
CSE507
Emina Torlak
emina@cs.washington.edu	

courses.cs.washington.edu/courses/cse507/14au/

Computer-Aided Reasoning for Software

Course Introduction

http://courses.cs.washington.edu/courses/cse507/14au/index.html

Today

What is this course about?	

Course logistics	

Review of basic concepts

2

aboutTools for building better software, more easily

Tools for building better software, more easily

more reliable, faster, 	

more energy efficient

Tools for building better software, more easily

automatic
verification,
debugging &
synthesis

Tools for building better software, more easily

4

class List {
Node head;
!
void reverse() {

Node near = head;
Node mid = near.next;
Node far = mid.next;
!
near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}
!
mid.next = near;
head = mid;

}
}
!
class Node {

Node next; String data;
}

Is this list reversal
procedure correct?

Tools for building better software, more easily

4

class List {
Node head;
!
void reverse() {

Node near = head;
Node mid = near.next;
Node far = mid.next;
!
near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}
!
mid.next = near;
head = mid;

}
}
!
class Node {

Node next; String data;
}

Is this list reversal
procedure correct?

����
��

����	
����
�
��

��

����	
�� �
��
��

����	
��

�
��

�
��

����
��

����	
��
���� �
��

��

����	
��
���� ��

����	
�
��
���� ����

verification

Tools for building better software, more easily

5

class List {
Node head;
!
void reverse() {

Node near = head;
Node mid = near.next;
Node far = mid.next;
!
near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}
!
mid.next = near;
head = mid;

}
}
!
class Node {

Node next; String data;
}

Which lines of code
are responsible for
the buggy behavior?

����
��

����	
����
�
��

��

����	
�� �
��
��

����	
��

�
��

�
��

����
��

����	
��
���� �
��

��

����	
��
���� ��

����	
�
��
���� ����

Tools for building better software, more easily

5

class List {
Node head;
!
void reverse() {

Node near = head;
Node mid = near.next;
Node far = mid.next;
!
near.next = far;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}
!
mid.next = near;
head = mid;

}
}
!
class Node {

Node next; String data;
}

Which lines of code
are responsible for
the buggy behavior?

debugging

����
��

����	
����
�
��

��

����	
�� �
��
��

����	
��

�
��

�
��

����
��

����	
��
���� �
��

��

����	
��
���� ��

����	
�
��
���� ����

class List {
Node head;
!
void reverse() {

Node near = head;
Node mid = near.next;
Node far = mid.next;
!
near.next = ??;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}
!
mid.next = near;
head = mid;

}
}
!
class Node {

Node next; String data;
}

Tools for building better software, more easily

6

Is there a way to
complete this code
so that it is correct?

class List {
Node head;
!
void reverse() {

Node near = head;
Node mid = near.next;
Node far = mid.next;
!
near.next = null;
while (far != null) {

mid.next = near;
near = mid;
mid = far;
far = far.next;

}
!
mid.next = near;
head = mid;

}
}
!
class Node {

Node next; String data;
}

Tools for building better software, more easily

6

Is there a way to
complete this code
so that it is correct?

synthesis

����
��

����	
��
���� �
��

��

����	
��
���� ��

����	
�
��
���� ����

����
��

����	
����
�
������

��

����	
��
�
����

����	
��
�
���
��

✓

goalBy the end of this course, you’ll be able to
build computer-aided tools for any domain!

biology

low-power computing

hardware databases

systems

networking

education

high-performance computing

security

goalBy the end of this course, you’ll be able to
build computer-aided tools for any domain!

logisticsTopics, structure, people

automated
reasoning
engine

Course overview

9

program question

logic

tools

SAT, SMT,
model finders
& checkers

verifier,
synthesizer,
fault localizer

VIII Preface

Fig. 1. Decision procedures can be rather complex . . . those that we consider in
this book take formulas of different theories as input, possibly mix them (using
the Nelson–Oppen procedure – see Chap. 10), decide their satisfiability (“YES” or
“NO”), and, if yes, provide a satisfying assignment

Which Theories? Which Algorithms?

A first-order theory can be considered “interesting”, at least from a practical
perspective, if it fulfills at least these two conditions:

1. The theory is expressive enough to model a real decision problem. More-
over, it is more expressive or more natural for the purpose of expressing
some models in comparison with theories that are easier to decide.

andreis@uw.edu

Course overview

9

program question

logic

Drawing from “Decision Procedures” by Kroening & Strichman

SAT, SMT,
model finders
& checkers

verifier,
synthesizer,
fault localizer

VIII Preface

Fig. 1. Decision procedures can be rather complex . . . those that we consider in
this book take formulas of different theories as input, possibly mix them (using
the Nelson–Oppen procedure – see Chap. 10), decide their satisfiability (“YES” or
“NO”), and, if yes, provide a satisfying assignment

Which Theories? Which Algorithms?

A first-order theory can be considered “interesting”, at least from a practical
perspective, if it fulfills at least these two conditions:

1. The theory is expressive enough to model a real decision problem. More-
over, it is more expressive or more natural for the purpose of expressing
some models in comparison with theories that are easier to decide.

andreis@uw.edu

Course overview

9

program question

logic

study (part I)

Drawing from “Decision Procedures” by Kroening & Strichman

SAT, SMT,
model finders
& checkers

verifier,
synthesizer,
fault localizer

VIII Preface

Fig. 1. Decision procedures can be rather complex . . . those that we consider in
this book take formulas of different theories as input, possibly mix them (using
the Nelson–Oppen procedure – see Chap. 10), decide their satisfiability (“YES” or
“NO”), and, if yes, provide a satisfying assignment

Which Theories? Which Algorithms?

A first-order theory can be considered “interesting”, at least from a practical
perspective, if it fulfills at least these two conditions:

1. The theory is expressive enough to model a real decision problem. More-
over, it is more expressive or more natural for the purpose of expressing
some models in comparison with theories that are easier to decide.

andreis@uw.edu

Course overview

9

program question

logic

study (part I)

build! (part II)

Drawing from “Decision Procedures” by Kroening & Strichman

Grading structure

3 individual homework assignments (50%)	

• conceptual problems & proofs (Tex)	

• implementations in various programming languages	

• may discuss problems with others but solutions must be your own	

Course project (50%)	

• build a computer-aided reasoning tool for a domain of your choice	

• teams of 2-3 people strongly encouraged	

• see the course web page for timeline, deliverables and other details	

10

study (part I)

build!

(part II)

http://courses.cs.washington.edu/courses/cse507/14au/index.html

Reading and references

Required readings posted on the course web page	

• Complete each reading before the lecture for which it is assigned	

Recommended text books	

• Bradley & Manna, The Calculus of Computation	

• Kroening & Strichman, Decision Procedures	

Related courses	

• Isil Dillig: Automated Logical Reasoning (2013)	

• Viktor Kuncak: Synthesis, Analysis, and Verification (2013)	

• Sanjit Seshia: Computer-Aided Verification (2012)

11

http://courses.cs.washington.edu/courses/cse507/14au/index.html
http://www.springer.com/computer/communication+networks/book/978-3-540-74112-1
http://www.springer.com/computer/ai/book/978-3-540-74104-6
http://www.cs.utexas.edu/~isil/cs643/
http://lara.epfl.ch/w/sav13:top
http://www.eecs.berkeley.edu/~sseshia/219c/index.html

Advice for doing well in 507

Come to class (prepared)	

• Lecture notes are enough to teach from, but not enough to learn from	

Participate	

• Ask and answer questions	

Meet deadlines	

• Turn homework in on time	

• Start homework and project sooner than you think you need to	

• Follow instructions for submitting code (we have to be able to run it)

12

People

13

Emina Torlak	

PLSE	

CSE 596	

Wednesdays 1-2

instructor
TA

Mert Saglam	

Theory	

CSE 618	

Thursdays 1-2

students!

Your name	

Research area	

Survey

People

14

Emina Torlak	

PLSE	

CSE 596	

Wednesdays 1-2

instructor
TA

Mert Saglam	

Theory	

CSE 618	

Thursdays 1-2

https://catalyst.uw.edu/webq/survey/emina/246990

reviewPropositional logic: syntax, semantics & proof methods

F1 ⟷ F2	

F1 → F2

F1 ⋁ F2

F1 ⋀ F2

Atom truth symbols: ⊤ (“true”), ⊥ (“false”)	

propositional variables: p, q, r, …

Literal an atom α or its negation ¬α
Formula a literal or the application of a logical connective to

formulas

¬F	

 	

 “not”	

 	

 (negation)
	

 	

 “and”	

 	

 (conjunction)
	

 	

 “or”	

 	

 (disjunction)
	

 	

 “implies”	

	

 (implication)
	

 	

 “if and only if”	

 (iff)

Syntax of propositional logic

16

(¬p ∧ ⊤) ∨ (q → ⊥)

F1 ⟷ F2	

F1 → F2

F1 ⋁ F2

F1 ⋀ F2

Atom truth symbols: ⊤ (“true”), ⊥ (“false”)	

propositional variables: p, q, r, …

Literal an atom α or its negation ¬α
Formula a literal or the application of a logical connective to

formulas

¬F	

 	

 “not”	

 	

 (negation)
	

 	

 “and”	

 	

 (conjunction)
	

 	

 “or”	

 	

 (disjunction)
	

 	

 “implies”	

	

 (implication)
	

 	

 “if and only if”	

 (iff)

Syntax of propositional logic

16

(¬p ∧ ⊤) ∨ (q → ⊥)

F1 ⟷ F2	

F1 → F2

F1 ⋁ F2

F1 ⋀ F2

Atom truth symbols: ⊤ (“true”), ⊥ (“false”)	

propositional variables: p, q, r, …

Literal an atom α or its negation ¬α
Formula a literal or the application of a logical connective to

formulas

¬F	

 	

 “not”	

 	

 (negation)
	

 	

 “and”	

 	

 (conjunction)
	

 	

 “or”	

 	

 (disjunction)
	

 	

 “implies”	

	

 (implication)
	

 	

 “if and only if”	

 (iff)

Syntax of propositional logic

16

(¬p ∧ ⊤) ∨ (q → ⊥)

F1 ⟷ F2	

F1 → F2

F1 ⋁ F2

F1 ⋀ F2

Atom truth symbols: ⊤ (“true”), ⊥ (“false”)	

propositional variables: p, q, r, …

Literal an atom α or its negation ¬α
Formula a literal or the application of a logical connective to

formulas

¬F	

 	

 “not”	

 	

 (negation)
	

 	

 “and”	

 	

 (conjunction)
	

 	

 “or”	

 	

 (disjunction)
	

 	

 “implies”	

	

 (implication)
	

 	

 “if and only if”	

 (iff)

Syntax of propositional logic

16

(¬p ∧ ⊤) ∨ (q → ⊥)

Interpretations of propositional formulas

17

An interpretation I for a propositional
formula F maps every variable in F to a
truth value:	

I : { p ↦ ⊤, q ↦ ⊥, …}

Interpretations of propositional formulas

17

An interpretation I for a propositional
formula F maps every variable in F to a
truth value:	

I : { p ↦ ⊤, q ↦ ⊥, …}

I is a satisfying interpretation of F,
written as I ⊨ F, if F evaluates to ⊤ under I.	

I is a falsifying interpretation of F,
written as I ⊭ F, if F evaluates to ⊥ under I.

Semantics of propositional logic

Base cases:	

• I ⊨ ⊤ 	

• I ⊭ ⊥	

• I ⊨ p 	

 iff I[p] = ⊤	

• I ⊭ p 	

 iff I[p] = ⊥

18

Semantics of propositional logic

Base cases:	

• I ⊨ ⊤ 	

• I ⊭ ⊥	

• I ⊨ p 	

 iff I[p] = ⊤	

• I ⊭ p 	

 iff I[p] = ⊥

18

Inductive cases:

Semantics of propositional logic

Base cases:	

• I ⊨ ⊤ 	

• I ⊭ ⊥	

• I ⊨ p 	

 iff I[p] = ⊤	

• I ⊭ p 	

 iff I[p] = ⊥

18

Inductive cases:
• I ⊨ ¬F 	

 	

 	

 	

 iff I ⊭ F

Semantics of propositional logic

Base cases:	

• I ⊨ ⊤ 	

• I ⊭ ⊥	

• I ⊨ p 	

 iff I[p] = ⊤	

• I ⊭ p 	

 iff I[p] = ⊥

18

Inductive cases:
• I ⊨ ¬F 	

 	

 	

 	

 iff I ⊭ F

• I ⊨ F1 ∧ F2 	

 	

 iff I ⊨ F1 and I ⊨ F2

Semantics of propositional logic

Base cases:	

• I ⊨ ⊤ 	

• I ⊭ ⊥	

• I ⊨ p 	

 iff I[p] = ⊤	

• I ⊭ p 	

 iff I[p] = ⊥

18

Inductive cases:
• I ⊨ ¬F 	

 	

 	

 	

 iff I ⊭ F

• I ⊨ F1 ∧ F2 	

 	

 iff I ⊨ F1 and I ⊨ F2

• I ⊨ F1 ∨ F2 	

 	

 iff I ⊨ F1 or I ⊨ F2

• I ⊨ F1 → F2 	

 	

 iff I ⊭ F1 or I ⊨ F2

• I ⊨ F1 ⟷ F2 	

 iff I ⊨ F1 and I ⊨ F2, or

	

 	

 	

 	

 	

 	

 	

 I ⊭ F1 and I ⊭ F2

F:	

 (p ∧ q) → (p ∨ ¬q) 	

I: 	

 {p ↦ ⊤, q ↦ ⊥}

Semantics of propositional logic: example

19

?

F:	

 (p ∧ q) → (p ∨ ¬q) 	

I: 	

 {p ↦ ⊤, q ↦ ⊥}	

I ⊨ F

Semantics of propositional logic: example

19

✓

Satisfiability & validity of propositional formulas

20

F is satisfiable iff I ⊨ F for some I.	

F is valid iff I ⊨ F for all I.

Satisfiability & validity of propositional formulas

20

F is satisfiable iff I ⊨ F for some I.	

F is valid iff I ⊨ F for all I.

Duality of satisfiability and validity:	

F is valid iff ¬F is unsatisfiable.

Satisfiability & validity of propositional formulas

20

F is satisfiable iff I ⊨ F for some I.	

F is valid iff I ⊨ F for all I.

Duality of satisfiability and validity:	

F is valid iff ¬F is unsatisfiable.

If we have a procedure for
checking satisfiability, then we
can also check validity of
propositional formulas, and
vice versa.

Techniques for deciding satisfiability & validity

21

SAT solver

Search Deduction

!

Enumerate all interpretations
(i.e., build a truth table), and
check that they satisfy the
formula.

Techniques for deciding satisfiability & validity

21

SAT solver

Search

Deduction

!

Enumerate all interpretations
(i.e., build a truth table), and
check that they satisfy the
formula.

Techniques for deciding satisfiability & validity

21

SAT solver

!

Assume the formula is invalid,
apply proof rules, and check
for contradiction in every
branch of the proof tree.

Search Deduction

Proof by search (truth tables)

22

F:	

 (p ∧ q) → (p ∨ ¬q)

p q p ∧ q ¬q p ∨ ¬q F

0 0 0 1 1 1

0 1 0 0 0 1

1 0 0 1 1 1

1 1 1 0 1 1

Proof by search (truth tables)

22

F:	

 (p ∧ q) → (p ∨ ¬q)

p q p ∧ q ¬q p ∨ ¬q F

0 0 0 1 1 1

0 1 0 0 0 1

1 0 0 1 1 1

1 1 1 0 1 1

Valid.

I ⊨ F1 ∧ F2

Proof by deduction (semantic arguments)

23

I ⊨ ¬F

I ⊭ F

Example proof rules:

I ⊭¬F

I ⊨ F

I ⊨ F1

I ⊨ F2

I ⊭ F1 ∧ F2

I ⊭ F1 I ⊭ F2

I ⊨ F1 ∧ F2

Proof by deduction (semantic arguments)

23

I ⊨ ¬F

I ⊭ F

Example proof rules: F:	

 p ∧ ¬q

I ⊭¬F

I ⊨ F

I ⊨ F1

I ⊨ F2

I ⊭ F1 ∧ F2

I ⊭ F1 I ⊭ F2

I ⊨ F1 ∧ F2

Proof by deduction (semantic arguments)

23

I ⊨ ¬F

I ⊭ F

Example proof rules: F:	

 p ∧ ¬q

1. I ⊭ p ∧ ¬q	

 	

 (assumption)

I ⊭¬F

I ⊨ F

I ⊨ F1

I ⊨ F2

I ⊭ F1 ∧ F2

I ⊭ F1 I ⊭ F2

I ⊨ F1 ∧ F2

Proof by deduction (semantic arguments)

23

I ⊨ ¬F

I ⊭ F

Example proof rules: F:	

 p ∧ ¬q

1. I ⊭ p ∧ ¬q	

 	

 (assumption)
a. I ⊭ p 	

 	

 	

 (1, ∧)

I ⊭¬F

I ⊨ F

I ⊨ F1

I ⊨ F2

I ⊭ F1 ∧ F2

I ⊭ F1 I ⊭ F2

I ⊨ F1 ∧ F2

Proof by deduction (semantic arguments)

23

I ⊨ ¬F

I ⊭ F

Example proof rules: F:	

 p ∧ ¬q

1. I ⊭ p ∧ ¬q	

 	

 (assumption)
a. I ⊭ p 	

 	

 	

 (1, ∧)
b. I ⊭ ¬q	

 	

 	

 (1, ∧)

I ⊭¬F

I ⊨ F

I ⊨ F1

I ⊨ F2

I ⊭ F1 ∧ F2

I ⊭ F1 I ⊭ F2

I ⊨ F1 ∧ F2

Proof by deduction (semantic arguments)

23

I ⊨ ¬F

I ⊭ F

Example proof rules: F:	

 p ∧ ¬q

1. I ⊭ p ∧ ¬q	

 	

 (assumption)
a. I ⊭ p 	

 	

 	

 (1, ∧)
b. I ⊭ ¬q	

 	

 	

 (1, ∧)

i. I ⊨ q	

	

 	

 (1b, ¬)

I ⊭¬F

I ⊨ F

I ⊨ F1

I ⊨ F2

I ⊭ F1 ∧ F2

I ⊭ F1 I ⊭ F2

I ⊨ F1 ∧ F2

Proof by deduction (semantic arguments)

23

I ⊨ ¬F

I ⊭ F

Example proof rules: F:	

 p ∧ ¬q

1. I ⊭ p ∧ ¬q	

 	

 (assumption)
a. I ⊭ p 	

 	

 	

 (1, ∧)
b. I ⊭ ¬q	

 	

 	

 (1, ∧)

i. I ⊨ q	

	

 	

 (1b, ¬)

Invalid; I is a falsifying
interpretation.

I ⊭¬F

I ⊨ F

I ⊨ F1

I ⊨ F2

I ⊭ F1 ∧ F2

I ⊭ F1 I ⊭ F2

Formulas F1 and F2 are equivalent,
written F1 ⟺ F2, iff F1 ⟷ F2 is valid.	

Formula F1 implies F2, written F1 ⟹
F2, iff F1 → F2 is valid.

Semantic judgements

24

F1 ⟺ F2 and F1 ⟹ F2 are
not propositional formulas
(not part of syntax). They are
properties of formulas, just
like validity or satisfiability.

Formulas F1 and F2 are equivalent,
written F1 ⟺ F2, iff F1 ⟷ F2 is valid.	

Formula F1 implies F2, written F1 ⟹
F2, iff F1 → F2 is valid.

Semantic judgements

24

If we have a procedure for
checking satisfiability, then we
can also check for equivalence
and implication of
propositional formulas.

Formulas F1 and F2 are equivalent,
written F1 ⟺ F2, iff F1 ⟷ F2 is valid.	

Formula F1 implies F2, written F1 ⟹
F2, iff F1 → F2 is valid.

Semantic judgements

24

Today	

• Course overview & logistics	

• Review of propositional logic	

Next Lecture (by Zach Tatlock)	

• Normal forms	

• A basic SAT solver	

★ Take the course survey	

★ Read Chapter 1 of Bradley & Manna	

Summary

25

https://catalyst.uw.edu/webq/survey/emina/246990
https://www.cs.washington.edu/education/courses/cse507/14au/uwnetid/Bradley_Manna_Ch01.pdf

