for finitized programs

Today

Last lecture

- Bounded verification: forward VCG for finitized programs

Today
- Symbolic execution: a path-based translation

+ Concolic testing

The spectrum of program validation tools

Static Analysis @ @ Verification

Bounded Verification

& Symbolic Execution
O

Confidence

O
Concolic Testing &
Whitebox Fuzzing

® Ad-hoc Testing

Cost (programmer effort, time, expertise)

The spectrum of program validation tools

& Symbolic Execution

E.g., JPF, Klee
Concolic Testing &

Whitebox Fuzzing E.g., SAGE, Pex, CUTE, DART

Confidence

Cost (programmer effort, time, expertise)

Symbolic execution

1976: A system to generate test data and symbolically
execute programs (Lori Clarke)

1976: Symbolic execution and program testing (James King)

2005-present: practical symbolic execution
» Using SMT solvers
* Heuristics to control exponential explosion
- Heap modeling and reasoning about pointers
* Environment modeling

* Dealing with solver limitations

Classic symbolic execution

def f (x, y):
if (x > y):
X =X + Yy
y =X -y
X =X -V
if (x —y > 0):
assert false
return (x, vy)

Classic symbolic execution

def f (x, y):

if (x > y):

X =X + YV

y =XxX-Yy

X =X —Y
if (x —y > 0):
assert false

return (x, y)

Execute the program on symbolic values.

Classic symbolic execution

def f (x, y):

if (x > y):

X =X + Y

y =X -y

X =X -V
if (x —y > 0):
assert false

return (x, y)

Execute the program on symbolic values.

Symbolic state maps variables to symbolic values.

X > X
y~Y

Classic symbolic execution

def f (x, y):

if (x > y):

X =X + Y

y =X -y

X =X -V
if (x —y > 0):
assert false

return (x, y)

Execute the program on symbolic values.
Symbolic state maps variables to symbolic values.

Path condition is a quantifier-free formula over
the symbolic inputs that encodes all branch
decisions taken so far.

X > X
y—Y
N X =Y
X~ X
y—=Y

Classic symbolic execution

X > X
def f () et
e X, Y):
if (x > y): \XSY
X = X + Y X > X
y =X-Y Y
X =X — Y Yy~
if (x —y > 0): feasible

assert false
return (x, y)

Execute the program on symbolic values.
Symbolic state maps variables to symbolic values.

Path condition is a quantifier-free formula over
the symbolic inputs that encodes all branch
decisions taken so far.

All paths in the program form its execution tree,
in which some paths are feasible and some are
infeasible.

Classic symbolic execution

X > X
def f () Aadd
e X, Yy):
if (x > y): x>y, N\ X=Y
X =X + YV x> X+Y x = X
y =X -y y Y
X = X —V " re
if (x —y > 0): feasible

assert false
return (x, y)

Execute the program on symbolic values.
Symbolic state maps variables to symbolic values.

Path condition is a quantifier-free formula over
the symbolic inputs that encodes all branch
decisions taken so far.

All paths in the program form its execution tree,
in which some paths are feasible and some are
infeasible.

Classic symbolic execution

X > X
def f () y~Y
e X, Yy):
if (x > y): x>y / N X =Y
-ty x> X +Y > X
y =X -—-Y v y
X=X-Y)’|—> y|—>
if (x -y > 0): truel |
assert false feasible
return (x, y) s X +Y

y~ X
Execute the program on symbolic values.
Symbolic state maps variables to symbolic values.

Path condition is a quantifier-free formula over
the symbolic inputs that encodes all branch
decisions taken so far.

All paths in the program form its execution tree,
in which some paths are feasible and some are
infeasible.

Classic symbolic execution

X = X
def f (x, y) y~ !
X, y):
if (x > y): x>y, N\ X=Y
X=x+y x> X +Y X > X
y =X -y
X =X =Y y — Y y — Y
if (x —y > 0): truel .
assert false feasible
return (x, y) x> X+Y
y~ X
Execute the program on symbolic values. true l
Symbolic state maps variables to symbolic values. % > Y
Path condition is a quantifier-free formula over y = X

the symbolic inputs that encodes all branch
decisions taken so far.

All paths in the program form its execution tree,
in which some paths are feasible and some are
infeasible.

Classic symbolic execution

def f (x, y):

if (x > y):

X =X + Y

y =X -y

X =X -V
if (x —y > 0):
assert false

return (x, y)

Execute the program on symbolic values.
Symbolic state maps variables to symbolic values.

Path condition is a quantifier-free formula over
the symbolic inputs that encodes all branch
decisions taken so far.

All paths in the program form its execution tree,
in which some paths are feasible and some are
infeasible.

X > X
y—Y
x>y /N X=<Y
x> X+Y X > X
y=Y y=Y
truel feasible
x> X+Y
y > X
truel
XY
y > X
\Y-Xso
x> Y
y » X

Classic symbolic execution

def f (x, y):

if (x > y):

X =X + Y

y =X -y

X =X -V
if (x —y > 0):
assert false

return (x, y)

Execute the program on symbolic values.
Symbolic state maps variables to symbolic values.

Path condition is a quantifier-free formula over
the symbolic inputs that encodes all branch
decisions taken so far.

All paths in the program form its execution tree,
in which some paths are feasible and some are
infeasible.

X > X
y—Y
x>y /N X=<Y
x> X+Y X > X
y=Y y=Y
truel feasible
x> X+Y
y > X
truel
XY
y > X
\Y-Xso
x> Y
y » X

feasible

Classic symbolic execution

X > X
def f () y o
X, y):
if (x > y): x>y / N X =Y
X =Xx+Yy x> X+Y X~ X
y =x-yY
X =X -y y~Y y~Y
if (x -y > 0): truel i
assert false feasible
return (x, y) x> X+Y
y X
Execute the program on symbolic values. true l
Symbolic state maps variables to symbolic values. % s Y
Path condition is a quantifier-free formula over y = X
the symbolic inputs that encodes all branch Y. X> 0/ \Y- X <0
decisions taken so far.
: : : XY XY
All paths in the program form its execution tree,
yr»X yr» X

in which some paths are feasible and some are

infeasible. feasible

Classic symbolic execution

X > X
def f () y o
X, y):
if (x > y): x>y / N X =Y
X =Xx+Yy x> X+Y X~ X
y =x-yY
X =X -y y~Y y~Y
if (x -y > 0): truel i
assert false feasible
return (x, y) x> X+Y
y X
Execute the program on symbolic values. true l
Symbolic state maps variables to symbolic values. % s Y
Path condition is a quantifier-free formula over y = X
the symbolic inputs that encodes all branch Y. X> 0/ \Y- X <0
decisions taken so far.
: : : XY XY
All paths in the program form its execution tree,
yr»X yr» X

in which some paths are feasible and some are

infeasible. infeasible feasible

Classic symbolic execution: practical issues

Classic symbolic execution: practical issues

Loops and recursion: infinite execution trees

Classic symbolic execution: practical issues

Loops and recursion: infinite execution trees

Path explosion: exponentially many paths

Classic symbolic execution: practical issues

Loops and recursion: infinite execution trees
Path explosion: exponentially many paths

Heap modeling: symbolic data structures and pointers

Classic symbolic execution: practical issues

Loops and recursion: infinite execution trees
Path explosion: exponentially many paths
Heap modeling: symbolic data structures and pointers

Solver limitations: dealing with complex PCs

Classic symbolic execution: practical issues

Loops and recursion: infinite execution trees

Path explosion: exponentially many paths

Heap modeling: symbolic data structures and pointers
Solver limitations: dealing with complex PCs

Environment modeling: dealing with native / system / library calls

Classic symbolic execution: practical issues

Loops and recursion: infinite execution trees

Path explosion: exponentially many paths

Heap modeling: symbolic data structures and pointers
Solver limitations: dealing with complex PCs

Environment modeling: dealing with native / system / library calls

Loops and recursion

Dealing with infinite execution trees:
- Finitize paths by limiting the size of PCs (bounded verification)

» Use loop invariants (verification)

Loops and recursion

Dealing with infinite execution trees:

» Finitize paths by limiting the size of PCs (bounded verification)

 Use loop invariants (verification)

init;

while (C) {
B;

s

assert P;

Loops and recursion

Dealing with infinite execution trees:

» Finitize paths by limiting the size of PCs (bounded verification)

 Use loop invariants (verification)

init;
assert I;
init: makeSymbolic(targets(B));
while (C) { assume I;
B; if (C) {
s B;
assert P; assert I;
} else

assert P;

Path explosion

Achieving good coverage in the presence of exponentially many paths:
- Select next branch at random
- Select next branch based on coverage

Interleave symbolic execution with random testing

Path explosion

Achieving good coverage in the presence of exponentially many paths:
* Select next branch at random
- Select next branch based on coverage

* Interleave symbolic execution with random testing

° %3 %3

symbolic execution random testing interleaved execution

Heap modeling

Modeling symbolic heap values and pointers
- Segmented address space via the theory of arrays (Klee)
- Lazy concretization (JPF)

» Concolic lazy concretization (CUTE)

General lazy concretization

class Node {
int elem;
Node next;

n = symbolic(Node);
X = n.next;

General lazy concretization

class Node {
int elem;
Node next;

n = symbolic(Node);
X = n.next;

n—~ A0

A0

elem:?

next: !

General lazy concretization

class Node {

int elem;
Node next;
1 AO.next = null
n = symbolic(Node); L7 AL
X = n.next: x = null
A0
elem:?
next: null

n—~ A0

A0

elem:?

next: !

General lazy concretization

class Node {
int elem;
Node next;

}

symbolic(Node);
n.next;

A0

:?
n > A0 elem: !

next: !
AO.next = null
AO.next = A0

n~ A0 n~ A0
X ~ null x —» AO
A0 A0
elem:? elem:?
next: null next: AQ

General lazy concretization

class Node {
int elem;
Node next;

}

symbolic(Node);
n.next;

AO
n > A0 elem:?
next: !
Aan@d=wtﬂ/////// l \\\\\iﬁgfwt=Al
AO.next = A0
n~ A0 n~ A0 n~ A0
x ~ null x ~ A0 x —~ Al
AQ A0 AQ Al
elem:? elem:? elem:? elem:?
next: null next: A0 next: Al next:?

Concolic testing

typedef struct cell {
int v;
struct cell xnext;
} cell;

int f(int v) {
return 2xv + 1;

}

int testme(cell xp, int x) {
if (x > 0)
if (p !'= NULL)
if (f(x) == p—>v)
if (p—>next == p)
abort();
return 0;

}

Concolic testing

typedef struct cell {
int v;
struct cell xnext;
} cell;

int f(int v) {
return 2xv + 1;

}

int testme(cell xp, int x) {
if (x > 0)
if (p !'= NULL)
if (f(x) == p—>v)
if (p—>next == p)
abort();
return 0;

}

Concrete PC

p ~ null

x>0 A p=null
X — 236

Execute concretely and symbolically.

Concolic testing

Concrete PC
typedef struct cell {
int v; p > null x>0 A p=null
struct cell xnext; X > 236
y cell; A0
int f(int v) { next:null — p~ A0 x>0 A p#Enull A
return 2xv + 1; v: 634 X — 236 pv + 2x + |

}

int testme(cell xp, int x) {
if (x > 0)
if (p !'= NULL)
if (f(x) == p—>v)
if (p—>next == p)
abort();
return 0;

}

Execute concretely and symbolically.

Negate last decision and solve for new inputs.

Concolic testing

typedef struct cell {
int v;
struct cell xnext;
} cell;

int f(int v) {
return 2xv + 1;

}

int testme(cell xp, int x) {
if (x > 0)
if (p !'= NULL)
if (f(x) == p—>v)
if (p—>next == p)
abort();
return 0;

}

Concrete
p ~ null
X~ 236
A0
next: null p~ A0
v: 634 X+ 236
A0
next: null p~ A0
v: 3 X+ |

PC

x>0 A p=null

x>0 A p#Enull A
pv # 2x + |

x>0 A p#Enull A
pbv=2x+ 1 A
p.next = p

Execute concretely and symbolically.

Negate last decision and solve for new inputs.

Concolic testing

typedef struct cell {
int v;
struct cell xnext;
} cell;

int f(int v) {
return 2xv + 1;

}

int testme(cell xp, int x) {
if (x > 0)
if (p !'= NULL)
if (f(x) == p—>v)
if (p—>next == p)
abort();
return 0;

}

Concrete
p ~ null
X~ 236
AQ
next: null p~ A0
v: 634 X+ 236
AQ
next: null p~ A0
v: 3 X+ |
AQ
next: AQ p~ A0
v: 3 X |

PC

x>0 A p=null

x>0 A p#Enull A
pv # 2x + |

x>0 A p#Enull A
pbv=2x+ 1 A
p.next = p

x>0 A pFEnull A
pbv=2x+ 1 A
p.next = p

Execute concretely and symbolically.

Negate last decision and solve for new inputs.

Solver limitations

Reducing the demands on the solver:
* On-the-fly expression simplification
* Incremental solving
» Solution caching

- Substituting concrete values for symbolic in complex PCs (CUTE)

Environment modeling

Dealing with system / native / library calls:
- Partial state concretization

 Manual models of the environment (Klee)

summary

Today

* Practical symbolic execution and concolic testing

NeXxt lecture

Basics of model checking

