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Today

What is this course about?	



Course logistics	



Review of basic concepts
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aboutTools for building better software, more easily



Tools for building better software, more easily

more reliable, faster, 	


more energy efficient



Tools for building better software, more easily

automatic 
verification, 
debugging & 
synthesis 



Tools for building better software, more easily
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class List { 
Node head; 
!
void reverse() { 

Node near = head; 
Node mid = near.next; 
Node far = mid.next; 
!
near.next = far; 
while (far != null) { 

mid.next = near; 
near = mid; 
mid = far; 
far = far.next; 

} 
!
mid.next = near; 
head = mid;   

} 
} 
!
class Node { 

Node next; String data; 
}

Is this list reversal 
procedure correct?
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class List { 
Node head; 
!
void reverse() { 

Node near = head; 
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Which lines of code 
are responsible for 
the buggy behavior?
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class List { 
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!
void reverse() { 
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Which lines of code 
are responsible for 
the buggy behavior?

debugging
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class List { 
Node head; 
!
void reverse() { 

Node near = head; 
Node mid = near.next; 
Node far = mid.next; 
!
near.next = ??; 
while (far != null) { 

mid.next = near; 
near = mid; 
mid = far; 
far = far.next; 

} 
!
mid.next = near; 
head = mid;   

} 
} 
!
class Node { 

Node next; String data; 
}

Tools for building better software, more easily
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Is there a way to 
complete this code 
so that it is correct?



class List { 
Node head; 
!
void reverse() { 

Node near = head; 
Node mid = near.next; 
Node far = mid.next; 
!
near.next = null; 
while (far != null) { 

mid.next = near; 
near = mid; 
mid = far; 
far = far.next; 

} 
!
mid.next = near; 
head = mid;   

} 
} 
!
class Node { 

Node next; String data; 
}

Tools for building better software, more easily
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Is there a way to 
complete this code 
so that it is correct?

synthesis
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goalBy the end of this course, you’ll be able to 
build computer-aided tools for any domain!



biology

low-power computing

hardware databases

systems

networking

education

high-performance computing

security

goalBy the end of this course, you’ll be able to 
build computer-aided tools for any domain!



logisticsTopics, structure, people



automated 
reasoning 
engine

Course overview
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program question

logic

tools



SAT, SMT, 
model finders 
& checkers

verifier, 
synthesizer, 
fault localizer

VIII Preface

Fig. 1. Decision procedures can be rather complex . . . those that we consider in
this book take formulas of different theories as input, possibly mix them (using
the Nelson–Oppen procedure – see Chap. 10), decide their satisfiability (“YES” or
“NO”), and, if yes, provide a satisfying assignment

Which Theories? Which Algorithms?

A first-order theory can be considered “interesting”, at least from a practical
perspective, if it fulfills at least these two conditions:

1. The theory is expressive enough to model a real decision problem. More-
over, it is more expressive or more natural for the purpose of expressing
some models in comparison with theories that are easier to decide.

andreis@uw.edu

Course overview
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program question

logic

Drawing from “Decision Procedures” by Kroening & Strichman
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program question

logic

study (part I)

Drawing from “Decision Procedures” by Kroening & Strichman
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Course overview
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program question

logic

study (part I)

build! (part II)

Drawing from “Decision Procedures” by Kroening & Strichman



Grading structure

3 individual homework assignments (50%)	


• conceptual problems & proofs (Tex)	



• implementations in various programming languages	



• may discuss problems with others but solutions must be your own	



Course project (50%)	


• build a computer-aided reasoning tool for a domain of your choice	



• teams of 2-3 people strongly encouraged	



• see the course web page for timeline, deliverables and other details	
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study (part I)

build! 

(part II)

http://courses.cs.washington.edu/courses/cse507/14au/index.html


Reading and references

Required readings posted on the course web page	


• Complete each reading before the lecture for which it is assigned	



Recommended text books	


• Bradley & Manna, The Calculus of Computation	



• Kroening & Strichman, Decision Procedures	



Related courses	


• Isil Dillig:  Automated Logical Reasoning (2013)	



• Viktor Kuncak:  Synthesis,  Analysis, and Verification (2013)	



• Sanjit Seshia:  Computer-Aided Verification (2012)
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http://courses.cs.washington.edu/courses/cse507/14au/index.html
http://www.springer.com/computer/communication+networks/book/978-3-540-74112-1
http://www.springer.com/computer/ai/book/978-3-540-74104-6
http://www.cs.utexas.edu/~isil/cs643/
http://lara.epfl.ch/w/sav13:top
http://www.eecs.berkeley.edu/~sseshia/219c/index.html


Advice for doing well in 507

Come to class (prepared)	


• Lecture notes are enough to teach from, but not enough to learn from	



Participate	


• Ask and answer questions	



Meet deadlines	


• Turn homework in on time	



• Start homework and project sooner than you think you need to	



• Follow instructions for submitting code (we have to be able to run it)
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People
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Emina Torlak	


PLSE	


CSE 596	


Wednesdays 1-2

instructor
TA

Mert Saglam	


Theory	


CSE 618	


Thursdays 1-2



students!

Your name	


Research area	


Survey

People

14

Emina Torlak	


PLSE	


CSE 596	


Wednesdays 1-2

instructor
TA

Mert Saglam	


Theory	


CSE 618	


Thursdays 1-2

https://catalyst.uw.edu/webq/survey/emina/246990


reviewPropositional logic:  syntax, semantics & proof methods



F1 ⟷ F2	



F1 → F2

F1 ⋁ F2

F1 ⋀ F2

Atom truth symbols: ⊤ (“true”), ⊥ (“false”)	


propositional variables:  p, q, r, …

Literal an atom α or its negation ¬α
Formula a literal or the application of a logical connective to 

formulas 

¬F	

 	

 “not”	

 	

 (negation)
	

 	

 “and”	

 	

 (conjunction)
	

 	

 “or”	

 	

 (disjunction)
	

 	

 “implies”	

	

 (implication)
	

 	

 “if and only if”	

 (iff)

Syntax of propositional logic
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(¬p ∧ ⊤) ∨ (q → ⊥) 
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Interpretations of propositional formulas

17

An interpretation I for a propositional 
formula F maps every variable in F to a 
truth value:	



I : { p ↦ ⊤, q ↦ ⊥, …}



Interpretations of propositional formulas
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An interpretation I for a propositional 
formula F maps every variable in F to a 
truth value:	



I : { p ↦ ⊤, q ↦ ⊥, …}

I is a satisfying interpretation of F, 
written as I ⊨ F, if F evaluates to ⊤ under I.	



I is a falsifying interpretation of F, 
written as I ⊭ F, if F evaluates to ⊥ under I.



Semantics of propositional logic

Base cases:	


• I ⊨ ⊤ 	



• I ⊭ ⊥	



• I ⊨ p 	

 iff I[p] = ⊤	



• I ⊭ p 	

 iff I[p] = ⊥
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Inductive cases:
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Inductive cases:
• I ⊨ ¬F 	

 	

 	

 	

 iff I ⊭ F
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Inductive cases:
• I ⊨ ¬F 	

 	

 	

 	

 iff I ⊭ F

• I ⊨ F1 ∧ F2 	

 	

 iff I ⊨ F1 and I ⊨ F2 
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Inductive cases:
• I ⊨ ¬F 	

 	

 	

 	

 iff I ⊭ F

• I ⊨ F1 ∧ F2 	

 	

 iff I ⊨ F1 and I ⊨ F2 

• I ⊨ F1 ∨ F2 	

 	

 iff I ⊨ F1 or I ⊨ F2

• I ⊨ F1 → F2 	

 	

 iff I ⊭ F1 or I ⊨ F2

• I ⊨ F1 ⟷ F2 	

 iff I ⊨ F1 and I ⊨ F2, or 

	

 	

 	

 	

 	

 	

 	

 I ⊭ F1 and I ⊭ F2



F:	

 (p ∧ q) → (p ∨ ¬q) 	


I: 	

 {p ↦ ⊤, q ↦ ⊥}

Semantics of propositional logic:  example

19

?



F:	

 (p ∧ q) → (p ∨ ¬q) 	


I: 	

 {p ↦ ⊤, q ↦ ⊥}	



I ⊨ F

Semantics of propositional logic:  example

19
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Satisfiability & validity of propositional formulas

20

F is satisfiable iff I ⊨ F for some I.	



F is valid iff I ⊨ F for all I.



Satisfiability & validity of propositional formulas

20

F is satisfiable iff I ⊨ F for some I.	



F is valid iff I ⊨ F for all I.

Duality of satisfiability and validity:	



F is valid iff ¬F is unsatisfiable.



Satisfiability & validity of propositional formulas

20

F is satisfiable iff I ⊨ F for some I.	



F is valid iff I ⊨ F for all I.

Duality of satisfiability and validity:	



F is valid iff ¬F is unsatisfiable.

If we have a procedure for 
checking satisfiability, then we 
can also check validity of 
propositional formulas, and 
vice versa.



Techniques for deciding satisfiability & validity

21

SAT solver

Search Deduction



!

Enumerate all interpretations 
(i.e., build a truth table), and 
check that they satisfy the 
formula.
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Deduction



!

Enumerate all interpretations 
(i.e., build a truth table), and 
check that they satisfy the 
formula.

Techniques for deciding satisfiability & validity

21

SAT solver

!

Assume the formula is invalid, 
apply proof rules, and check 
for contradiction in every 
branch of the proof tree.

Search Deduction



Proof by search (truth tables)

22

F:	

 (p ∧ q) → (p ∨ ¬q) 

p q p ∧ q ¬q p ∨ ¬q F

0 0 0 1 1 1

0 1 0 0 0 1

1 0 0 1 1 1

1 1 1 0 1 1



Proof by search (truth tables)
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F:	

 (p ∧ q) → (p ∨ ¬q) 

p q p ∧ q ¬q p ∨ ¬q F

0 0 0 1 1 1

0 1 0 0 0 1

1 0 0 1 1 1

1 1 1 0 1 1

Valid.



I ⊨ F1 ∧ F2

Proof by deduction (semantic arguments)

23

I ⊨ ¬F

I ⊭ F

Example proof rules:

I ⊭¬F

I ⊨ F

I ⊨ F1

I ⊨ F2

I ⊭ F1 ∧ F2

I ⊭ F1 I ⊭ F2



I ⊨ F1 ∧ F2

Proof by deduction (semantic arguments)
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I ⊨ ¬F

I ⊭ F

Example proof rules: F:	

 p ∧ ¬q 

I ⊭¬F

I ⊨ F

I ⊨ F1

I ⊨ F2

I ⊭ F1 ∧ F2

I ⊭ F1 I ⊭ F2



I ⊨ F1 ∧ F2

Proof by deduction (semantic arguments)
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I ⊨ ¬F

I ⊭ F

Example proof rules: F:	

 p ∧ ¬q 

1. I ⊭ p ∧ ¬q	

 	

 (assumption)

I ⊭¬F

I ⊨ F

I ⊨ F1

I ⊨ F2

I ⊭ F1 ∧ F2

I ⊭ F1 I ⊭ F2



I ⊨ F1 ∧ F2

Proof by deduction (semantic arguments)
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I ⊨ ¬F

I ⊭ F

Example proof rules: F:	

 p ∧ ¬q 

1. I ⊭ p ∧ ¬q	

 	

 (assumption)
a. I ⊭ p 	

 	

 	

 (1, ∧)

I ⊭¬F

I ⊨ F

I ⊨ F1

I ⊨ F2

I ⊭ F1 ∧ F2

I ⊭ F1 I ⊭ F2



I ⊨ F1 ∧ F2

Proof by deduction (semantic arguments)
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I ⊨ ¬F

I ⊭ F

Example proof rules: F:	

 p ∧ ¬q 

1. I ⊭ p ∧ ¬q	

 	

 (assumption)
a. I ⊭ p 	

 	

 	

 (1, ∧)
b. I ⊭ ¬q	

 	

 	

 (1, ∧)

I ⊭¬F

I ⊨ F

I ⊨ F1

I ⊨ F2

I ⊭ F1 ∧ F2

I ⊭ F1 I ⊭ F2
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Proof by deduction (semantic arguments)
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I ⊨ ¬F

I ⊭ F

Example proof rules: F:	

 p ∧ ¬q 

1. I ⊭ p ∧ ¬q	

 	

 (assumption)
a. I ⊭ p 	

 	

 	

 (1, ∧)
b. I ⊭ ¬q	

 	

 	

 (1, ∧)

i. I ⊨ q	

	

 	

 (1b, ¬)

I ⊭¬F

I ⊨ F

I ⊨ F1

I ⊨ F2

I ⊭ F1 ∧ F2

I ⊭ F1 I ⊭ F2



I ⊨ F1 ∧ F2

Proof by deduction (semantic arguments)
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I ⊨ ¬F

I ⊭ F

Example proof rules: F:	

 p ∧ ¬q 

1. I ⊭ p ∧ ¬q	

 	

 (assumption)
a. I ⊭ p 	

 	

 	

 (1, ∧)
b. I ⊭ ¬q	

 	

 	

 (1, ∧)

i. I ⊨ q	

	

 	

 (1b, ¬)

Invalid; I is a falsifying 
interpretation.

I ⊭¬F

I ⊨ F

I ⊨ F1

I ⊨ F2

I ⊭ F1 ∧ F2

I ⊭ F1 I ⊭ F2



Formulas F1 and F2 are equivalent, 
written F1 ⟺ F2, iff F1 ⟷ F2 is valid.	



Formula F1 implies F2, written F1 ⟹ 
F2, iff F1 → F2 is valid.

Semantic judgements

24



F1 ⟺ F2 and F1 ⟹ F2 are 
not propositional formulas 
(not part of syntax).  They are 
properties of formulas, just 
like validity or satisfiability.

Formulas F1 and F2 are equivalent, 
written F1 ⟺ F2, iff F1 ⟷ F2 is valid.	



Formula F1 implies F2, written F1 ⟹ 
F2, iff F1 → F2 is valid.

Semantic judgements

24



If we have a procedure for 
checking satisfiability, then we 
can also check for equivalence 
and implication of 
propositional formulas.

Formulas F1 and F2 are equivalent, 
written F1 ⟺ F2, iff F1 ⟷ F2 is valid.	



Formula F1 implies F2, written F1 ⟹ 
F2, iff F1 → F2 is valid.

Semantic judgements

24



Today	


• Course overview & logistics	



• Review of propositional logic	



Next Lecture (by Zach Tatlock)	


• Normal forms	



• A basic SAT solver	



★ Take the course survey	



★ Read Chapter 1 of Bradley & Manna	



Summary

25

https://catalyst.uw.edu/webq/survey/emina/246990
https://www.cs.washington.edu/education/courses/cse507/14au/uwnetid/Bradley_Manna_Ch01.pdf

