Course Introduction

Emina Torlak
emina@cs.washington.edu

Today

What is this course about?
Course logistics
Review of basic concepts

Tools for building better software, more easily

> more reliable, faster, more energy efficient

Tools for building better software, more easily

Tools for buillding better software, more easily

> automatic verification, debugging \& synthesis

Tools for building better software, more easily

```
class List {
    Node head;
    void reverse() {
        Node near = head;
        Node mid = near.next;
        Node far = mid.next;
        near.next = far;
        while (far != null) {
            mid.next = near;
            near = mid;
            mid = far;
            far = far.next;
        }
        mid.next = near;
        head = mid;
    }
}
class Node {
    Node next; String data;
}
```

Is this list reversal procedure correct?

Tools for building better software, more easily

```
class List {
    Node head;
    void reverse() {
        Node near = head;
        Node mid = near.next;
        Node far = mid.next;
        near.next = far;
        while (far != null) {
            mid.next = near;
            near = mid;
            mid = far;
            far = far.next;
            }
            mid.next = near;
            head = mid;
    }
}
class Node {
    Node next; String data;
}\{
```


verification

Tools for building better software, more easily

```
class List {
    Node head;
    void reverse() {
        Node near = head;
        Node mid = near.next;
        Node far = mid.next;
        near.next = far;
        while (far != null) {
            mid.next = near;
            near = mid;
            mid = far;
            far = far.next;
        }
        mid.next = near;
        head = mid;
    }
}
class Node {
    Node next; String data;
}
```

Which lines of code are responsible for the buggy behavior?

Tools for building better software, more easily

```
class List {
    Node head;
    void reverse() {
        Node near = head;
        Node mid = near.next;
        Node far = mid.next;
        near.next = far;
        while (far != null) {
            mid.next = near;
                near = mid;
                mid = far;
                far = far.next;
        }
        mid.next = near;
        head = mid;
    }
}
class Node {
    Node next; String data;
}
```


debugging

Which lines of code are responsible for the buggy behavior?

Tools for building better software, more easily

```
class List {
    Node head;
    void reverse() {
        Node near = head;
        Node mid = near.next;
        Node far = mid.next;

Is there a way to complete this code so that it is correct?
```

 near.next = ??;
    ```
        near.next = ??;
        while (far != null) {
        while (far != null) {
            mid.next = near;
            mid.next = near;
            near = mid;
            near = mid;
            mid = far;
            mid = far;
            far = far.next;
            far = far.next;
        }
        }
        mid.next = near;
        mid.next = near;
        head = mid;
        head = mid;
    }
    }
}
}
class Node {
class Node {
    Node next; String data;
    Node next; String data;
}
```

```
}
```

```

\section*{Tools for building better software, more easily}
```

class List {

```
    Node head;
    void reverse() \{
        Node near = head;
        Node mid = near.next;
        Node far = mid.next;
        near.next = null;
        while (far != null)
            mid.next = near;
            near = mid;
            mid = far;
            far = far.next;
        \}
        mid.next = near;
        head = mid;
    \}
\}
class Node \{
    Node next; String data;
\}

\section*{synthesis}

Is there a way to complete this code so that it is correct?


By the end of this course, you'll be able to build computer-aided tools for any domain!

\section*{biology}

By the end of this course, you'll be able to build computer-aided tools for any domain!


Topics, structure, people

\section*{Course overview}
program question
tool

Iogic
automated
reasoning engine

\section*{Course overview}

\section*{program question}

\section*{verifier, \\ synthesizer, fault localizer}

Iogic

\section*{SAT, SMT, \\ model finders \\ \& checkers}


Drawing from "Decision Procedures" by Kroening \& Strichman

\section*{Course overview}

\section*{program question}

\section*{verifier, synthesizer, fault localizer}

\section*{Iogic}

\section*{SAT, SMT, model finders \\ \& checkers}


\section*{Course overview}

\section*{program question}


Iogic

\section*{SAT, SMT, model finders \\ \& checkers}


\section*{Grading structure}

3 individual homework assignments (50\%)
- conceptual problems \& proofs (Tex)
- implementations in various programming languages
- may discuss problems with others but solutions must be your own

\section*{Course project (50\%)}
- build a computer-aided reasoning tool for a domain of your choice
- teams of 2-3 people strongly encouraged
- see the course web page for timeline, deliverables and other details

\section*{Reading and references}

Required readings posted on the course web page
- Complete each reading before the lecture for which it is assigned

Recommended text books
- Bradley \& Manna, The Calculus of Computation
- Kroening \& Strichman, Decision Procedures

\section*{Related courses}
- Isil Dillig: Automated Logical Reasoning (2013)
- Viktor Kuncak: Synthesis, Analysis, and Verification (2013)
- Sanjit Seshia: Computer-Aided Verification (2012)

\section*{Advice for doing well in 507}

\section*{Come to class (prepared)}
- Lecture notes are enough to teach from, but not enough to learn from

\section*{Participate}
- Ask and answer questions

\section*{Meet deadlines}
- Turn homework in on time
- Start homework and project sooner than you think you need to
- Follow instructions for submitting code (we have to be able to run it)

\section*{People}


Emina Torlak
PLSE
CSE 596
Wednesdays I-2


Mert Saglam
Theory
CSE 618
Thursdays I-2

\section*{People}


\author{
Emina Torlak PLSE \\ CSE 596 \\ Wednesdays I-2
}


Propositional logic: syntax, semantics \& proof methods

\section*{Syntax of propositional logic}
\[
(\neg p \wedge T) \vee(q \rightarrow \perp)
\]

\section*{Syntax of propositional logic}
\[
(\neg p \wedge T) \vee(q \rightarrow \perp)
\]

Atom
truth symbols: \(T\) ("true"), \(\perp\) ("false")
propositional variables: \(p, q, r, \ldots\)

\section*{Syntax of propositional logic}
\[
(\neg p \wedge T) \vee(q \rightarrow \perp)
\]

Atom
truth symbols: \(T\) ("true"), \(\perp\) ("false")
propositional variables: \(p, q, r, \ldots\)
Literal
an atom \(\alpha\) or its negation \(\neg \alpha\)

\section*{Syntax of propositional logic}

\section*{\((\neg p \wedge T) \vee(q \rightarrow \perp)\)}

Atom

Literal
Formula
truth symbols: \(T\) ("true"), \(\perp\) ("false")
propositional variables: \(p, q, r, \ldots\)
an atom \(\alpha\) or its negation \(\neg \alpha\)
a literal or the application of a logical connective to formulas
\begin{tabular}{lll}
\(\neg F\) & "not" & (negation) \\
\(F_{1} \wedge F_{2}\) & "and" & (conjunction) \\
\(F_{1} \vee F_{2}\) & "or" & (disjunction) \\
\(F_{1} \rightarrow F_{2}\) & "implies" & (implication) \\
\(F_{1} \longleftrightarrow F_{2}\) & "if and only if" & (iff)
\end{tabular}

\section*{Interpretations of propositional formulas}

An interpretation I for a propositional formula \(F\) maps every variable in \(F\) to a truth value:
\[
I:\{p \mapsto T, q \mapsto \perp, \ldots\}
\]

\section*{Interpretations of propositional formulas}

An interpretation I for a propositional formula \(F\) maps every variable in \(F\) to a truth value:
\[
I:\{p \mapsto T, q \mapsto \perp, \ldots\}
\]
\(I\) is a satisfying interpretation of \(F\), written as \(I \vDash F\), if \(F\) evaluates to \(T\) under \(I\).
\(I\) is a falsifying interpretation of \(F\), written as \(I \not \vDash F\), if \(F\) evaluates to \(\perp\) under \(l\).

\section*{Semantics of propositional logic}

\section*{Base cases:}
- \(\quad \| \vDash T\)
- | \(\neq \perp\)
- \(I \vDash p \quad\) iff \(l[p]=T\)
- \(\| \not \equiv p \quad\) iff \(l[p]=\perp\)

\section*{Semantics of propositional logic}

Base cases:
- \(\quad \| \vDash T\)
- | \(\neq \perp\)
- \(I \vDash P \quad\) iff \(I[p]=T\)
- \(l \not \equiv p \quad\) iff \(l[p]=\perp\)

\section*{Inductive cases:}

\section*{Semantics of propositional logic}

Base cases:
- \(\quad \| \vDash T\)
- | \(\neq \perp\)
- \(I \vDash p \quad\) iff \(l[p]=T\)
- \(\| \not \equiv p \quad\) iff \(l[p]=\perp\)

Inductive cases:
- \(I \vDash \neg F\)
iff \(\| \neq F\)

\section*{Semantics of propositional logic}

\section*{Base cases:}
- \(\quad \| \vDash T\)
- | \(\neq \perp\)
- \(I \vDash p \quad\) iff \(l[p]=T\)
- \(\| \not \equiv p \quad\) iff \(l[p]=\perp\)

\section*{Inductive cases:}
- \(\mid \models \neg F\)
- \(I \vDash F_{1} \wedge F_{2}\)
iff \(I \vDash F_{I}\) and \(I \vDash F_{2}\)

\section*{Semantics of propositional logic}

\section*{Base cases:}
- \(\quad \| \vDash T\)
- | \(\neq \perp\)
- \(I \vDash p \quad\) iff \(l[p]=T\)
- \(\| \not \equiv p \quad\) iff \(l[p]=\perp\)

\section*{Inductive cases:}
- \(I \models \neg F\)
iff \(\| \not \equiv F\)
- \(I \vDash F_{1} \wedge F_{2}\)
iff \(I \models F_{I}\) and \(I \vDash F_{2}\)
- \(I \vDash F_{1} \vee F_{2}\)
iff \(I \vDash F_{1}\) or \(I \models F_{2}\)
- \(I \vDash F_{1} \rightarrow F_{2}\)
iff \(I \not \vDash F_{I}\) or \(I \vDash F_{2}\)
- \(I \vDash F_{I} \longleftrightarrow F_{2} \quad\) iff \(I \vDash F_{I}\) and \(I \vDash F_{2}\), or
\(I \not \vDash F_{I}\) and \(I \not \equiv F_{2}\)

\section*{Semantics of propositional logic: example}
\[
\begin{array}{ll}
\text { F: } & (p \wedge q) \rightarrow(p \vee \neg q) \\
I: & \{p \mapsto T, q \mapsto \perp\}
\end{array}
\]

\section*{Semantics of propositional logic: example}
\[
\begin{aligned}
& \text { F: } \quad(p \wedge q) \rightarrow(p \vee \neg q) \\
& I: \quad\{p \mapsto T, q \mapsto \perp\} \\
& I \vDash F
\end{aligned}
\]

\section*{Satisfiability \& validity of propositional formulas}
\(F\) is satisfiable iff \(I \vDash F\) for some \(I\).
\(F\) is valid iff \(I \vDash F\) for all \(I\).

\section*{Satisfiability \& validity of propositional formulas}
\(F\) is satisfiable iff \(I \models F\) for some \(I\).
\(F\) is valid iff \(I \vDash F\) for all \(I\).

Duality of satisfiability and validity:
\(F\) is valid iff \(\neg F\) is unsatisfiable.

\section*{Satisfiability \& validity of propositional formulas}
\(F\) is satisfiable iff \(I \vDash F\) for some \(I\).
\(F\) is valid iff \(I \vDash F\) for all \(I\).
If we have a procedure for checking satisfiability, then we can also check validity of propositional formulas, and vice versa.

\section*{Techniques for deciding satisfiability \& validity}


\section*{Techniques for deciding satisfiability \& validity}


\section*{Techniques for deciding satisfiability \& validity}
\begin{tabular}{l|l}
\multicolumn{1}{c|}{ Search } & \multicolumn{1}{c}{ Deduction } \\
\hline Enumerate all interpretations & \\
\begin{tabular}{l|l} 
(i.e., build a truth table), and \\
check that they satisfy the \\
formula.
\end{tabular} & \begin{tabular}{l} 
Assume the formula is invalid, \\
apply proof rules, and check
\end{tabular} \\
for contradiction in every \\
branch of the proof tree.
\end{tabular}

\section*{SAT solver}

\section*{Proof by search (truth tables)}
\[
F: \quad(p \wedge q) \rightarrow(p \vee \neg q)
\]
\begin{tabular}{|c|c|c|c|c|c|}
\hline\(p\) & \(q\) & \(p \wedge q\) & \(\neg q\) & \(p \vee \neg q\) & \(F\) \\
\hline 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 & 1 \\
\hline
\end{tabular}

\section*{Proof by search (truth tables)}
\[
F: \quad(p \wedge q) \rightarrow(p \vee \neg q)
\]
\begin{tabular}{|c|c|c|c|c|c|}
\hline\(p\) & \(q\) & \(p \wedge q\) & \(\neg q\) & \(p \vee \neg q\) & \(F\) \\
\hline 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 & 1 \\
\hline
\end{tabular}

Valid.

\section*{Proof by deduction (semantic arguments)}

Example proof rules:
\begin{tabular}{|c|c|c|}
\hline \(\boldsymbol{I}\) に \(\overbrace{}^{\text {F }}\) & \multicolumn{2}{|l|}{\(l \vDash F_{1} \wedge F_{2}\)} \\
\hline \multirow[t]{2}{*}{\(l \neq F\)} & \(1 \vDash F\) & \\
\hline & \(1 \vDash F^{\prime}\) & \\
\hline \(1 \nLeftarrow \neg F\) & \multicolumn{2}{|l|}{\(l \not \| F_{1} \wedge F_{2}\)} \\
\hline \(1 \vDash F\) & \(1 \nmid F_{1}\) & \(1 \not \| F_{2}\) \\
\hline
\end{tabular}

\section*{Proof by deduction (semantic arguments)}

Example proof rules:
F: \(\quad p \wedge \neg q\)
\begin{tabular}{|c|c|c|}
\hline \(\boldsymbol{I}\) に \(\square^{\text {F }}\) & \multicolumn{2}{|l|}{\(1 \vDash F_{1} \wedge F_{2}\)} \\
\hline \(l \neq F\) & \multicolumn{2}{|l|}{IFFI} \\
\hline & \multicolumn{2}{|l|}{\(l \vDash F_{2}\)} \\
\hline \(1 \nLeftarrow \neg F\) & \multicolumn{2}{|l|}{\(l \neq F_{1} \wedge F_{2}\)} \\
\hline \(\boldsymbol{I} \vDash F\) & \(l \neq F_{1}\) & \(l \neq F_{2}\) \\
\hline
\end{tabular}

\section*{Proof by deduction (semantic arguments)}

Example proof rules:
\begin{tabular}{rl}
\(\frac{I \vDash \neg F}{I \neq F}\) & \(\frac{I \vDash F_{I} \wedge F_{2}}{I \vDash F_{I}}\) \\
& \(I \vDash F_{2}\)
\end{tabular}
\(\frac{I \not \models \neg F}{I \vDash F} \quad \frac{I \nLeftarrow F_{1} \wedge F_{2}}{I \nLeftarrow F_{1} \mid \nexists F_{2}}\)

F: \(p \wedge \neg q\)
I. \(\| \nRightarrow p \wedge \neg q\)
(assumption)

\section*{Proof by deduction (semantic arguments)}

Example proof rules:
\[
F: \quad p \wedge \neg q
\]
\begin{tabular}{rl}
\(\frac{I \vDash \neg F}{I \neq F} \quad\) & \(\frac{l \vDash F_{I} \wedge F_{2}}{l \vDash F_{1}}\) \\
& \(I \vDash F_{2}\)
\end{tabular}
\(\frac{I \nLeftarrow \neg F}{I \neq F} \quad \frac{I \nLeftarrow F_{I} \wedge F_{2}}{I \nLeftarrow F_{1} \mid \nexists \neq F_{2}}\)
I. \(\| \neq p \wedge \neg q\)
(assumption)
a. \(I \not \approx p\)
\((\mathrm{I}, \wedge)\)

Proof by deduction (semantic arguments)

Example proof rules:
F: \(\quad p \wedge \neg q\)
\[
\begin{array}{ll}
\frac{I \models \neg F}{I \not \vDash F} & \frac{I \models F_{I} \wedge F_{2}}{I \models F_{I}} \\
& I \vDash F_{2} \\
\frac{I \not \vDash \neg F}{I \vDash F} & \frac{I \not \vDash F_{I} \wedge F_{2}}{I \not \models F_{I} \mid l \neq F_{2}}
\end{array}
\]
I. \(l \not \equiv p \wedge \neg q\)
(assumption)
a. \(l \nRightarrow p\)
\((1, \wedge)\)
b. \(l \not \vDash \neg q\)
\((1, \wedge)\)

Proof by deduction (semantic arguments)

Example proof rules:
F: \(\quad p \wedge \neg q\)
\[
\begin{array}{ll}
\frac{I \models \neg F}{I \not \models F} & \frac{I \models F_{I} \wedge F_{2}}{I \models F_{I}} \\
& I \models F_{2} \\
\frac{I \not \models \neg F}{I \vDash F} & \frac{I \not \vDash F_{I} \wedge F_{2}}{I \not \models F_{I} \mid I \neq F_{2}}
\end{array}
\]
I. \(l \not \equiv p \wedge \neg q\)
(assumption)
a. \(l \nRightarrow p\)
\((1, \wedge)\)
b. \(l \not \vDash \neg q\)
\((1, \wedge)\)
i. \(I \vDash q\)
(lb, ᄀ)

\section*{Proof by deduction (semantic arguments)}

Example proof rules:
\begin{tabular}{ll}
\(\frac{I \models \neg F}{I \not \models F}\) & \(\frac{I \models F_{I} \wedge F_{2}}{I \models F_{I}}\) \\
\(\frac{I \models F_{2}}{I \neq \neg F}\) & \(\frac{I \not \models F_{I} \wedge F_{2}}{I \not \models F_{I} \mid l \neq F_{2}}\)
\end{tabular}
\[
F: \quad p \wedge \neg q
\]
\[
\text { ו. } \| \not \equiv p \wedge \neg q
\]
(assumption)
a. \(I \nRightarrow p\)
\((1, \wedge)\)
b. \(l \nRightarrow \neg q\)
\((I, \wedge)\)
i. \(I \vDash q\)
(Ib, ᄀ)

Invalid; I is a falsifying interpretation.

\section*{Semantic judgements}

Formulas \(F_{1}\) and \(F_{2}\) are equivalent, written \(F_{1} \Longleftrightarrow F_{2}\), iff \(F_{1} \longleftrightarrow F_{2}\) is valid.

Formula \(F_{1}\) implies \(F_{2}\), written \(F_{I} \Longrightarrow\) \(F_{2}\), iff \(F_{1} \rightarrow F_{2}\) is valid.

\section*{Semantic judgements}

Formulas \(F_{1}\) and \(F_{2}\) are equivalent, written \(F_{1} \Longleftrightarrow F_{2}\), iff \(F_{1} \longleftrightarrow F_{2}\) is valid.

Formula \(F_{1}\) implies \(F_{2}\), written \(F_{I} \Longrightarrow\) \(F_{2}\), iff \(F_{1} \rightarrow F_{2}\) is valid.
\(F_{1} \Longleftrightarrow F_{2}\) and \(F_{1} \Longrightarrow F_{2}\) are not propositional formulas (not part of syntax). They are properties of formulas, just like validity or satisfiability.

\section*{Semantic judgements}

Formulas \(F_{1}\) and \(F_{2}\) are equivalent, written \(F_{1} \Longleftrightarrow F_{2}\), iff \(F_{1} \longleftrightarrow F_{2}\) is valid.

Formula \(F_{1}\) implies \(F_{2}\), written \(F_{I} \Longrightarrow\) \(F_{2}\), iff \(F_{1} \rightarrow F_{2}\) is valid.

If we have a procedure for checking satisfiability, then we can also check for equivalence and implication of propositional formulas.

\section*{Summary}

\section*{Today}
- Course overview \& logistics
- Review of propositional logic

\section*{Next Lecture (by Zach Tatlock)}
- Normal forms
- A basic SAT solver
\(\star\) Take the course survey
\(\star\) Read Chapter I of Bradley \& Manna```

