
CSE507
Emina Torlak
emina@cs.washington.edu	

courses.cs.washington.edu/courses/cse507/14au/

Computer-Aided Reasoning for Software

Reasoning about Programs

http://courses.cs.washington.edu/courses/cse507/14au/index.html

Today

2

Today

2

Last lecture	

• Finite model finding for first-order logic with quantifiers,

relations, and transitive closure

Today

2

Last lecture	

• Finite model finding for first-order logic with quantifiers,

relations, and transitive closure

Today 	

• Reasoning about (partial) correctness of programs	

• Hoare Logic	

• Verification Condition Generation

Today

2

Last lecture	

• Finite model finding for first-order logic with quantifiers,

relations, and transitive closure

Today 	

• Reasoning about (partial) correctness of programs	

• Hoare Logic	

• Verification Condition Generation

Based on lectures by Isil Dillig,
Daniel Jackson, and Viktor Kuncak

Program verification & checking (L10–L15)

3

Classic verification (L10, L11)	

• Checking that all (terminating) executions

satisfy an FOL property on all inputs

Program verification & checking (L10–L15)

3

Classic verification (L10, L11)	

• Checking that all (terminating) executions

satisfy an FOL property on all inputs

Bounded verification (L12)	

• Scope-complete checking of FOL properties

Program verification & checking (L10–L15)

3

Classic verification (L10, L11)	

• Checking that all (terminating) executions

satisfy an FOL property on all inputs

Bounded verification (L12)	

• Scope-complete checking of FOL properties

Symbolic execution (L13)	

• Systematic checking of FOL properties

Program verification & checking (L10–L15)

3

Classic verification (L10, L11)	

• Checking that all (terminating) executions

satisfy an FOL property on all inputs

Bounded verification (L12)	

• Scope-complete checking of FOL properties

Symbolic execution (L13)	

• Systematic checking of FOL properties

Model checking (L14, L15)	

• Exhaustive checking of temporal properties

of abstracted programs

Program verification & checking (L10–L15)

3

Classic verification (L10, L11)	

• Checking that all (terminating) executions

satisfy an FOL property on all inputs

Bounded verification (L12)	

• Scope-complete checking of FOL properties

Symbolic execution (L13)	

• Systematic checking of FOL properties

Model checking (L14, L15)	

• Exhaustive checking of temporal properties

of abstracted programs

Program verification & checking (L10–L15)

3

Active research
topic for 45 years

Classic verification (L10, L11)	

• Checking that all (terminating) executions

satisfy an FOL property on all inputs

Bounded verification (L12)	

• Scope-complete checking of FOL properties

Symbolic execution (L13)	

• Systematic checking of FOL properties

Model checking (L14, L15)	

• Exhaustive checking of temporal properties

of abstracted programs

Program verification & checking (L10–L15)

3

Active research
topic for 45 years

Classic ideas every
computer scientist
should know

Classic verification (L10, L11)	

• Checking that all (terminating) executions

satisfy an FOL property on all inputs

Bounded verification (L12)	

• Scope-complete checking of FOL properties

Symbolic execution (L13)	

• Systematic checking of FOL properties

Model checking (L14, L15)	

• Exhaustive checking of temporal properties

of abstracted programs

Program verification & checking (L10–L15)

3

Active research
topic for 45 years

Classic ideas every
computer scientist
should know

Understanding the
ideas can help you
become a better
programmer

Classic verification: seminal papers

4

Classic verification: seminal papers

4

1967: Assigning Meaning to Programs (Floyd)

• 1978 Turing Award

Classic verification: seminal papers

4

1967: Assigning Meaning to Programs (Floyd)

• 1978 Turing Award

1969: An Axiomatic Basis for Computer
Programming (Hoare) 	

• 1980 Turing Award

Classic verification: seminal papers

4

1967: Assigning Meaning to Programs (Floyd)

• 1978 Turing Award

1969: An Axiomatic Basis for Computer
Programming (Hoare) 	

• 1980 Turing Award

1975: Guarded Commands, Nondeterminacy
and Formal Derivation of Programs (Dijkstra)

• 1972 Turing Award

Classic verification: seminal papers

4

1967: Assigning Meaning to Programs (Floyd)

• 1978 Turing Award

1969: An Axiomatic Basis for Computer
Programming (Hoare) 	

• 1980 Turing Award

1975: Guarded Commands, Nondeterminacy
and Formal Derivation of Programs (Dijkstra)

• 1972 Turing Award

Specifying correctness in Hoare logic

5

{P} S {Q}

Hoare triple	

• S is a program statement (or fragment).	

• P is an FOL formula called the precondition.	

• Q is an FOL formula called the postcondition.

Specifying correctness in Hoare logic

5

{P} S {Q}

Hoare triple	

• S is a program statement (or fragment).	

• P is an FOL formula called the precondition.	

• Q is an FOL formula called the postcondition.

Partial correctness (Hoare triple semantics)	

• If S executes from a state satisfying P, and if its execution

terminates, then the resulting state satisfies Q.

Specifying correctness in Hoare logic

5

{P} S {Q}

Hoare triple	

• S is a program statement (or fragment).	

• P is an FOL formula called the precondition.	

• Q is an FOL formula called the postcondition.

Partial correctness (Hoare triple semantics)	

• If S executes from a state satisfying P, and if its execution

terminates, then the resulting state satisfies Q.

Total correctness	

• If S executes from a state satisfying P, then its execution

terminates and the resulting state satisfies Q.

Specifying correctness in Hoare logic

5

{P} S {Q}

[P] S [Q]

Hoare triple	

• S is a program statement (or fragment).	

• P is an FOL formula called the precondition.	

• Q is an FOL formula called the postcondition.

Partial correctness (Hoare triple semantics)	

• If S executes from a state satisfying P, and if its execution

terminates, then the resulting state satisfies Q.

Total correctness	

• If S executes from a state satisfying P, then its execution

terminates and the resulting state satisfies Q.

Specifying correctness in Hoare logic

5

{P} S {Q}

[P] S [Q]

safety

Hoare triple	

• S is a program statement (or fragment).	

• P is an FOL formula called the precondition.	

• Q is an FOL formula called the postcondition.

Partial correctness (Hoare triple semantics)	

• If S executes from a state satisfying P, and if its execution

terminates, then the resulting state satisfies Q.

Total correctness	

• If S executes from a state satisfying P, then its execution

terminates and the resulting state satisfies Q.

Specifying correctness in Hoare logic

5

{P} S {Q}

[P] S [Q]

safety

liveness

Hoare triple	

• S is a program statement (or fragment).	

• P is an FOL formula called the precondition.	

• Q is an FOL formula called the postcondition.

Partial correctness (Hoare triple semantics)	

• If S executes from a state satisfying P, and if its execution

terminates, then the resulting state satisfies Q.

Total correctness	

• If S executes from a state satisfying P, then its execution

terminates and the resulting state satisfies Q.

Specifying correctness in Hoare logic

5

{P} S {Q}

[P] S [Q]

safety

liveness

Examples of Hoare triples

6

{false} S {Q}

Examples of Hoare triples

6

{false} S {Q}
• Valid for all S and Q.

Examples of Hoare triples

6

{false} S {Q}
• Valid for all S and Q.

{P} while (true) do skip {Q}

Examples of Hoare triples

6

{false} S {Q}
• Valid for all S and Q.

{P} while (true) do skip {Q}
• Valid for all P and Q.

Examples of Hoare triples

6

{false} S {Q}
• Valid for all S and Q.

{P} while (true) do skip {Q}
• Valid for all P and Q.

{true} S {Q}

Examples of Hoare triples

6

{false} S {Q}
• Valid for all S and Q.

{P} while (true) do skip {Q}
• Valid for all P and Q.

{true} S {Q}
• If S terminates, then Q must hold.

Examples of Hoare triples

6

{false} S {Q}
• Valid for all S and Q.

{P} while (true) do skip {Q}
• Valid for all P and Q.

{true} S {Q}
• If S terminates, then Q must hold.

{P} S {true}

Examples of Hoare triples

6

{false} S {Q}
• Valid for all S and Q.

{P} while (true) do skip {Q}
• Valid for all P and Q.

{true} S {Q}
• If S terminates, then Q must hold.

{P} S {true}
• Valid for all P and S.

Examples of Hoare triples

6

A simple imperative language	

• Expression E 	
	
	

• Z | V | E1 + E2 | E1 * E2	

• Conditional C 	
	

• true | false | E1 = E2 | E1 ≤ E2	

• Statement	
	
S 	
	

• skip	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
(Skip)	

• V := E	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
(Assignment)	

• S1; S2	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
(Composition)	

• if C then S1 else S2	
	
	
	
(If)	

• while C do S	
	
	
	
	
	
	
	
	
	
	
(While)

Proving partial correctness in Hoare logic

7

A simple imperative language	

• Expression E 	
	
	

• Z | V | E1 + E2 | E1 * E2	

• Conditional C 	
	

• true | false | E1 = E2 | E1 ≤ E2	

• Statement	
	
S 	
	

• skip	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
(Skip)	

• V := E	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
(Assignment)	

• S1; S2	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
(Composition)	

• if C then S1 else S2	
	
	
	
(If)	

• while C do S	
	
	
	
	
	
	
	
	
	
	
(While)

Proving partial correctness in Hoare logic

7

One inference rule for
every statement in the
language:	

!
⊢{P1}S1{Q1} … ⊢{Pn}Sn{Qn}	

⊢{P}S{Q}	

!
If the Hoare triples {P1}
S1{Q1} … {Pn}Sn{Qn} are
provable, then so is {P}S{Q}.

Inference rules for Hoare logic

8

 	
 	
 	
 	
 	

⊢ {P} skip {P}

Inference rules for Hoare logic

8

 	
 	
 	
 	
 	

⊢ {P} skip {P}

 	
 	
 	
 	
 	

⊢ {Q[E∕x]} x := E {Q}

⊢ {P1} S {Q1}	
 P⇒ P1	
 Q1 ⇒ Q	

⊢ {P} S {Q}

Inference rules for Hoare logic

8

 	
 	
 	
 	
 	

⊢ {P} skip {P}

 	
 	
 	
 	
 	

⊢ {Q[E∕x]} x := E {Q}

⊢ {P1} S {Q1}	
 P⇒ P1	
 Q1 ⇒ Q	

⊢ {P} S {Q}

Inference rules for Hoare logic

8

 	
 	
 	
 	
 	

⊢ {P} skip {P}

 	
 	
 	
 	
 	

⊢ {Q[E∕x]} x := E {Q}

⊢ {P} S1 {R}	
	
 ⊢ {R} S2 {Q} 	

⊢ {P} S1; S2 {Q}

⊢ {P1} S {Q1}	
 P⇒ P1	
 Q1 ⇒ Q	

⊢ {P} S {Q}

Inference rules for Hoare logic

8

 	
 	
 	
 	
 	

⊢ {P} skip {P}

 	
 	
 	
 	
 	

⊢ {Q[E∕x]} x := E {Q}

⊢ {P} S1 {R}	
	
 ⊢ {R} S2 {Q} 	

⊢ {P} S1; S2 {Q}

⊢ {P∧C} S1 {Q}	
⊢ {P∧¬C} S2 {Q}	

⊢ {P} if C then S1 else S2 {Q}

⊢ {P1} S {Q1}	
 P⇒ P1	
 Q1 ⇒ Q	

⊢ {P} S {Q}

Inference rules for Hoare logic

8

 	
 	
 	
 	
 	

⊢ {P} skip {P}

 	
 	
 	
 	
 	

⊢ {Q[E∕x]} x := E {Q}

⊢ {P} S1 {R}	
	
 ⊢ {R} S2 {Q} 	

⊢ {P} S1; S2 {Q}

⊢ {P∧C} S1 {Q}	
⊢ {P∧¬C} S2 {Q}	

⊢ {P} if C then S1 else S2 {Q}

	
 	
 ⊢ {P∧C} S {P}	
 	
 	

⊢ {P} while C do S {P∧¬C}

loop invariant

Example: proof outline

9

{x ≤ n}	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

while (x < n) do	
	

	
	
{x ≤ n ∧ x < n}	
	
	
	
	
	
	
	
	

	
	
{x+1≤ n}	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
// consequence	
	

	
	
x := x + 1	

	
	
{x ≤ n}	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
// assignment	
	

{x ≤ n ∧ x ≥ n}	
	
	
	
	
	
	
	
	
// while	

{x ≥ n}	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
// consequence

Example: proof outline with auxiliary variables

10

{x = X ∧ y = Y}	

{y = Y ∧ x = X}	

t := x	

{y = Y ∧ t = X}	
	
	
	
	
	
	
	
	
	
	
// assignment	
	

x := y	

{x = Y ∧ t = X}	
	
	
	
	
	
	
	
	
	
// assignment	
	

y := t	

{x = Y ∧ y = X}	
	
	
	
	
	
	
	
	
	
// assignment	

Soundness and relative completeness

11

Soundness and relative completeness

11

Proof rules for Hoare logic are sound
!

If ⊢ {P} S {Q} then ⊨ {P} S {Q}

Soundness and relative completeness

11

Proof rules for Hoare logic are sound
!

If ⊢ {P} S {Q} then ⊨ {P} S {Q}

Proof rules for Hoare logic are relatively complete
!
If ⊨ {P} S {Q} then ⊢ {P} S {Q}, assuming an oracle for

deciding implications	

Automating Hoare logic with VC generation

12

Program annotated
with pre/post conditions,

loop invariants

Verification Condition
Generator (VCG)

SMT solver

verification
condition (VC)

Automating Hoare logic with VC generation

12

Program annotated
with pre/post conditions,

loop invariants

Verification Condition
Generator (VCG)

SMT solver

verification
condition (VC)

A formula φ generated
automatically from the
annotated program.	

The program satisfies the
specification if φ is valid.

Automating Hoare logic with VC generation

12

Program annotated
with pre/post conditions,

loop invariants

Verification Condition
Generator (VCG)

SMT solver

verification
condition (VC)

Forwards computation:

• Starting from the precondition, generate
formulas to prove the postcondition.	

• Based on computing strongest
postconditions (sp).	

Backwards computation:

• Starting from the postcondition,
generate formulas to prove the
precondition.	

• Based on computing weakest liberal
preconditions (wp).

VC generation with WP and SP

13

VC generation with WP and SP

13

wp(S, Q)	

• The weakest predicate that guarantees Q will hold

after executing S from a state satisfying that predicate.

VC generation with WP and SP

13

wp(S, Q)	

• The weakest predicate that guarantees Q will hold

after executing S from a state satisfying that predicate.

sp(S, P)	

• The strongest predicate that holds after S is executed

from a state satisfying P.

VC generation with WP and SP

13

wp(S, Q)	

• The weakest predicate that guarantees Q will hold

after executing S from a state satisfying that predicate.

sp(S, P)	

• The strongest predicate that holds after S is executed

from a state satisfying P.

{P} S {Q} is valid iff	

• P ⇒ wp(S, Q) 	

• sp(S, P) ⇒ Q

Computing wp(S, Q)

14

Computing wp(S, Q)

14

wp(S, Q):

Computing wp(S, Q)

14

wp(S, Q):
• wp(skip, Q) = Q

Computing wp(S, Q)

14

wp(S, Q):
• wp(skip, Q) = Q

• wp(x := E, Q) = Q[E / x]

Computing wp(S, Q)

14

wp(S, Q):
• wp(skip, Q) = Q

• wp(x := E, Q) = Q[E / x]

• wp(S1; S2, Q) = wp(S1, wp(S2, Q))

Computing wp(S, Q)

14

wp(S, Q):
• wp(skip, Q) = Q

• wp(x := E, Q) = Q[E / x]

• wp(S1; S2, Q) = wp(S1, wp(S2, Q))

• wp(if C then S1 else S2, Q) = C → wp(S1, Q) ∧ ¬C → wp(S2, Q)

Computing wp(S, Q)

14

wp(S, Q):
• wp(skip, Q) = Q

• wp(x := E, Q) = Q[E / x]

• wp(S1; S2, Q) = wp(S1, wp(S2, Q))

• wp(if C then S1 else S2, Q) = C → wp(S1, Q) ∧ ¬C → wp(S2, Q)

• wp(while C do S, Q) = ?

Computing wp(S, Q)

14

wp(S, Q):
• wp(skip, Q) = Q

• wp(x := E, Q) = Q[E / x]

• wp(S1; S2, Q) = wp(S1, wp(S2, Q))

• wp(if C then S1 else S2, Q) = C → wp(S1, Q) ∧ ¬C → wp(S2, Q)

• wp(while C do S, Q) = ?✗

A fixpoint: cannot be
expressed as a syntactic
construction in terms of
the postcondition.

Computing wp(S, Q)

14

wp(S, Q):
• wp(skip, Q) = Q

• wp(x := E, Q) = Q[E / x]

• wp(S1; S2, Q) = wp(S1, wp(S2, Q))

• wp(if C then S1 else S2, Q) = C → wp(S1, Q) ∧ ¬C → wp(S2, Q)

• wp(while C do S, Q) = ?✗

Approximate wp(S, Q)
with awp(S, Q).

Computing awp(S, Q)

15

awp(S, Q):	

• awp(skip, Q) = Q	

• awp(x := E, Q) = Q[E / x] 	

• awp(S1; S2, Q) = awp(S1, awp(S2, Q)) 	

• awp(if C then S1 else S2, Q) = C → awp(S1, Q) ∧ ¬C → awp(S2, Q) 	

• awp(while C do {I} S, Q) = I

Computing awp(S, Q)

15

awp(S, Q):	

• awp(skip, Q) = Q	

• awp(x := E, Q) = Q[E / x] 	

• awp(S1; S2, Q) = awp(S1, awp(S2, Q)) 	

• awp(if C then S1 else S2, Q) = C → awp(S1, Q) ∧ ¬C → awp(S2, Q) 	

• awp(while C do {I} S, Q) = I

Loop invariant provided by an
oracle (e.g., programmer).

Computing awp(S, Q)

15

awp(S, Q):	

• awp(skip, Q) = Q	

• awp(x := E, Q) = Q[E / x] 	

• awp(S1; S2, Q) = awp(S1, awp(S2, Q)) 	

• awp(if C then S1 else S2, Q) = C → awp(S1, Q) ∧ ¬C → awp(S2, Q) 	

• awp(while C do {I} S, Q) = I

For each statement S, also define
VC(S,Q) that encodes additional
conditions that must be checked.

Computing VC(S, Q)

16

Computing VC(S, Q)

16

VC(S, Q):

Computing VC(S, Q)

16

VC(S, Q):
• VC(skip, Q) = true

Computing VC(S, Q)

16

VC(S, Q):
• VC(skip, Q) = true

• VC(x := E, Q) = true

Computing VC(S, Q)

16

VC(S, Q):
• VC(skip, Q) = true

• VC(x := E, Q) = true

• VC(S1; S2, Q) = VC(S2, Q) ∧ VC(S1, awp(S2, Q))

Computing VC(S, Q)

16

VC(S, Q):
• VC(skip, Q) = true

• VC(x := E, Q) = true

• VC(S1; S2, Q) = VC(S2, Q) ∧ VC(S1, awp(S2, Q))

• VC(if C then S1 else S2, Q) = VC(S1, Q) ∧ VC(S2, Q)

Computing VC(S, Q)

16

VC(S, Q):
• VC(skip, Q) = true

• VC(x := E, Q) = true

• VC(S1; S2, Q) = VC(S2, Q) ∧ VC(S1, awp(S2, Q))

• VC(if C then S1 else S2, Q) = VC(S1, Q) ∧ VC(S2, Q)

• VC(while C do {I} S, Q) = (I∧C ⇒ awp(S,I) ∧ VC(S,I)) ∧ (I∧¬C ⇒ Q)

I is an invariant. I is strong enough.

Verifying a Hoare triple

17

Theorem: {P} S {Q} is valid if
!

VC(S, Q) ∧ P → awp(S, Q)

Verifying a Hoare triple

17

Theorem: {P} S {Q} is valid if
!

VC(S, Q) ∧ P → awp(S, Q)

The other direction doesn’t
hold because loop invariants
may not be strong enough or
they may be incorrect.	

Might get false alarms.

Summary

18

Today	

• Reasoning about partial correctness of programs	

• Hoare Logic	

• VCG, WP, SP	

Next lecture	

• Guest lecture by Rustan Leino!	

• Verification with Dafny, Boogie, and Z3.

