Program Verification via an Intermediate Verification Language

K. Rustan M. Leino

Principal Researcher Research in Software Engineering (RiSE), Microsoft Research, Redmond

Visiting Professor

Department of Computing, Imperial College London

Static program verification

What is the state-of-art in program verifiers? How to build a program verifier

Dafny

Put reasoning about programs first

Language aimed at reasoning

Constructs for recording design decisions

Tool support

Static program verifier enforces design decisions

Integrated development environment Tools help in reasoning process Verification is not an afterthought

Queue implemented by a ring buffer

Separation of concerns

Verification architecture

Boogie language overview

```
Mathematical features
 type T
 const x...
 function f...
 axiom E
Imperative features
 var y...
 procedure P... ...spec...
 implementation P... { ...body... }
```

Statement outcomes

Terminate

Go wrong

Block

Diverge

Boogie statements

```
x := E
 Evaluate E and change x to that value
a[i] := E
 Same as a := a[i := E]
havoc x
 Change x to an arbitrary value
assert E
 If E holds, terminate; otherwise, go wrong
assume E
 If E holds, terminate; otherwise, block
call P()
 Act according to specification of P
```

```
if
while
break
label:
goto A, B
```

Translation basics

```
Ada
x : Integer;
procedure Update
   (y : Integer;
    r : out Integer) is
begin
  if x < y then
   X := y;
  end if;
  r := y;
end Update;
procedure Main is
begin
  Update(5, x);
end Main;
```

Boogie var x: int; procedure Update(y: int) returns (r: int) modifies x; **if** (x < y) { X := y;r := y; procedure Main() modifies x; call x := Update(5);

Unstructured control flow

.NET bytecode (MSIL)

```
.maxstack 2
.locals init ([0] int32 i,
             [1] bool CS$4$0000)
IL 0000: nop
IL 0001: ldc.i4.0
IL_0002: stloc.0
IL 0003: br.s
                  IL 000b
IL 0005: nop
IL 0006: ldloc.0
IL_0007: ldc.i4.1
IL 0008: add
IL 0009: stloc.0
IL 000a: nop
IL 000b: ldloc.0
IL 000c: ldarg.0
IL 000d: clt
IL 000f: stloc.1
IL 0010: ldloc.1
IL 0011: brtrue.s
                  IL 0005
IL 0013: ret
```

Boogie

```
var i: int, CS$4$000: bool;
var $stack0i, $stack1i: int,
    $stack0b: bool;
IL 0000:
 $stack0i := 0;
 i := 0;
  goto IL 000b;
IL 0005:
  $stack1i := i;
 $stack0i := $stack0i + $stack1i;
  i := $stack0i;
IL 000b:
  $stack0i := i;
 $stack1i := n;
  $stack0b := $stack0i < $stack1i;</pre>
  CS$4$000 := $stack0b;
 $stack0b := CS$4$000;
  if ($stack0b) { goto IL 0005; }
IL 0013:
  return;
```

Reasoning about loops

```
Java + JML
//@ requires 0 <= n;
void m(int n)
  int i = 0;
  //@ loop_invariant i <= n;</pre>
  while (i < n) {</pre>
    i++;
  //@ assert i == n;
```

Boogie

```
procedure m(n: int)
  requires 0 <= n;</pre>
  var i: int;
  i := 0;
  while (i < n)</pre>
    invariant i <= n;</pre>
    i := i + 1;
  assert i == n;
```

Custom operators: underspecification

```
C++
void P() {
  int x;
  X = y << z;
  x = y + z;
```

Boogie const Two^31: int; $axiom Two^31 == 2147483648;$ function LeftShift(int, int): int; axiom (forall a: int :: LeftShift(a, 0) == a); function Add(int, int): int; axiom (forall a, b: int :: -Two^31 <= a+b && a+b < Two^31 ==> Add(a,b) == a+b);procedure P() { var x: int; x := LeftShift(y, z); x := Add(y, z);

Definedness of expressions

```
F#
let x = y + z in
let w = y / z in
// ...
```

Boogie

```
// check for underflow:
assert -Two^31 <= y+z;</pre>
// check for overflow:
assert y+z < Two^31;</pre>
X := y + Z;
// check division by zero:
assert z != 0;
W := Div(y, z);
```

Uninitialized variables

```
Pascal
var r: integer;
if B then
  r := z;
(* ... *)
if C then begin
  d := r
end
```

Boogie var r: int; var r\$defined: bool; **if** (B) { r, r\$defined := z, true; **if** (C) { assert r\$defined; d := r;

Loop termination

```
Eiffel
from
  Init
until
  В
invariant
  Inv
variant
  VF
loop
  Body
end
```

```
Boogie
Init;
while (!B)
  invariant Inv;
  // check boundedness:
  invariant 0 <= VF;</pre>
  tmp := VF;
  Body;
  // check decrement:
  assert VF < tmp;</pre>
```

Modeling memory

```
C#
class C {
  C next;
  void M(C c)
    C x = next;
    c.next = c;
```

Boogie

```
type Ref;
const null: Ref;
type Field;
const unique C.next: Field;
var Heap: [Ref,Field]Ref;
        // Ref * Field --> Ref
procedure C.M(this: Ref, c: Ref)
  requires this != null;
 modifies Heap;
 var x: Ref;
  assert this != null;
 x := Heap[this, C.next];
  assert c != null;
  Heap[c, C.next] := y;
```

More about memory models

Encoding a good memory model requires more effort

Boogie provides many useful features

Polymorphic map types

Partial commands (assume statements)

Free pre- and postconditions

where clauses

Demo

RingBuffer translated

Verification-condition generation

- O. passive features: assert, assume, ;
- 1. control flow: goto (no loops)
- 2. state changes: :=, havoc
- 3. loops

Weakest preconditions

The weakest precondition of a statement S with respect to a predicate Q on the post-state of S, denoted wp(S,Q), is the set of pre-states from which execution:

does not go wrong, and if it terminates, terminates in Q

VC generation: passive features

```
wp(assert E, Q) =
E \wedge Q
wp(assume E, Q) =
E \Rightarrow Q
wp(S; T, Q) =
wp(S, wp(T, Q))
```

VC generation: acyclic control flow

For each block A, introduce a variable A_{ok} with the meaning: A_{ok} is true iff every program execution starting in the current state from block A does not go wrong

The verification condition for the program:

```
A: S; goto B or C

...

is:
 (A_{ok} \equiv wp(S, B_{ok} \land C_{ok})) \land 
...
 \Rightarrow A_{ok}
```

VC generation: state changes

Replace definitions and uses of variables by definitions and uses of different *incarnations* of the variables

$$\{x \rightarrow x0, y \rightarrow y0\} \ x := E(x,y)$$

$$x1 := E(x0,y0) \ \{x \rightarrow x1, y \rightarrow y0\}$$

$$\{x \rightarrow x0, y \rightarrow y0\} \ havoc x$$

$$skip \ \{x \rightarrow x1, y \rightarrow y0\}$$

VC generation: state changes (cont.)

```
Given:
  \{x \rightarrow x0, y \rightarrow y0\} S
                                               S' \{x \rightarrow x1, y \rightarrow y0\}
                                              T' \{x \rightarrow x2, y \rightarrow y0\}
  \{x \rightarrow x0, y \rightarrow y0\} T
then we have:
 \{x \rightarrow x0, y \rightarrow y0\} if E(x,y) then S else T end
 if E(x0,y0) then
           S': x3 := x1
 else
            T'; x3 := x2
 end
 \{x \rightarrow x3, y \rightarrow y0\}
```

VC generation: state changes (cont.)

Replace every assignment

```
x := E
```

with

assume x = E

```
loop head:
                          assert LoopInv( x );
                                         assume Guard( x );
after loop:
                           loop body:
                                         x := ...
     assume ¬Guard( x );
```

```
assert P
    assert P; assume P
          loop head:
                          assert LoopInv( x );
                          assume LoopInv( x );
                                        assume Guard( x );
after loop:
                           loop body:
                                        x := ...
     assume ¬Guard( x );
```

```
assert LoopInv( x );
          loop head:
                          assert LoopInv( x );
                          assume LoopInv( x );
                                         assume Guard( x );
                           loop body:
after loop:
                                         x := ...
     assume ¬Guard( x );
                                         assert LoopInv( x );
```

```
assert LoopInv( x );
          loop head:
                          havoc x;
                          assume LoopInv(x);
    loop target
                                        assume Guard( x );
after loop:
                           loop body:
                                       x := ...
                                        assert LoopInv( x );
     assume ¬Guard( x );
```

```
assert LoopInv( x );
          loop head:
                          havoc x;
                          assume LoopInv( x );
                                        assume Guard( x );
after loop:
                           loop body:
                                        x := ...
                                        assert LoopInv( x );
     assume ¬Guard( x );
                                        assume false;
```

Demo

/traceverify

Take-home messages

To build a verifier, use an intermediate verification language (IVL)

An IVL is a thinking tool

An IVL helps you separate concerns

IVL lets you reuse and share infrastructure

Try Dafny and Boogie in your browser at rise4fun.com

Watch Verification Corner on YouTube

