Course Introduction

Emina Torlak

emina@cs.washington.edu

http://courses.cs.washington.edu/courses/cse507/14au/index.html

Today

What is this course about?
Course logistics

Review of basic concepts

Tools for building better software, more easily

more reliable, faster,
more energy efficient

I

better software

more easily

automatic
verification,
debugging &
synthesis

Tools for building better software, more easily

class List {

Node head;

void reverse() A{
Node near = head; Is this list reversal
Node mid = near.next;)
Node far = mid.next; procedure correct?

near.next = far;
while (far '= null) {
mid.next = near;
near = mid;
mid far;
far far.next;

}

mid.next = near;
head = mid;
¥
¥

class Node {
Node next; String data;
¥

Tools for building better software, more easily

class List {
Node head;

void reverse() {

Node near =
Node mid
Node far

near.next =

while (far !'= null) {

mid.next
near =
mid
far

}

mid.next =
head = mid;
¥
¥

class Node {

head;
near.next;
mid.next:;
far;

= near,

mid;
far;
far.next;

Near,

Node next; String data;

}

verification

this

data: s1 “‘“‘-————£Egg————~—~"" data: null

head
———>

n2

n2 next n1
—_—

data: s1 data: s2

n1
next next

‘///////‘data:sz —

next

n0

head
-

n0
data: null

next @

this

Tools for building better software, more easily

class List {
Node head;

void reverse() {
Node near = head;
Node mid
Node far

mid.next;

near.next = far;

while (far !'= null) {

mid.next = near;
near = mid;

mid = far;

far = far.next;

}

mid.next = near;
head = mid;
¥
¥

class Node {
Node next; String data;

}

near.next;

this

Which lines of code
are responsible for
the buggy behavior?

head n2 next n1 next
——> _— EE——

data: s1 data: s2

n1
next next

s P data: s2 — -

data: s1 “‘“*-————£E2§_———~—~”" data: null

head
4—

n0
data: null

next @

this

Tools for building better software, more easily

near.next = far;

mid.next = near;

mid.next = near;
head = mid;

this

debugging

Which lines of code
are responsible for

the buggy behavior?

head n2 next n1 next
——> _— EE——

data: s1 data: s2

n1
next next

s P data: s2 — -

data: s1 “‘“*-————£E2§_———~—~”" data: null

head
4—

n0
data: null

next @

this

Tools for building better software, more easily

class List {
Node head;

void reverse() {
Node near = head: Is there a way to

Node mid = near.next: complete this code

Node far = mid.next; so that it is correct!

near.next = ?7?;

while (far '= null) {
mid.next = near;
near = mid;
mid far;
far far.next;

}

mid.next = near;
head = mid;
}

}

class Node {
Node next; String data;
¥

Tools for building better software, more easily

class List {

Node head; synthesis

void reverse() {
Node near = head: Is there a way to

Node mid = near.next; complete this code
Node far = mid.next; so that it is correct?

near.next = null;
while (far !'= null) {
mid.next = near;
near = mid;
mid ar;
far

f
far.next: his |_head n2 next n1 next n0 next @
data: s1 data: s2 data: null
}

mid.next = near;
head = mid;

}
}

class Node {
Node next; String data;
5

next n2 next n1 next nO head)
- -— <«— this
data: s1 data: s2 data: null

By the end of this course, you’ll be able to
build computer-aided tools for any domain!

S
~ Ecu"ity

- S,
biology education

E— —

By the end of this course, you’ll be able to
build computer-aided tools for any domain!

n
h; t‘\e"'wm"u/g
F
~ databases lo
— — W
| "pow
put

high-performance computing \ihg

Topics, structure, people

Course overview

program question

tool

logic

automated
reasoning
engine

Course overview

program question

verifier,
synthesizer,
fault localizer

logic

SAT, SMT,
model finders
& checkers

£

3
/*‘ :\.\:
(33257

Drawing from “Decision Procedures” by Kroening & Strichman

Course overview

program question

\\

verifier,
synthesizer,
fault localizer

logic

SAT, SMT,
model finders
& checkers

Drawing from “Decision Procedures” by Kroening & Strichman

Course overview

program question

by,
verifier, _(p, ay

synthesizcm

fault localizer

logic

SAT, SMT,
model finders
& checkers

Drawing from “Decision Procedures” by Kroening & Strichman

Grading structure

Y
3 individual homework assighments (50%) tllqy
* conceptual problems & proofs (Tex) %t,
- implementations in various programming languages 4

- may discuss problems with others but solutions must be your own

Course project (50%)
* build a computer-aided reasoning tool for a domain of your choice
 teams of 2-3 people strongly encouraged

- see the course web page for timeline, deliverables and other details

bu \\d'
part 'V

http://courses.cs.washington.edu/courses/cse507/14au/index.html

Reading and references

Required readings posted on the course web page

- Complete each reading before the lecture for which it is assigned

Recommended text books
* Bradley & Manna, The Calculus of Computation

* Kroening & Strichman, Decision Procedures

Related courses
- Isil Dillig: Automated Logical Reasoning (201 3)
* Viktor Kuncak: Synthesis, Analysis, and Verification (201 3)
- Sanjit Seshia: Computer-Aided Verification (2012)

http://courses.cs.washington.edu/courses/cse507/14au/index.html
http://www.springer.com/computer/communication+networks/book/978-3-540-74112-1
http://www.springer.com/computer/ai/book/978-3-540-74104-6
http://www.cs.utexas.edu/~isil/cs643/
http://lara.epfl.ch/w/sav13:top
http://www.eecs.berkeley.edu/~sseshia/219c/index.html

Adyvice for doing well in 507

Come to class (prepared)

Lecture notes are enough to teach from, but not enough to learn from

Participate

- Ask and answer questions

Meet deadlines
* Turn homework in on time
- Start homework and project sooner than you think you need to

Follow instructions for submitting code (we have to be able to run it)

People

:
$

s g
>

0%, AT ,
B,
-?. LS TR Y

Emina Torlak

PLSE
CSE 596
Wednesdays |-2

v
-
-
N

Mert Saglam

Theory
CSE 618
Thursdays |-2

Emina Torlak
PLSE

CSE 596
Wednesdays |-2

&

. 9
ye““'
Your name

Research area
Survey

Mert Saglam

Theory
CSE 618
Thursdays |-2

https://catalyst.uw.edu/webq/survey/emina/246990

Propositional logic: syntax, semantics & proof methods

Syntax of propositional logic

(pAT)V(@— 1)

Syntax of propositional logic

PATv@- 5

Atom truth symbols: T (“true”), L (“false”)
propositional variables: p,q,r, ...

Syntax of propositional logic

GpAT v @- D

Atom truth symbols: T (“true”), L (“false”)
propositional variables: p,q,r, ...

Literal an atom or its negation X

Syntax of propositional logic

Atom

Literal

Formula

(pAT)V(@— 1)

truth symbols: T (“true”), L (“false”)
propositional variables: p,q,r, ...

an atom X or its negation X

a literal or the application of a logical connective to
formulas

—F “not” (negation)

Fi A F; “and” (conjunction)
Fi vV F; “or” (disjunction)
Fi — F; “implies” (implication)

FI «— F; “if and only if” (iff)

Interpretations of propositional formulas

An interpretation |/ for a propositional
formula F maps every variable in F to a
truth value:

l:{p~ T,g~ L,...}

Interpretations of propositional formulas

An interpretation |/ for a propositional
formula F maps every variable in F to a
truth value:

l:{p~ T,g~ L,...}

| is a satisfying interpretation of F,
written as | = F, if F evaluates to T under |.

| is a falsifying interpretation of F,
written as | ¥ F, if F evaluates to L under I.

Semantics of propositional logic

Base cases:

- IET
I L
- lep WffI[p]=T

< I p iffI[p] = L

Semantics of propositional logic

Base cases:

c =T

- ¥ L

< lep iffI[p
T p I[P

Inductive cases:

Semantics of propositional logic

Base cases: Inductive cases:
BT + IE-F iff | b F
« | L

- lep iffi[p]=T

< I p iffI[p] = L

Semantics of propositional logic

Base cases: Inductive cases:
- |ET « |E=-F iff | = F
« [1 - [EF AF iffIl=eF,and Il EF

- lep iffi[p]=T

< I p iffI[p] = L

Semantics of propositional logic

Base cases:

c =T

- ¥ L

< lep iffI[p
T p I[P

Inductive cases:
+ | =-F
- I=FI AR
- I=FIVvF

- I=EF—> F;

- |EF «— F

iff | = F
ffl EFfand I EF;
iff|=EF orlEF

iff | = Fiorl=F;

iff |=F,and | = Fy, or
| Frand | £ F)

Semantics of propositional logic: example

F: (pArq)— (pV q)
. {p~T,q~ 1} ®

e ———

?

Semantics of propositional logic: example

F:o(pAq)— (pVq)
. {p-T,q 1}

[=F

— S ——

Satisfiability & validity of propositional formulas

F is satisfiable iff | = F for some |.

F is valid iff | = F for all |.

20

Satisfiability & validity of propositional formulas

F is satisfiable iff | = F for some |.

F is valid iff | = F for all |.

Duality of satisfiability and validity:

F is valid iff =F is unsatisfiable.

20

Satisfiability & validity of propositional formulas

F is satisfiable iff | = F for some |.

If we have a procedure for
Fis valid iff | = F for all I. checking satisfiability, then we
can also check validity of
propositional formulas, and
vice versa.

Duality of satisfiability and validity: y,

F is valid iff =F is unsatisfiable.

20

Techniques for deciding satisfiability & validity

Search Deduction

SAT solver

21

Techniques for deciding satisfiability & validity

Search

Enumerate all interpretations Deducti
(i.e., build a truth table), and eduction

check that they satisfy the
formula.

SAT solver

21

Techniques for deciding satisfiability & validity

Search

Enumerate all interpretations
(i.e., build a truth table), and
check that they satisfy the
formula.

SAT solver

Deduction

Assume the formula is invalid,
apply proof rules, and check
for contradiction in every
branch of the proof tree.

21

Proof by search (truth tables)

F: (pArq) — (pV q)
bAg 7q bV q
0 | |
0 0 0
0 | |

22

Proof by search (truth tables)

F: (pArq) — (pV q)
bAg 7q bV q
0 | |
0 0 0
0 | |

Valid.

22

Proof by deduction (semantic arguments)

Example proof rules:

| = -F I'=Fi AF;
| ¥ F | = F

Il =F;
| #-F I # F) A F)

I =F I# Fr | 1 F

23

Proof by deduction (semantic arguments)

Example proof rules:

| = -F I'=Fi AF;
| ¥ F | = F

Il =F;
| #-F I # F) A F)

I =F I# Fr | 1 F

F: b A—g

23

Proof by deduction (semantic arguments)

Example proof rules:

| = -F I'=Fi AF;
| ¥ F | = F

Il =F;
| #-F I # F) A F)

I =F I# Fr | 1 F

F: b A—g

ILI¥EpAg

(assumption)

23

Proof by deduction (semantic arguments)

Example proof rules:

| = -F I'=Fi AF;
| ¥ F | = F

Il =F;
| #-F I # F) A F)

I =F I# Fr | 1 F

F: b A—g

ILI¥EpAg
a. | ¥ p

(assumption)

(1, 1)

23

Proof by deduction (semantic arguments)

Example proof rules: FoopArq
| = -F I'=Fi A F2 .1 ¥ b ATq (assumption)
| F [= F a. ¥ p (1, 1)
| = F, b.II#_'q (l,/\)
| #—F I # Fi AF

I =F I# Fr | 1 F

23

Proof by deduction (semantic arguments)

Example proof rules: FoopArq
| = -F I'=Fi A F2 .1 ¥ b ATq (assumption)
| F [= F a. ¥ p (1, 1)
I|=F2 b.ll#_'q (,/\)
i. =g (Ib, 1)
| #—F I # Fi AF

I =F I# Fr | 1 F

23

Proof by deduction (semantic arguments)

Example proof rules: FoopArq
| = -F I'=Fi A F2 .1 ¥ b ATq (assumption)
[¥ F [Fi a [#p (1, A)
I|=F2 b.ll#_'q (,/\)
i. =g (Ib, 1)
| ¥=-F | & Fi A F
I'=F [Fio) T# Invalid; | is a falsifying

Interpretation.

23

Semantic judgements

Formulas F; and F; are equivalent,
written F; < F,iff F| «— F; is valid.

Formula F; implies F, written F| —
F,, iff F; — F; is valid.

24

Semantic judgements

Formulas F; and F; are equivalent,
written F; < F,iff F| «— F; is valid.

Formula F; implies F, written F| —
F,, iff F; — F; is valid.

Fi < F; and F) = F are

not propositional formulas
(not part of syntax). They are
properties of formulas, just
like validity or satisfiability.

24

Semantic judgements

Formulas F; and F; are equivalent,
written F; < F,iff F| «— F; is valid.

Formula F; implies F, written F| —
F,, iff F; — F; is valid.

If we have a procedure for
checking satisfiability, then we
can also check for equivalence
and implication of
propositional formulas.

24

summary

Today
« Course overview & logistics

- Review of propositional logic

Next Lecture (by Zach Tatlock)
 Normal forms
« A basic SAT solver

% Take the course survey

% Read Chapter | of Bradley & Manna

25

https://catalyst.uw.edu/webq/survey/emina/246990
https://www.cs.washington.edu/education/courses/cse507/14au/uwnetid/Bradley_Manna_Ch01.pdf

