Computer-Aided Reasoning for Software

Course Introduction

courses.cs.washington.edu/courses/cse507/14au/

Emina Torlak

emina@cs.washington.edu

Today

What is this course about?

Course logistics

Review of basic concepts

more reliable, faster, more energy efficient

Tools for building better software, more easily automatic verification, debugging & synthesis


```
Node head;
  void reverse() {
    Node near = head;
    Node mid = near.next;
    Node far = mid.next;
     near.next = ??;
     while (far != null) {
       mid.next = near;
       near = mid;
       mid = far;
       far = far.next;
     }
     mid.next = near;
    head = mid;
  }
}
class Node {
  Node next; String data;
}
```

class List {

Is there a way to complete this code so that it is correct?

By the end of this course, you'll be able to build computer-aided tools for any domain!

By the end of this course, you'll be able to build computer-aided tools for any domain!

Topics, structure, people

Grading structure

3 individual homework assignments (50%)

- conceptual problems & proofs (Tex)
- Study (part 1) • implementations in various programming languages
- may discuss problems with others but solutions must be your own

Course project (50%)

- build a computer-aided reasoning tool for a domain of your choice
- teams of 2-3 people strongly encouraged
- see the course web page for timeline, deliverables and other details

Reading and references

Required readings posted on the course web page

• Complete each reading before the lecture for which it is assigned

Recommended text books

- Bradley & Manna, The Calculus of Computation
- Kroening & Strichman, Decision Procedures

Related courses

- Isil Dillig: Automated Logical Reasoning (2013)
- Viktor Kuncak: Synthesis, Analysis, and Verification (2013)
- Sanjit Seshia: Computer-Aided Verification (2012)

Advice for doing well in 507

Come to class (prepared)

• Lecture notes are enough to teach from, but not enough to learn from

Participate

Ask and answer questions

Meet deadlines

- Turn homework in on time
- Start homework and project sooner than you think you need to
- Follow instructions for submitting code (we have to be able to run it)

People

Emina Torlak PLSE CSE 596 Wednesdays 1-2

Mert Saglam Theory CSE 618 Thursdays 1-2

People

students!

Your name Research area Survey

Emina Torlak PLSE CSE 596 Wednesdays I-2 Mert Saglam Theory CSE 618 Thursdays 1-2

Propositional logic: syntax, semantics & proof methods

(¬
$$p \land \top$$
) ∨ ($q \rightarrow \bot$)

Atom

truth symbols: \top ("true"), \perp ("false") propositional variables: p, q, r, ...

Atomtruth symbols: \top ("true"), \perp ("false")propositional variables: p, q, r, ...

Literal an atom α or its negation $\neg \alpha$

(¬p ∧ ⊤) ∨ (q → ⊥)

Atomtruth symbols: \top ("true"), \perp ("false")propositional variables: p, q, r, ...

Literal an atom α or its negation $\neg \alpha$

Formulaa literal or the application of a logical connective to
formulas

¬F	"not"	(negation)
$F_1 \wedge F_2$	"and"	(conjunction)
$F_1 \vee F_2$	"or"	(disjunction)
$F_1 \rightarrow F_2$	"implies"	(implication)
$F_1 \longleftrightarrow F_2$	"if and only if"	(iff)

Interpretations of propositional formulas

An **interpretation** *I* for a propositional formula *F* maps every variable in *F* to a truth value:

```
I: \{ p \mapsto \top, q \mapsto \bot, \ldots \}
```

Interpretations of propositional formulas

An **interpretation** *I* for a propositional formula *F* maps every variable in *F* to a truth value:

```
I: \{ p \mapsto \top, q \mapsto \bot, \ldots \}
```

I is a **satisfying interpretation** of *F*, written as $I \models F$, if *F* evaluates to \top under *I*.

```
I is a falsifying interpretation of F, written as I \nvDash F, if F evaluates to \perp under I.
```


Inductive cases:

•
$$I \models \neg F$$
 iff $I \not\models F$

Base cases:

- *I* ⊨ ⊤
- *I* ⊭ ⊥
- $l \models p$ iff $l[p] = \top$
- $I \nvDash p$ iff $I[p] = \bot$

Inductive cases:

- $I \models \neg F$ iff $I \not\models F$
- $I \models F_1 \land F_2$ iff $I \models F_1$ and $I \models F_2$

Base cases:

- *I* ⊨ ⊤
- *I* ⊭ ⊥
- $l \models p$ iff $l[p] = \top$
- $I \nvDash p$ iff $I[p] = \bot$

Inductive cases:

- $I \models \neg F$ iff $I \not\models F$
- $I \models F_1 \land F_2$ iff $I \models F_1$ and $I \models F_2$
- $I \models F_1 \lor F_2$ iff $I \models F_1$ or $I \models F_2$
- $I \models F_1 \rightarrow F_2$ iff $I \nvDash F_1$ or $I \models F_2$
- $I \vDash F_1 \longleftrightarrow F_2$ iff $I \vDash F_1$ and $I \vDash F_2$, or $I \nvDash F_1$ and $I \nvDash F_2$

Semantics of propositional logic: example

F:
$$(p \land q) \rightarrow (p \lor \neg q)$$
7I: $\{p \mapsto \top, q \mapsto \bot\}$

Semantics of propositional logic: example

$$F: (p \land q) \rightarrow (p \lor \neg q)$$
$$I: \{p \mapsto \top, q \mapsto \bot\}$$
$$I \models F$$

Satisfiability & validity of propositional formulas

F is **satisfiable** iff $I \models F$ for some *I*.

F is **valid** iff $I \models F$ for all *I*.

Satisfiability & validity of propositional formulas

F is **satisfiable** iff $I \models F$ for some *I*.

F is **valid** iff $I \models F$ for all *I*.

Duality of satisfiability and validity:

F is valid iff $\neg F$ is unsatisfiable.

Satisfiability & validity of propositional formulas

F is **satisfiable** iff $I \models F$ for some *I*.

F is **valid** iff $I \models F$ for all *I*.

Duality of satisfiability and validity:

F is valid iff $\neg F$ is unsatisfiable.

If we have a procedure for checking satisfiability, then we can also check validity of propositional formulas, and vice versa.

Techniques for deciding satisfiability & validity

Techniques for deciding satisfiability & validity

SAT solver

Techniques for deciding satisfiability & validity

Search

Enumerate all interpretations (i.e., build a truth table), and check that they satisfy the formula.

Deduction

Assume the formula is invalid, apply proof rules, and check for contradiction in every branch of the proof tree.

SAT solver

Proof by search (truth tables)

$$F: (p \land q) \rightarrow (p \lor \neg q)$$

Þ	q	þ ^ q	٦q	$\not p \lor \neg q$	F
0	0	0	I	I	I
0	I	0	0	0	I
1	0	0	I	I	I
	1	I	0	I	I

Proof by search (truth tables)

$$F: (p \land q) \rightarrow (p \lor \neg q)$$

Example proof rules:	
<u>I ⊨ ¬F</u> I ⊭ F	$ \frac{I \models F_1 \land F_2}{I \models F_1} \\ I \models F_2 $
$\frac{I \nvDash \neg F}{I \vDash F}$	$ \begin{array}{c c} I \nvDash F_1 \land F_2 \\ \hline I \nvDash F_1 & I \nvDash F_2 \end{array} $

I. $I \nvDash p \land \neg q$ (assumption)

Example proof rules:	
<u>I ⊨ ¬F</u> I ⊭ F	$ \frac{I \models F_1 \land F_2}{I \models F_1} \\ I \models F_2 $
$\frac{I \nvDash \neg F}{I \vDash F}$	$ \begin{array}{c c} I \nvDash F_1 \wedge F_2 \\ \hline I \nvDash F_1 & I \nvDash F_2 \end{array} $

$$F: p \land \neg q$$

I.
$$I \nvDash p \land \neg q$$
 (assumption)
a. $I \nvDash p$ (I, \land)

Example proof rules:	
<u>I ⊨ ¬F</u> I ⊭ F	$ \frac{I \vDash F_1 \land F_2}{I \vDash F_1} \\ I \vDash F_2 $
<u>I</u> ⊭¬F I⊨ F	$ \begin{array}{c c} I \nvDash F_1 \land F_2 \\ \hline I \nvDash F_1 & I \nvDash F_2 \end{array} $

I. I ⊭ p ∧ ¬q	(assumption)
a. I ⊭ Þ	(Ⅰ, ∧)
b. I ⊭ ¬q	(Ⅰ, ∧)

Example proof rules:		
<u>I⊨ ¬F</u> I⊭ F	$ \frac{I \models F_1 \land F_2}{I \models F_1} \\ I \models F_2 $	I. I ⊭ p a. I ⊧ b. I ⊧ i.
<u>I ⊭ ¬F</u> I ⊨ F	$ \begin{array}{c c} I \nvDash F_1 \wedge F_2 \\ \hline I \nvDash F_1 & I \nvDash F_2 \end{array} $	

. I ⊭ p ∧ ¬q	(assumption)
a. I ⊭ Þ	(Ⅰ, ∧)
b. I ⊭ ¬q	(Ⅰ, ∧)
i. <i>I</i> ⊨q	(Ib, ¬)

Semantic judgements

Formulas F_1 and F_2 are **equivalent**, written $F_1 \iff F_2$, iff $F_1 \iff F_2$ is valid.

Formula F_1 **implies** F_2 , written $F_1 \implies$ F_2 , iff $F_1 \longrightarrow F_2$ is valid.

Semantic judgements

Formulas F_1 and F_2 are **equivalent**, written $F_1 \iff F_2$, iff $F_1 \iff F_2$ is valid.

Formula F_1 **implies** F_2 , written $F_1 \implies$ F_2 , iff $F_1 \longrightarrow F_2$ is valid.

> $F_1 \iff F_2$ and $F_1 \implies F_2$ are not propositional formulas (not part of syntax). They are properties of formulas, just like validity or satisfiability.

Semantic judgements

Formulas F_1 and F_2 are **equivalent**, written $F_1 \iff F_2$, iff $F_1 \iff F_2$ is valid.

Formula F_1 **implies** F_2 , written $F_1 \implies$ F_2 , iff $F_1 \longrightarrow F_2$ is valid.

> If we have a procedure for checking satisfiability, then we can also check for equivalence and implication of propositional formulas.

Summary

Today

- Course overview & logistics
- Review of propositional logic

Next Lecture (by Zach Tatlock)

- Normal forms
- A basic SAT solver
- \star Take the course survey
- ★ Read Chapter I of Bradley & Manna