Program Verification via an
Intermediate Verification
Language

K. Rustan M. Leino

Principal Researcher
Research in Software Engineering (RiSE), Microsoft Research, Redmond

Visiting Professor
Department of Computing, Imperial College London

7, Computer-Aided Reasoning for Software

Static program verification

What is the state-of-art in program verifiers?
How to build a program verifier

Daftny

''''

Put reasoning about programs first

Language aimed at reasoning
Constructs for recording design decisions

Tool support
Static program verifier enforces design
decisions

Integrated development environment
Tools help in reasoning process
Verification is not an afterthought

(start + len) % data.Length

D e I I I O Enqueue at (start + len) % data.Length

Dequeue at start

Queue implemented by a ring buffer

"lng,

’ %‘"'Sum);

Verification architecture

Meet the family

S e
*‘i“““"‘
i

Sy
AN

Ver|f|cat|on architecture

- \..//.

5 sy

Boogie language overview

Mathematical features

type T

const X..

function f..

axiom E

Imperative features

var V..

procedure P.. ..spec..
implementation P.. { ..body.. }

Statement outcomes

Terminate
Go wrong

Block
Diverge

Boogle statements

X :=E if
Evaluate E and change x to that value while
a[i] :=E break
Sameasa := a[il := E]
label:

havoc X

Change x to an arbitrary value goto A, B
assert E

If E holds, terminate; otherwise, go wrong
assume E

If E holds, terminate; otherwise, block
call P()

Act according to specification of P

Translation basics

Ada

Unstructured control flow

NET bytecode (MSIL)

Reasoning about loops

Java + JML Boogie

Custom operators: underspecification

C++ Boogie

Definedness of expressions

= Boogie

Uninitialized variables

Pascal Boogie

Loop termination

Eiffel

Modeling memory
C# Boogie

More about memory models

Encoding a good memory model requires more effort

Boogie provides many useful features
Polymorphic map types
Partial commands (assume statements)
Free pre- and postconditions
where clauses

Demo

RingBuffer translated

Verification-condition generation

passive features: assert, assume, ;
. control flow: goto (no loops)
. state changes: :=, havoc

. loops

Weakest preconditions

The weakest precondition of a statement S with respect to a predicate Q
on the post-state of S, denoted wp(S,Q), is the set of pre-states from
which execution:

does not go wrong, and
if it terminates, terminates in Q

VVC generation: passive features

wp(assertE, Q) =
EAQ

wp(assume E, Q) =
E=Q

wp(S; T, Q) =
wp(S, wp(T,Q))

VVC generation: acyclic control flow

For each block A, introduce a variable A, with the meaning: A_, is true iff
every program execution starting in the current state from block A does

not go wrong

The verification condition for the program:
A: S; gotoBorC

IS:
(Ag=wp(S, B AC,)) A

—
Aok

VVC generation: state changes

Replace definitions and uses of variables by definitions and uses of
different incarnations of the variables

{x=2x0, y=2y0} x :=E(x,y)
x1 := E(xO,y0) {x=>x1, y—=>y0}

{x=2>x0, y=>>y0} havoc x
skip {x=2x1, y=>vy0}

\VC generation: state changes (cont.)

Given:
{x=2x0 ,y=2y0} S S {x=x1, y=vy0}
{x=2x0, y=2yO} T T {x=2x2, y=vy0}

then we have:
{x=2>x0, y=2y0}if E(x,y) then Selse T end

if E(xO,y0) then

S x3:=x1
else

T x3:=x2
end

{x=2x3, y=2y0}

\VC generation: state changes (cont.)

Replace every assignment
X:=E

with
assume x =E

VVC generation: loops

loop head:
assert Looplnv(x) ;

assume Guard(x) ;
X = ..

after loop: loop body:

assume —-Guard(x) ;

VVC generation: loops

loop head:

assert Looplnv(x) ;
assume Looplnv(x);

assume Guard(x) ;
X = ...

after loop: loop body:

assume —-Guard(x) ;

VVC generation: loops

assert Looplnv(x) ;

loop head:

assert Looplnv(x) ;
assume Looplnv(x);

assume Guard(x) ;
X = ...
assume -Guard(x) ; assert Looplnv(x) ;

after loop: loop body:

\VC generation: loops

assert Looplnv(x) ;

loop head:

hav
me LoopInv(X);

assume Guard(x) ;

after loop: loop body:

assert Looplnv(x);
assume —-Guard(x) ;

VVC generation: loops

assert Looplnv(x) ;

loop head: havoc X °

assume Looplnv(x);

assume Guard(x) ;
after loop: loop body: X :=..

assert Looplnv(x);
assume -Guard(x) ; assume false:

Demo

/traceverify

Take-home messages

To build a verifier, use an intermediate verification language (IVL)
An IVL is a thinking tool
An IVL helps you separate concerns
IVL lets you reuse and share infrastructure

Try Dafny and Boogie in your browser at rise4dfun.com

Watch Verification Corner on YouTube Verification

Carner

