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Today
- Symbolic execution: a path-based translation
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Symbolic execution

1976: A system to generate test data and symbolically
execute programs (Lori Clarke)

1976: Symbolic execution and program testing (James King)

2005-present: practical symbolic execution
» Using SMT solvers
* Heuristics to control exponential explosion
- Heap modeling and reasoning about pointers
* Environment modeling

* Dealing with solver limitations
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Loops and recursion

Dealing with infinite execution trees:

» Finitize paths by limiting the size of PCs (bounded verification)

 Use loop invariants (verification)

init;
assert I;
init: makeSymbolic(targets(B));
while (C) { assume I;
B; if (C) {
s B;
assert P; assert I;
} else

assert P;
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Path explosion

Achieving good coverage in the presence of exponentially many paths:
* Select next branch at random
- Select next branch based on coverage

* Interleave symbolic execution with random testing

° %3 %3

symbolic execution random testing interleaved execution



Heap modeling

Modeling symbolic heap values and pointers
- Segmented address space via the theory of arrays (Klee)
- Lazy concretization (JPF)

» Concolic lazy concretization (CUTE)
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General lazy concretization

class Node {
int elem;
Node next;

}

symbolic(Node);
n.next;

AO
n > A0 elem:?
next: !
Aan@d=wtﬂ/////// l \\\\\iﬁgfwt=Al
AO.next = A0
n~ A0 n~ A0 n~ A0
x ~ null x ~ A0 x —~ Al
AQ A0 AQ Al
elem:? elem:? elem:? elem:?
next: null next: A0 next: Al next:?
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Solver limitations

Reducing the demands on the solver:
*  On-the-fly expression simplification
* Incremental solving
» Solution caching

- Substituting concrete values for symbolic in complex PCs (CUTE)



Environment modeling

Dealing with system / native / library calls:
- Partial state concretization

 Manual models of the environment (Klee)



summary

Today

* Practical symbolic execution and concolic testing

NeXxt lecture

Basics of model checking



