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Last lecture	


• Finite model finding for first-order logic with quantifiers, 

relations, and transitive closure

Today  	


• Reasoning about (partial) correctness of programs	



• Hoare Logic	


• Verification Condition Generation

Based on lectures by Isil Dillig, 
Daniel Jackson, and Viktor Kuncak
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Program verification & checking (L10–L15)

3

Active research 
topic for 45 years

Classic ideas every 
computer scientist 
should know

Understanding the 
ideas can help you 
become a better 
programmer
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A simple imperative language	


• Expression E 	

	

	



• Z | V | E1 + E2 | E1 * E2	



• Conditional C 	

	



• true | false | E1 = E2 | E1 ≤ E2	



• Statement	

	

S 	

	



• skip	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

(Skip)	



• V := E	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

(Assignment)	



• S1; S2	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

(Composition)	



• if C then S1 else S2	

	

	

	

(If)	



• while C do S	

	

	

	

	

	

	

	

	

	

	

(While)
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One inference rule for 
every statement in the 
language:	



!
⊢{P1}S1{Q1} … ⊢{Pn}Sn{Qn}	



⊢{P}S{Q}	



!
If the Hoare triples {P1}
S1{Q1} … {Pn}Sn{Qn} are 
provable, then so is {P}S{Q}.
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⊢ {P} while C do S {P∧¬C}

loop invariant



Example:  proof outline
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{x ≤ n}	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	


while (x < n) do	

	


	

	

{x ≤ n ∧ x < n}	

	

	

	

	

	

	

	

	


	

	

{x+1≤ n}	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

// consequence	

	


	

	

x := x + 1	


	

	

{x ≤ n}	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

// assignment	

	


{x ≤ n ∧ x ≥ n}	

	

	

	

	

	

	

	

	

// while	


{x ≥ n}	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

// consequence
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{x = X ∧ y = Y}	


{y = Y ∧ x = X}	


t := x	


{y = Y ∧ t = X}	

	

	

	

	

	

	

	

	

	

	

// assignment	

	


x := y	


{x = Y ∧ t = X}	

	

	

	

	

	

	

	

	

	

// assignment	

	


y := t	


{x = Y ∧ y = X}	

	

	

	

	

	

	

	

	

	

// assignment	
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Proof rules for Hoare logic are sound 
!
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Proof rules for Hoare logic are relatively complete 
!
If ⊨ {P} S {Q} then ⊢ {P} S {Q}, assuming an oracle for 

deciding implications	
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A formula φ generated 
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Program annotated 
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loop invariants

Verification Condition 
Generator (VCG)

SMT solver

verification 
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wp(S, Q)	


• The weakest predicate that guarantees Q will hold 

after executing S from a state satisfying that predicate.

sp(S, P)	


• The strongest predicate that holds after S is executed 

from a state satisfying P.

{P} S {Q} is valid iff	


• P ⇒ wp(S, Q) 	



• sp(S, P) ⇒ Q
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A fixpoint:  cannot be 
expressed as a syntactic 
construction in terms of 
the postcondition.
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wp(S, Q):
• wp(skip, Q) = Q

• wp(x := E, Q) = Q[E / x] 

• wp(S1; S2, Q) = wp(S1, wp(S2, Q)) 

• wp(if C then S1 else S2, Q) = C → wp(S1, Q) ∧ ¬C → wp(S2, Q) 

• wp(while C do S, Q) = ?✗

Approximate wp(S, Q) 
with awp(S, Q).
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Loop invariant provided by an 
oracle (e.g., programmer).
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awp(S, Q):	


• awp(skip, Q) = Q	



• awp(x := E, Q) = Q[E / x] 	



• awp(S1; S2, Q) = awp(S1, awp(S2, Q)) 	



• awp(if C then S1 else S2, Q) = C → awp(S1, Q) ∧ ¬C → awp(S2, Q) 	



• awp(while C do {I} S, Q) = I

For each statement S, also define 
VC(S,Q) that encodes additional 
conditions that must be checked.



Computing VC(S, Q)

16



Computing VC(S, Q)

16

VC(S, Q):



Computing VC(S, Q)

16

VC(S, Q):
• VC(skip, Q) = true



Computing VC(S, Q)

16

VC(S, Q):
• VC(skip, Q) = true

• VC(x := E, Q) = true 



Computing VC(S, Q)

16

VC(S, Q):
• VC(skip, Q) = true

• VC(x := E, Q) = true 

• VC(S1; S2, Q) = VC(S2, Q) ∧ VC(S1, awp(S2, Q)) 



Computing VC(S, Q)

16

VC(S, Q):
• VC(skip, Q) = true

• VC(x := E, Q) = true 

• VC(S1; S2, Q) = VC(S2, Q) ∧ VC(S1, awp(S2, Q)) 

• VC(if C then S1 else S2, Q) = VC(S1, Q) ∧ VC(S2, Q) 
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VC(S, Q):
• VC(skip, Q) = true

• VC(x := E, Q) = true 

• VC(S1; S2, Q) = VC(S2, Q) ∧ VC(S1, awp(S2, Q)) 

• VC(if C then S1 else S2, Q) = VC(S1, Q) ∧ VC(S2, Q) 

• VC(while C do {I} S, Q) = (I∧C ⇒ awp(S,I) ∧ VC(S,I)) ∧ (I∧¬C ⇒ Q)

I is an invariant. I is strong enough.
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Theorem: {P} S {Q} is valid if 
!

VC(S, Q) ∧ P → awp(S, Q)

The other direction doesn’t 
hold because loop invariants 
may not be strong enough or 
they may be incorrect.	



Might get false alarms.
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Today	


• Reasoning about partial correctness of programs	



• Hoare Logic	


• VCG, WP, SP	



Next lecture	


• Guest lecture by Rustan Leino!	



• Verification with Dafny, Boogie, and Z3.


