
CSE 505: Programming Languages

Lecture 18 — Parametric Polymorphism

Zach Tatlock
Autumn 2017

Earlier

Saw structural subtyping

I constraints over record fields

I propagate constraints to “bigger” types

I covariance, contravariance

Provided polymorphism over records with “enough” fields ...
but at fixed types.

What if code imposes no constraints on some types?

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 2

Earlier

Saw structural subtyping

I constraints over record fields

I propagate constraints to “bigger” types

I covariance, contravariance

Provided polymorphism over records with “enough” fields ...
but at fixed types.

What if code imposes no constraints on some types?

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 2

This Time: Parametric Polymorphism

Some code just doesn’t care what types it’s operating over.

You might even say it works universally...

???

Before we figure out what that means, a word from a luminary:

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 3

This Time: Parametric Polymorphism

Some code just doesn’t care what types it’s operating over.

You might even say it works universally... ???

Before we figure out what that means, a word from a luminary:

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 3

MOVIE TIME!

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 4

Goal: Everybody Wins!

Understand what this interface means and why it matters:

type ’a mylist;

val empty : ’a mylist

val cons : ’a -> ’a mylist -> ’a mylist

val decons : ’a mylist -> ((’a * ’a mylist) option)

val length : ’a mylist -> int

val map : (’a -> ’b) -> ’a mylist -> ’b mylist

From two perspectives:

1. Client: Code against this specification

2. Library: Implement this specification

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 5

Goal: Client Wins!

1. Reusability (at different types!)
I Different lists with elements of different types
I New reusable functions outside of library, e.g.:

val twocons: ’a -> ’a -> ’a mylist -> ’a mylist

2. Easier, faster, more reliable than subtyping
I No downcast to write, run, maybe-fail (cf. Java 1.4 List)

3. Library must “behave the same” for all “type instantiations”!
I ’a and ’b held abstract from library
I e.g., suppose foo: ’a list -> int, then

foo [1;2;3] totally equivalent to foo [(5,4);(7,2);(9,2)]

I Why? Still true if we have downcasts?
I Proof left as exercise to the reader
I In theory, means less (re-)integration testing

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 6

Goal: Client Wins!

1. Reusability (at different types!)
I Different lists with elements of different types
I New reusable functions outside of library, e.g.:

val twocons: ’a -> ’a -> ’a mylist -> ’a mylist

2. Easier, faster, more reliable than subtyping
I No downcast to write, run, maybe-fail (cf. Java 1.4 List)

3. Library must “behave the same” for all “type instantiations”!
I ’a and ’b held abstract from library
I e.g., suppose foo: ’a list -> int, then

foo [1;2;3] totally equivalent to foo [(5,4);(7,2);(9,2)]

I Why? Still true if we have downcasts?
I Proof left as exercise to the reader
I In theory, means less (re-)integration testing

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 6

Goal: Client Wins!

1. Reusability (at different types!)
I Different lists with elements of different types
I New reusable functions outside of library, e.g.:

val twocons: ’a -> ’a -> ’a mylist -> ’a mylist

2. Easier, faster, more reliable than subtyping
I No downcast to write, run, maybe-fail (cf. Java 1.4 List)

3. Library must “behave the same” for all “type instantiations”!
I ’a and ’b held abstract from library
I e.g., suppose foo: ’a list -> int, then

foo [1;2;3] totally equivalent to foo [(5,4);(7,2);(9,2)]

I Why? Still true if we have downcasts?
I Proof left as exercise to the reader
I In theory, means less (re-)integration testing

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 6

Goal: Client Wins!

1. Reusability (at different types!)
I Different lists with elements of different types
I New reusable functions outside of library, e.g.:

val twocons: ’a -> ’a -> ’a mylist -> ’a mylist

2. Easier, faster, more reliable than subtyping
I No downcast to write, run, maybe-fail (cf. Java 1.4 List)

3. Library must “behave the same” for all “type instantiations”!
I ’a and ’b held abstract from library
I e.g., suppose foo: ’a list -> int, then

foo [1;2;3] totally equivalent to foo [(5,4);(7,2);(9,2)]

I Why? Still true if we have downcasts?

I Proof left as exercise to the reader
I In theory, means less (re-)integration testing

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 6

Goal: Client Wins!

1. Reusability (at different types!)
I Different lists with elements of different types
I New reusable functions outside of library, e.g.:

val twocons: ’a -> ’a -> ’a mylist -> ’a mylist

2. Easier, faster, more reliable than subtyping
I No downcast to write, run, maybe-fail (cf. Java 1.4 List)

3. Library must “behave the same” for all “type instantiations”!
I ’a and ’b held abstract from library
I e.g., suppose foo: ’a list -> int, then

foo [1;2;3] totally equivalent to foo [(5,4);(7,2);(9,2)]

I Why? Still true if we have downcasts?
I Proof left as exercise to the reader
I In theory, means less (re-)integration testing

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 6

Goal: Library Wins!

1. Reusability — all the same reasons client likes it

2. Abstraction of mylist from clients

I Clients can only assume interface, no implementation details

I Free to change/optimize hidden details of ’a mylist

I Clients typechecked knowing only:
there exists some type constructor mylist

I Unlike Java/C++ cannot downcast a t mylist to, e.g., a pair

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 7

Start Simple

The mylist interface has a lot going on:

1. Element types held abstract from library

2. List type (constructor) held abstract from client

3. Reuse of type variables constrains expressions over abstract types

4. Lists need some form of recursive type

We’ll focus on (1) and (3):

I First using a formal language with explicit type abstraction

I Then compare and contrast with ML

Note: Much more interesting than “not getting stuck”

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 8

Start Simple

The mylist interface has a lot going on:

1. Element types held abstract from library

2. List type (constructor) held abstract from client

3. Reuse of type variables constrains expressions over abstract types

4. Lists need some form of recursive type

We’ll focus on (1) and (3):

I First using a formal language with explicit type abstraction

I Then compare and contrast with ML

Note: Much more interesting than “not getting stuck”

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 8

Start Simple

The mylist interface has a lot going on:

1. Element types held abstract from library

2. List type (constructor) held abstract from client

3. Reuse of type variables constrains expressions over abstract types

4. Lists need some form of recursive type

We’ll focus on (1) and (3):

I First using a formal language with explicit type abstraction

I Then compare and contrast with ML

Note: Much more interesting than “not getting stuck”

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 8

Recipe for Extension

1. Add syntax

2. Add semantics

3. Add typing rules

4. Patch up type safety proof

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 9

1. Add Syntax

e ::= c | x | λx:τ . e | e e

| Λα. e | e[τ]
τ ::= int | τ → τ | α | ∀α.τ
v ::= c | λx:τ . e | Λα. e
Γ ::= · | Γ, x:τ
∆ ::= · | ∆, α

Summary of new things:

I Terms: Type abstraction and type application

I Types: Type variables and universal types

I Type contexts: what type variables are in scope

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 10

1. Add Syntax

e ::= c | x | λx:τ . e | e e | Λα. e

| e[τ]
τ ::= int | τ → τ | α | ∀α.τ
v ::= c | λx:τ . e | Λα. e
Γ ::= · | Γ, x:τ
∆ ::= · | ∆, α

Summary of new things:

I Terms: Type abstraction and type application

I Types: Type variables and universal types

I Type contexts: what type variables are in scope

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 10

1. Add Syntax

e ::= c | x | λx:τ . e | e e | Λα. e | e[τ]

τ ::= int | τ → τ | α | ∀α.τ
v ::= c | λx:τ . e | Λα. e
Γ ::= · | Γ, x:τ
∆ ::= · | ∆, α

Summary of new things:

I Terms: Type abstraction and type application

I Types: Type variables and universal types

I Type contexts: what type variables are in scope

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 10

1. Add Syntax

e ::= c | x | λx:τ . e | e e | Λα. e | e[τ]
τ ::= int | τ → τ

| α | ∀α.τ
v ::= c | λx:τ . e | Λα. e
Γ ::= · | Γ, x:τ
∆ ::= · | ∆, α

Summary of new things:

I Terms: Type abstraction and type application

I Types: Type variables and universal types

I Type contexts: what type variables are in scope

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 10

1. Add Syntax

e ::= c | x | λx:τ . e | e e | Λα. e | e[τ]
τ ::= int | τ → τ | α

| ∀α.τ
v ::= c | λx:τ . e | Λα. e
Γ ::= · | Γ, x:τ
∆ ::= · | ∆, α

Summary of new things:

I Terms: Type abstraction and type application

I Types: Type variables and universal types

I Type contexts: what type variables are in scope

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 10

1. Add Syntax

e ::= c | x | λx:τ . e | e e | Λα. e | e[τ]
τ ::= int | τ → τ | α | ∀α.τ

v ::= c | λx:τ . e | Λα. e
Γ ::= · | Γ, x:τ
∆ ::= · | ∆, α

Summary of new things:

I Terms: Type abstraction and type application

I Types: Type variables and universal types

I Type contexts: what type variables are in scope

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 10

1. Add Syntax

e ::= c | x | λx:τ . e | e e | Λα. e | e[τ]
τ ::= int | τ → τ | α | ∀α.τ
v ::= c | λx:τ . e

| Λα. e
Γ ::= · | Γ, x:τ
∆ ::= · | ∆, α

Summary of new things:

I Terms: Type abstraction and type application

I Types: Type variables and universal types

I Type contexts: what type variables are in scope

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 10

1. Add Syntax

e ::= c | x | λx:τ . e | e e | Λα. e | e[τ]
τ ::= int | τ → τ | α | ∀α.τ
v ::= c | λx:τ . e | Λα. e

Γ ::= · | Γ, x:τ
∆ ::= · | ∆, α

Summary of new things:

I Terms: Type abstraction and type application

I Types: Type variables and universal types

I Type contexts: what type variables are in scope

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 10

1. Add Syntax

e ::= c | x | λx:τ . e | e e | Λα. e | e[τ]
τ ::= int | τ → τ | α | ∀α.τ
v ::= c | λx:τ . e | Λα. e
Γ ::= · | Γ, x:τ

∆ ::= · | ∆, α

Summary of new things:

I Terms: Type abstraction and type application

I Types: Type variables and universal types

I Type contexts: what type variables are in scope

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 10

1. Add Syntax

e ::= c | x | λx:τ . e | e e | Λα. e | e[τ]
τ ::= int | τ → τ | α | ∀α.τ
v ::= c | λx:τ . e | Λα. e
Γ ::= · | Γ, x:τ
∆ ::= · | ∆, α

Summary of new things:

I Terms: Type abstraction and type application

I Types: Type variables and universal types

I Type contexts: what type variables are in scope

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 10

1. Add Syntax

e ::= c | x | λx:τ . e | e e | Λα. e | e[τ]
τ ::= int | τ → τ | α | ∀α.τ
v ::= c | λx:τ . e | Λα. e
Γ ::= · | Γ, x:τ
∆ ::= · | ∆, α

Summary of new things:

I Terms: Type abstraction and type application

I Types: Type variables and universal types

I Type contexts: what type variables are in scope

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 10

2. Add Semantics

What is this Λ (big lambda) thing? Informally:

1. Λα. e: a value that takes some τ , plugs it in for α, then runs e

I type-check e knowing α is some type, but not which type

2. e[τ]: crunch e down to some Λα. e′, plug in τ for α, run e′

I choice of τ is irrelevant at run-time
I τ used for type-checking and proof of Preservation

What is this ∀ (upside down “A”) thing? Informally:

Types can use type variables α, β, etc., but only if they’re in scope (just
like term variables)

I Type-checking ∆; Γ ` e : τ uses ∆ to scope type vars in e

I universal type ∀α.τ , brings α into scope for τ

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 11

2. Add Semantics

What is this Λ (big lambda) thing? Informally:

1. Λα. e: a value that takes some τ , plugs it in for α, then runs e

I type-check e knowing α is some type, but not which type

2. e[τ]: crunch e down to some Λα. e′, plug in τ for α, run e′

I choice of τ is irrelevant at run-time
I τ used for type-checking and proof of Preservation

What is this ∀ (upside down “A”) thing? Informally:

Types can use type variables α, β, etc., but only if they’re in scope (just
like term variables)

I Type-checking ∆; Γ ` e : τ uses ∆ to scope type vars in e

I universal type ∀α.τ , brings α into scope for τ

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 11

2. Add Semantics

What is this Λ (big lambda) thing? Informally:

1. Λα. e: a value that takes some τ , plugs it in for α, then runs e

I type-check e knowing α is some type, but not which type

2. e[τ]: crunch e down to some Λα. e′, plug in τ for α, run e′

I choice of τ is irrelevant at run-time
I τ used for type-checking and proof of Preservation

What is this ∀ (upside down “A”) thing? Informally:

Types can use type variables α, β, etc., but only if they’re in scope (just
like term variables)

I Type-checking ∆; Γ ` e : τ uses ∆ to scope type vars in e

I universal type ∀α.τ , brings α into scope for τ

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 11

2. Add Semantics

Formal, small-step, CBV, left-to-right operational semantics:

I Recall: Λα. e is a value

e→ e′

Old:
e1 → e′1

e1 e2 → e′1 e2

e2 → e′2
v e2 → v e′2 (λx:τ . e) v → e[v/x]

New:
e→ e′

e[τ]→ e′[τ] (Λα. e)[τ]→ e[τ/α]

Plus now have 3 different kinds of substitution, all defined in
straightforward capture-avoiding way:

I e1[e2/x] (old)

I e[τ ′/α] (new)

I τ [τ ′/α] (new)

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 12

2. Add Semantics

Formal, small-step, CBV, left-to-right operational semantics:

I Recall: Λα. e is a value

e→ e′

Old:
e1 → e′1

e1 e2 → e′1 e2

e2 → e′2
v e2 → v e′2 (λx:τ . e) v → e[v/x]

New:
e→ e′

e[τ]→ e′[τ] (Λα. e)[τ]→ e[τ/α]

Plus now have 3 different kinds of substitution, all defined in
straightforward capture-avoiding way:

I e1[e2/x] (old)

I e[τ ′/α] (new)

I τ [τ ′/α] (new)

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 12

2. Add Semantics

Formal, small-step, CBV, left-to-right operational semantics:

I Recall: Λα. e is a value

e→ e′

Old:
e1 → e′1

e1 e2 → e′1 e2

e2 → e′2
v e2 → v e′2 (λx:τ . e) v → e[v/x]

New:
e→ e′

e[τ]→ e′[τ]

(Λα. e)[τ]→ e[τ/α]

Plus now have 3 different kinds of substitution, all defined in
straightforward capture-avoiding way:

I e1[e2/x] (old)

I e[τ ′/α] (new)

I τ [τ ′/α] (new)

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 12

2. Add Semantics

Formal, small-step, CBV, left-to-right operational semantics:

I Recall: Λα. e is a value

e→ e′

Old:
e1 → e′1

e1 e2 → e′1 e2

e2 → e′2
v e2 → v e′2 (λx:τ . e) v → e[v/x]

New:
e→ e′

e[τ]→ e′[τ] (Λα. e)[τ]→ e[τ/α]

Plus now have 3 different kinds of substitution, all defined in
straightforward capture-avoiding way:

I e1[e2/x] (old)

I e[τ ′/α] (new)

I τ [τ ′/α] (new)

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 12

2. Add Semantics

Formal, small-step, CBV, left-to-right operational semantics:

I Recall: Λα. e is a value

e→ e′

Old:
e1 → e′1

e1 e2 → e′1 e2

e2 → e′2
v e2 → v e′2 (λx:τ . e) v → e[v/x]

New:
e→ e′

e[τ]→ e′[τ] (Λα. e)[τ]→ e[τ/α]

Plus now have 3 different kinds of substitution, all defined in
straightforward capture-avoiding way:

I e1[e2/x] (old)

I e[τ ′/α] (new)

I τ [τ ′/α] (new)

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 12

2. Add Semantics

Formal, small-step, CBV, left-to-right operational semantics:

I Recall: Λα. e is a value

e→ e′

Old:
e1 → e′1

e1 e2 → e′1 e2

e2 → e′2
v e2 → v e′2 (λx:τ . e) v → e[v/x]

New:
e→ e′

e[τ]→ e′[τ] (Λα. e)[τ]→ e[τ/α]

Plus now have 3 different kinds of substitution, all defined in
straightforward capture-avoiding way:

I e1[e2/x] (old)

I e[τ ′/α] (new)

I τ [τ ′/α] (new)

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 12

2. Add Semantics

Formal, small-step, CBV, left-to-right operational semantics:

I Recall: Λα. e is a value

e→ e′

Old:
e1 → e′1

e1 e2 → e′1 e2

e2 → e′2
v e2 → v e′2 (λx:τ . e) v → e[v/x]

New:
e→ e′

e[τ]→ e′[τ] (Λα. e)[τ]→ e[τ/α]

Plus now have 3 different kinds of substitution, all defined in
straightforward capture-avoiding way:

I e1[e2/x] (old)

I e[τ ′/α] (new)

I τ [τ ′/α] (new)

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 12

Example

Example (using addition):

(Λα.Λβ. λx : α. λf :α→ β. f x) [int] [int] 3 (λy : int. y + y)

→ (Λβ. λx : int. λf :int→ β. f x) [int] 3 (λy : int. y + y)

→ (λx : int. λf :int→ int. f x) 3 (λy : int. y + y)

→ (λf :int→ int. f 3) (λy : int. y + y)

→ (λy : int. y + y) 3

→ 3 + 3

→ 6

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 13

Example

Example (using addition):

(Λα.Λβ. λx : α. λf :α→ β. f x) [int] [int] 3 (λy : int. y + y)

→ (Λβ. λx : int. λf :int→ β. f x) [int] 3 (λy : int. y + y)

→ (λx : int. λf :int→ int. f x) 3 (λy : int. y + y)

→ (λf :int→ int. f 3) (λy : int. y + y)

→ (λy : int. y + y) 3

→ 3 + 3

→ 6

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 13

Example

Example (using addition):

(Λα.Λβ. λx : α. λf :α→ β. f x) [int] [int] 3 (λy : int. y + y)

→ (Λβ. λx : int. λf :int→ β. f x) [int] 3 (λy : int. y + y)

→ (λx : int. λf :int→ int. f x) 3 (λy : int. y + y)

→ (λf :int→ int. f 3) (λy : int. y + y)

→ (λy : int. y + y) 3

→ 3 + 3

→ 6

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 13

Example

Example (using addition):

(Λα.Λβ. λx : α. λf :α→ β. f x) [int] [int] 3 (λy : int. y + y)

→ (Λβ. λx : int. λf :int→ β. f x) [int] 3 (λy : int. y + y)

→ (λx : int. λf :int→ int. f x) 3 (λy : int. y + y)

→ (λf :int→ int. f 3) (λy : int. y + y)

→ (λy : int. y + y) 3

→ 3 + 3

→ 6

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 13

Example

Example (using addition):

(Λα.Λβ. λx : α. λf :α→ β. f x) [int] [int] 3 (λy : int. y + y)

→ (Λβ. λx : int. λf :int→ β. f x) [int] 3 (λy : int. y + y)

→ (λx : int. λf :int→ int. f x) 3 (λy : int. y + y)

→ (λf :int→ int. f 3) (λy : int. y + y)

→ (λy : int. y + y) 3

→ 3 + 3

→ 6

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 13

Example

Example (using addition):

(Λα.Λβ. λx : α. λf :α→ β. f x) [int] [int] 3 (λy : int. y + y)

→ (Λβ. λx : int. λf :int→ β. f x) [int] 3 (λy : int. y + y)

→ (λx : int. λf :int→ int. f x) 3 (λy : int. y + y)

→ (λf :int→ int. f 3) (λy : int. y + y)

→ (λy : int. y + y) 3

→ 3 + 3

→ 6

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 13

Example

Example (using addition):

(Λα.Λβ. λx : α. λf :α→ β. f x) [int] [int] 3 (λy : int. y + y)

→ (Λβ. λx : int. λf :int→ β. f x) [int] 3 (λy : int. y + y)

→ (λx : int. λf :int→ int. f x) 3 (λy : int. y + y)

→ (λf :int→ int. f 3) (λy : int. y + y)

→ (λy : int. y + y) 3

→ 3 + 3

→ 6

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 13

3. Add Typing Rules

Need to be picky about “no free type variables”

I Typing judgment has the form ∆; Γ ` e : τ
(whole program ·; · ` e : τ)

I Uses helper judgment ∆ ` τ
I “all free type variables in τ are in ∆”

∆ ` τ

α ∈ ∆

∆ ` α ∆ ` int

∆ ` τ1 ∆ ` τ2
∆ ` τ1 → τ2

∆, α ` τ
∆ ` ∀α.τ

Rules are boring, but smart people found out the hard way that
allowing free type variables is a pernicious source of
language/compiler bugs.

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 14

3. Add Typing Rules

Need to be picky about “no free type variables”

I Typing judgment has the form ∆; Γ ` e : τ
(whole program ·; · ` e : τ)

I Uses helper judgment ∆ ` τ
I “all free type variables in τ are in ∆”

∆ ` τ

α ∈ ∆

∆ ` α

∆ ` int

∆ ` τ1 ∆ ` τ2
∆ ` τ1 → τ2

∆, α ` τ
∆ ` ∀α.τ

Rules are boring, but smart people found out the hard way that
allowing free type variables is a pernicious source of
language/compiler bugs.

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 14

3. Add Typing Rules

Need to be picky about “no free type variables”

I Typing judgment has the form ∆; Γ ` e : τ
(whole program ·; · ` e : τ)

I Uses helper judgment ∆ ` τ
I “all free type variables in τ are in ∆”

∆ ` τ

α ∈ ∆

∆ ` α ∆ ` int

∆ ` τ1 ∆ ` τ2
∆ ` τ1 → τ2

∆, α ` τ
∆ ` ∀α.τ

Rules are boring, but smart people found out the hard way that
allowing free type variables is a pernicious source of
language/compiler bugs.

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 14

3. Add Typing Rules

Need to be picky about “no free type variables”

I Typing judgment has the form ∆; Γ ` e : τ
(whole program ·; · ` e : τ)

I Uses helper judgment ∆ ` τ
I “all free type variables in τ are in ∆”

∆ ` τ

α ∈ ∆

∆ ` α ∆ ` int

∆ ` τ1 ∆ ` τ2
∆ ` τ1 → τ2

∆, α ` τ
∆ ` ∀α.τ

Rules are boring, but smart people found out the hard way that
allowing free type variables is a pernicious source of
language/compiler bugs.

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 14

3. Add Typing Rules

Need to be picky about “no free type variables”

I Typing judgment has the form ∆; Γ ` e : τ
(whole program ·; · ` e : τ)

I Uses helper judgment ∆ ` τ
I “all free type variables in τ are in ∆”

∆ ` τ

α ∈ ∆

∆ ` α ∆ ` int

∆ ` τ1 ∆ ` τ2
∆ ` τ1 → τ2

∆, α ` τ
∆ ` ∀α.τ

Rules are boring, but smart people found out the hard way that
allowing free type variables is a pernicious source of
language/compiler bugs.

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 14

3. Add Typing Rules

Need to be picky about “no free type variables”

I Typing judgment has the form ∆; Γ ` e : τ
(whole program ·; · ` e : τ)

I Uses helper judgment ∆ ` τ
I “all free type variables in τ are in ∆”

∆ ` τ

α ∈ ∆

∆ ` α ∆ ` int

∆ ` τ1 ∆ ` τ2
∆ ` τ1 → τ2

∆, α ` τ
∆ ` ∀α.τ

Rules are boring, but smart people found out the hard way that
allowing free type variables is a pernicious source of
language/compiler bugs.

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 14

3. Add Typing Rules

Old (with one technical change to prevent free type variables):

∆; Γ ` x : Γ(x) ∆; Γ ` c : int

∆; Γ, x:τ1 ` e : τ2 ∆ ` τ1
∆; Γ ` λx:τ1. e : τ1 → τ2

∆; Γ `e1 : τ2→τ1 ∆; Γ ` e2 : τ2

∆; Γ ` e1 e2 : τ1

New:

∆, α; Γ ` e : τ1

∆; Γ ` Λα. e : ∀α.τ1
∆; Γ ` e : ∀α.τ1 ∆ ` τ2

∆; Γ ` e[τ2] : τ1[τ2/α]

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 15

3. Add Typing Rules

Old (with one technical change to prevent free type variables):

∆; Γ ` x : Γ(x) ∆; Γ ` c : int

∆; Γ, x:τ1 ` e : τ2 ∆ ` τ1
∆; Γ ` λx:τ1. e : τ1 → τ2

∆; Γ `e1 : τ2→τ1 ∆; Γ ` e2 : τ2

∆; Γ ` e1 e2 : τ1

New:

∆, α; Γ ` e : τ1

∆; Γ ` Λα. e : ∀α.τ1

∆; Γ ` e : ∀α.τ1 ∆ ` τ2
∆; Γ ` e[τ2] : τ1[τ2/α]

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 15

3. Add Typing Rules

Old (with one technical change to prevent free type variables):

∆; Γ ` x : Γ(x) ∆; Γ ` c : int

∆; Γ, x:τ1 ` e : τ2 ∆ ` τ1
∆; Γ ` λx:τ1. e : τ1 → τ2

∆; Γ `e1 : τ2→τ1 ∆; Γ ` e2 : τ2

∆; Γ ` e1 e2 : τ1

New:

∆, α; Γ ` e : τ1

∆; Γ ` Λα. e : ∀α.τ1
∆; Γ ` e : ∀α.τ1 ∆ ` τ2

∆; Γ ` e[τ2] : τ1[τ2/α]

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 15

Example

Example (using addition):

(Λα.Λβ. λx : α. λf :α→ β. f x) [int] [int] 3 (λy : int. y + y)

Ouch.

Just a syntax-directed derivation by instantiating the typing rules.
Still, machines are better suited to this stuff.

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 16

Example

Example (using addition):

(Λα.Λβ. λx : α. λf :α→ β. f x) [int] [int] 3 (λy : int. y + y)

Ouch.

Just a syntax-directed derivation by instantiating the typing rules.
Still, machines are better suited to this stuff.

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 16

Example

Example (using addition):

(Λα.Λβ. λx : α. λf :α→ β. f x) [int] [int] 3 (λy : int. y + y)

Ouch.

Just a syntax-directed derivation by instantiating the typing rules.
Still, machines are better suited to this stuff.

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 16

System F (Tah Dah!)

e ::= c | x | λx:τ . e | e e | Λα. e | e[τ]
τ ::= int | τ → τ | α | ∀α.τ
v ::= c | λx:τ . e | Λα. e
Γ ::= · | Γ, x:τ
∆ ::= · | ∆, α

e→ e′

e e2 → e′ e2

e→ e′

v e→ v e′
e→ e′

e[τ]→ e′[τ]

(λx:τ . e) v → e[v/x] (Λα. e)[τ]→ e[τ/α]

∆; Γ ` x : Γ(x) ∆; Γ ` c : int

∆; Γ, x:τ1 ` e : τ2 ∆ ` τ1
∆; Γ ` λx:τ1. e : τ1 → τ2

∆, α; Γ ` e : τ1

∆; Γ ` Λα. e : ∀α.τ1

∆; Γ `e1 : τ2→τ1 ∆; Γ ` e2 : τ2

∆; Γ ` e1 e2 : τ1

∆; Γ `e : ∀α.τ1 ∆`τ2
∆; Γ ` e[τ2] : τ1[τ2/α]

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 17

Examples

Perhaps the simplest polymorphic function...

Let id = Λα. λx : α. x

I id has type

∀α.α→ α

I id [int] has type int→ int

I id [int ∗ int] has type (int ∗ int)→ (int ∗ int)

I (id [∀α.α→ α]) id has type ∀α.α→ α

In ML you can’t do the last one! What?!

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 18

Examples

Perhaps the simplest polymorphic function...

Let id = Λα. λx : α. x

I id has type ∀α.α→ α

I id [int] has type int→ int

I id [int ∗ int] has type (int ∗ int)→ (int ∗ int)

I (id [∀α.α→ α]) id has type ∀α.α→ α

In ML you can’t do the last one! What?!

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 18

Examples

Perhaps the simplest polymorphic function...

Let id = Λα. λx : α. x

I id has type ∀α.α→ α

I id [int] has type

int→ int

I id [int ∗ int] has type (int ∗ int)→ (int ∗ int)

I (id [∀α.α→ α]) id has type ∀α.α→ α

In ML you can’t do the last one! What?!

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 18

Examples

Perhaps the simplest polymorphic function...

Let id = Λα. λx : α. x

I id has type ∀α.α→ α

I id [int] has type int→ int

I id [int ∗ int] has type (int ∗ int)→ (int ∗ int)

I (id [∀α.α→ α]) id has type ∀α.α→ α

In ML you can’t do the last one! What?!

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 18

Examples

Perhaps the simplest polymorphic function...

Let id = Λα. λx : α. x

I id has type ∀α.α→ α

I id [int] has type int→ int

I id [int ∗ int] has type

(int ∗ int)→ (int ∗ int)

I (id [∀α.α→ α]) id has type ∀α.α→ α

In ML you can’t do the last one! What?!

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 18

Examples

Perhaps the simplest polymorphic function...

Let id = Λα. λx : α. x

I id has type ∀α.α→ α

I id [int] has type int→ int

I id [int ∗ int] has type (int ∗ int)→ (int ∗ int)

I (id [∀α.α→ α]) id has type ∀α.α→ α

In ML you can’t do the last one! What?!

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 18

Examples

Perhaps the simplest polymorphic function...

Let id = Λα. λx : α. x

I id has type ∀α.α→ α

I id [int] has type int→ int

I id [int ∗ int] has type (int ∗ int)→ (int ∗ int)

I (id [∀α.α→ α]) id has type

∀α.α→ α

In ML you can’t do the last one! What?!

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 18

Examples

Perhaps the simplest polymorphic function...

Let id = Λα. λx : α. x

I id has type ∀α.α→ α

I id [int] has type int→ int

I id [int ∗ int] has type (int ∗ int)→ (int ∗ int)

I (id [∀α.α→ α]) id has type ∀α.α→ α

In ML you can’t do the last one! What?!

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 18

Examples

Perhaps the simplest polymorphic function...

Let id = Λα. λx : α. x

I id has type ∀α.α→ α

I id [int] has type int→ int

I id [int ∗ int] has type (int ∗ int)→ (int ∗ int)

I (id [∀α.α→ α]) id has type ∀α.α→ α

In ML you can’t do the last one! What?!

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 18

More Examples

Let apply1 = Λα. Λβ. λx : α. λf : α→ β. f x

I apply1 has type

∀α.∀β.α→ (α→ β)→ β

I ·; g:int→ int ` (apply1 [int][int] 3 g) : int

Let apply2 = Λα. λx : α. Λβ. λf : α→ β. f x

I apply2 has type ∀α.α→ (∀β.(α→ β)→ β)
(also impossible in ML!)

I ·; g:int→ string, h:int→ int `
(let z = apply2 [int] in z (z 3 [int] h) [string] g) :
string

Let twice = Λα. λx : α. λf : α→ α. f (f x).

I twice has type ∀α.α→ (α→ α)→ α

I Could this be any more polymorphic?

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 19

More Examples

Let apply1 = Λα. Λβ. λx : α. λf : α→ β. f x

I apply1 has type ∀α.∀β.α→ (α→ β)→ β

I ·; g:int→ int ` (apply1 [int][int] 3 g) : int

Let apply2 = Λα. λx : α. Λβ. λf : α→ β. f x

I apply2 has type ∀α.α→ (∀β.(α→ β)→ β)
(also impossible in ML!)

I ·; g:int→ string, h:int→ int `
(let z = apply2 [int] in z (z 3 [int] h) [string] g) :
string

Let twice = Λα. λx : α. λf : α→ α. f (f x).

I twice has type ∀α.α→ (α→ α)→ α

I Could this be any more polymorphic?

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 19

More Examples

Let apply1 = Λα. Λβ. λx : α. λf : α→ β. f x

I apply1 has type ∀α.∀β.α→ (α→ β)→ β

I ·; g:int→ int ` (apply1 [int][int] 3 g) : int

Let apply2 = Λα. λx : α. Λβ. λf : α→ β. f x

I apply2 has type ∀α.α→ (∀β.(α→ β)→ β)
(also impossible in ML!)

I ·; g:int→ string, h:int→ int `
(let z = apply2 [int] in z (z 3 [int] h) [string] g) :
string

Let twice = Λα. λx : α. λf : α→ α. f (f x).

I twice has type ∀α.α→ (α→ α)→ α

I Could this be any more polymorphic?

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 19

More Examples

Let apply1 = Λα. Λβ. λx : α. λf : α→ β. f x

I apply1 has type ∀α.∀β.α→ (α→ β)→ β

I ·; g:int→ int ` (apply1 [int][int] 3 g) : int

Let apply2 = Λα. λx : α. Λβ. λf : α→ β. f x

I apply2 has type

∀α.α→ (∀β.(α→ β)→ β)
(also impossible in ML!)

I ·; g:int→ string, h:int→ int `
(let z = apply2 [int] in z (z 3 [int] h) [string] g) :
string

Let twice = Λα. λx : α. λf : α→ α. f (f x).

I twice has type ∀α.α→ (α→ α)→ α

I Could this be any more polymorphic?

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 19

More Examples

Let apply1 = Λα. Λβ. λx : α. λf : α→ β. f x

I apply1 has type ∀α.∀β.α→ (α→ β)→ β

I ·; g:int→ int ` (apply1 [int][int] 3 g) : int

Let apply2 = Λα. λx : α. Λβ. λf : α→ β. f x

I apply2 has type ∀α.α→ (∀β.(α→ β)→ β)

(also impossible in ML!)

I ·; g:int→ string, h:int→ int `
(let z = apply2 [int] in z (z 3 [int] h) [string] g) :
string

Let twice = Λα. λx : α. λf : α→ α. f (f x).

I twice has type ∀α.α→ (α→ α)→ α

I Could this be any more polymorphic?

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 19

More Examples

Let apply1 = Λα. Λβ. λx : α. λf : α→ β. f x

I apply1 has type ∀α.∀β.α→ (α→ β)→ β

I ·; g:int→ int ` (apply1 [int][int] 3 g) : int

Let apply2 = Λα. λx : α. Λβ. λf : α→ β. f x

I apply2 has type ∀α.α→ (∀β.(α→ β)→ β)
(also impossible in ML!)

I ·; g:int→ string, h:int→ int `
(let z = apply2 [int] in z (z 3 [int] h) [string] g) :
string

Let twice = Λα. λx : α. λf : α→ α. f (f x).

I twice has type ∀α.α→ (α→ α)→ α

I Could this be any more polymorphic?

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 19

More Examples

Let apply1 = Λα. Λβ. λx : α. λf : α→ β. f x

I apply1 has type ∀α.∀β.α→ (α→ β)→ β

I ·; g:int→ int ` (apply1 [int][int] 3 g) : int

Let apply2 = Λα. λx : α. Λβ. λf : α→ β. f x

I apply2 has type ∀α.α→ (∀β.(α→ β)→ β)
(also impossible in ML!)

I ·; g:int→ string, h:int→ int `
(let z = apply2 [int] in z (z 3 [int] h) [string] g) :
string

Let twice = Λα. λx : α. λf : α→ α. f (f x).

I twice has type ∀α.α→ (α→ α)→ α

I Could this be any more polymorphic?

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 19

More Examples

Let apply1 = Λα. Λβ. λx : α. λf : α→ β. f x

I apply1 has type ∀α.∀β.α→ (α→ β)→ β

I ·; g:int→ int ` (apply1 [int][int] 3 g) : int

Let apply2 = Λα. λx : α. Λβ. λf : α→ β. f x

I apply2 has type ∀α.α→ (∀β.(α→ β)→ β)
(also impossible in ML!)

I ·; g:int→ string, h:int→ int `
(let z = apply2 [int] in z (z 3 [int] h) [string] g) :
string

Let twice = Λα. λx : α. λf : α→ α. f (f x).

I twice has type

∀α.α→ (α→ α)→ α

I Could this be any more polymorphic?

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 19

More Examples

Let apply1 = Λα. Λβ. λx : α. λf : α→ β. f x

I apply1 has type ∀α.∀β.α→ (α→ β)→ β

I ·; g:int→ int ` (apply1 [int][int] 3 g) : int

Let apply2 = Λα. λx : α. Λβ. λf : α→ β. f x

I apply2 has type ∀α.α→ (∀β.(α→ β)→ β)
(also impossible in ML!)

I ·; g:int→ string, h:int→ int `
(let z = apply2 [int] in z (z 3 [int] h) [string] g) :
string

Let twice = Λα. λx : α. λf : α→ α. f (f x).

I twice has type ∀α.α→ (α→ α)→ α

I Could this be any more polymorphic?

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 19

More Examples

Let apply1 = Λα. Λβ. λx : α. λf : α→ β. f x

I apply1 has type ∀α.∀β.α→ (α→ β)→ β

I ·; g:int→ int ` (apply1 [int][int] 3 g) : int

Let apply2 = Λα. λx : α. Λβ. λf : α→ β. f x

I apply2 has type ∀α.α→ (∀β.(α→ β)→ β)
(also impossible in ML!)

I ·; g:int→ string, h:int→ int `
(let z = apply2 [int] in z (z 3 [int] h) [string] g) :
string

Let twice = Λα. λx : α. λf : α→ α. f (f x).

I twice has type ∀α.α→ (α→ α)→ α

I Could this be any more polymorphic?

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 19

4. Type Safety and Metatheory

I Safety: System F is type-safe
I Need a Type Substitution Lemma

I Termination: All programs terminate
I Even with self application — we saw id [τ] id

I Parametricity, a.k.a. “theorems for free”
I Example: If ·; · ` e : ∀α.∀β.(α ∗ β)→ (β ∗ α),

then e is equivalent to Λα. Λβ. λx:α ∗ β. (x.2, x.1).
Every term with this type is the swap function!!

I Intuition: e has no way to make an α or a β and it cannot tell
what α or β are or raise an exception or diverge...

I How many terms have type ∀α.(α→ α)→ (α→ α)?

Note: Mutation breaks everything :(

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 20

4. Type Safety and Metatheory

I Safety: System F is type-safe
I Need a Type Substitution Lemma

I Termination: All programs terminate
I Even with self application — we saw id [τ] id

I Parametricity, a.k.a. “theorems for free”
I Example: If ·; · ` e : ∀α.∀β.(α ∗ β)→ (β ∗ α),

then e is equivalent to Λα. Λβ. λx:α ∗ β. (x.2, x.1).
Every term with this type is the swap function!!

I Intuition: e has no way to make an α or a β and it cannot tell
what α or β are or raise an exception or diverge...

I How many terms have type ∀α.(α→ α)→ (α→ α)?

Note: Mutation breaks everything :(

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 20

4. Type Safety and Metatheory

I Safety: System F is type-safe
I Need a Type Substitution Lemma

I Termination: All programs terminate
I Even with self application — we saw id [τ] id

I Parametricity, a.k.a. “theorems for free”
I Example: If ·; · ` e : ∀α.∀β.(α ∗ β)→ (β ∗ α),

then e is equivalent to Λα. Λβ. λx:α ∗ β. (x.2, x.1).

Every term with this type is the swap function!!

I Intuition: e has no way to make an α or a β and it cannot tell
what α or β are or raise an exception or diverge...

I How many terms have type ∀α.(α→ α)→ (α→ α)?

Note: Mutation breaks everything :(

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 20

4. Type Safety and Metatheory

I Safety: System F is type-safe
I Need a Type Substitution Lemma

I Termination: All programs terminate
I Even with self application — we saw id [τ] id

I Parametricity, a.k.a. “theorems for free”
I Example: If ·; · ` e : ∀α.∀β.(α ∗ β)→ (β ∗ α),

then e is equivalent to Λα. Λβ. λx:α ∗ β. (x.2, x.1).
Every term with this type is the swap function!!

I Intuition: e has no way to make an α or a β and it cannot tell
what α or β are or raise an exception or diverge...

I How many terms have type ∀α.(α→ α)→ (α→ α)?

Note: Mutation breaks everything :(

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 20

4. Type Safety and Metatheory

I Safety: System F is type-safe
I Need a Type Substitution Lemma

I Termination: All programs terminate
I Even with self application — we saw id [τ] id

I Parametricity, a.k.a. “theorems for free”
I Example: If ·; · ` e : ∀α.∀β.(α ∗ β)→ (β ∗ α),

then e is equivalent to Λα. Λβ. λx:α ∗ β. (x.2, x.1).
Every term with this type is the swap function!!

I Intuition: e has no way to make an α or a β and it cannot tell
what α or β are or raise an exception or diverge...

I How many terms have type ∀α.(α→ α)→ (α→ α)?

Note: Mutation breaks everything :(

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 20

4. Type Safety and Metatheory

I Safety: System F is type-safe
I Need a Type Substitution Lemma

I Termination: All programs terminate
I Even with self application — we saw id [τ] id

I Parametricity, a.k.a. “theorems for free”
I Example: If ·; · ` e : ∀α.∀β.(α ∗ β)→ (β ∗ α),

then e is equivalent to Λα. Λβ. λx:α ∗ β. (x.2, x.1).
Every term with this type is the swap function!!

I Intuition: e has no way to make an α or a β and it cannot tell
what α or β are or raise an exception or diverge...

I How many terms have type ∀α.(α→ α)→ (α→ α)?

Note: Mutation breaks everything :(

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 20

4. Type Safety and Metatheory

I Safety: System F is type-safe
I Need a Type Substitution Lemma

I Termination: All programs terminate
I Even with self application — we saw id [τ] id

I Parametricity, a.k.a. “theorems for free”
I Example: If ·; · ` e : ∀α.∀β.(α ∗ β)→ (β ∗ α),

then e is equivalent to Λα. Λβ. λx:α ∗ β. (x.2, x.1).
Every term with this type is the swap function!!

I Intuition: e has no way to make an α or a β and it cannot tell
what α or β are or raise an exception or diverge...

I How many terms have type ∀α.(α→ α)→ (α→ α)?

Note: Mutation breaks everything :(

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 20

What next?

Now that we have System F...

I What hath we wrought? Example of our mighty new powers.

I How/why ML is more restrictive and implicit.

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 21

Security from safety?

Example: A process e should not access files it did not open
(fopen checks permissions)

Require an untrusted process e to type-check as follows:
·; · ` e : ∀α.{fopen : string→ α, fread : α→ int} → unit

This type ensures that a process won’t “forge a file handle” and
pass it to fread

So fread doesn’t need to check (faster), file handles don’t need to
be encrypted (safer), etc.

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 22

Security from safety?

Example: A process e should not access files it did not open
(fopen checks permissions)

Require an untrusted process e to type-check as follows:
·; · ` e : ∀α.{fopen : string→ α, fread : α→ int} → unit

This type ensures that a process won’t “forge a file handle” and
pass it to fread

So fread doesn’t need to check (faster), file handles don’t need to
be encrypted (safer), etc.

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 22

Security from safety?

Example: A process e should not access files it did not open
(fopen checks permissions)

Require an untrusted process e to type-check as follows:
·; · ` e : ∀α.{fopen : string→ α, fread : α→ int} → unit

This type ensures that a process won’t “forge a file handle” and
pass it to fread

So fread doesn’t need to check (faster), file handles don’t need to
be encrypted (safer), etc.

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 22

Moral of Example

In STLC, type safety just meant not getting stuck

Type abstraction gives us new powers, e.g. secure interfaces!

Suppose we (the system library) implement file-handles as ints.
Then we instantiate α with int, but untrusted code cannot tell

Memory safety is a necessary but insufficient condition for
language-based enforcement of strong abstractions

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 23

Moral of Example

In STLC, type safety just meant not getting stuck

Type abstraction gives us new powers, e.g. secure interfaces!

Suppose we (the system library) implement file-handles as ints.
Then we instantiate α with int, but untrusted code cannot tell

Memory safety is a necessary but insufficient condition for
language-based enforcement of strong abstractions

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 23

Are types used at run-time?

We said polymorphism was about “many types for same term”,
but for clarity and easy checking, we changed:

I The syntax via Λα. e and e [τ]

I The operational semantics via type substitution

I The type system via ∆

Claim: The operational semantics did not “really” change; types
need not exist at run-time

More formally: Erasing all types from System F produces an
equivalent program in the untyped lambda calculus

Strengthened induction hypothesis: If e→ e1 in System F and
erase(e)→ e2 in untyped lambda-calculus, then
e2 = erase(e1)

“Erasure and evaluation commute”

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 24

Are types used at run-time?

We said polymorphism was about “many types for same term”,
but for clarity and easy checking, we changed:

I The syntax via Λα. e and e [τ]

I The operational semantics via type substitution

I The type system via ∆

Claim: The operational semantics did not “really” change; types
need not exist at run-time

More formally: Erasing all types from System F produces an
equivalent program in the untyped lambda calculus

Strengthened induction hypothesis: If e→ e1 in System F and
erase(e)→ e2 in untyped lambda-calculus, then
e2 = erase(e1)

“Erasure and evaluation commute”

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 24

Are types used at run-time?

We said polymorphism was about “many types for same term”,
but for clarity and easy checking, we changed:

I The syntax via Λα. e and e [τ]

I The operational semantics via type substitution

I The type system via ∆

Claim: The operational semantics did not “really” change; types
need not exist at run-time

More formally: Erasing all types from System F produces an
equivalent program in the untyped lambda calculus

Strengthened induction hypothesis: If e→ e1 in System F and
erase(e)→ e2 in untyped lambda-calculus, then
e2 = erase(e1)

“Erasure and evaluation commute”
Zach Tatlock CSE 505 Autumn 2017, Lecture 18 24

Erasure

Erasure is easy to define:

erase(c) =

c
erase(x) = x

erase(e1 e2) = erase(e1) erase(e2)
erase(λx:τ . e) = λx. erase(e)
erase(Λα. e) = λ . erase(e)
erase(e [τ]) = erase(e) 0

In pure System F, preserving evaluation order isn’t crucial, but it is
with fix, exceptions, mutation, etc.

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 25

Erasure

Erasure is easy to define:

erase(c) = c

erase(x) = x
erase(e1 e2) = erase(e1) erase(e2)

erase(λx:τ . e) = λx. erase(e)
erase(Λα. e) = λ . erase(e)
erase(e [τ]) = erase(e) 0

In pure System F, preserving evaluation order isn’t crucial, but it is
with fix, exceptions, mutation, etc.

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 25

Erasure

Erasure is easy to define:

erase(c) = c
erase(x) =

x
erase(e1 e2) = erase(e1) erase(e2)

erase(λx:τ . e) = λx. erase(e)
erase(Λα. e) = λ . erase(e)
erase(e [τ]) = erase(e) 0

In pure System F, preserving evaluation order isn’t crucial, but it is
with fix, exceptions, mutation, etc.

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 25

Erasure

Erasure is easy to define:

erase(c) = c
erase(x) = x

erase(e1 e2) = erase(e1) erase(e2)
erase(λx:τ . e) = λx. erase(e)
erase(Λα. e) = λ . erase(e)
erase(e [τ]) = erase(e) 0

In pure System F, preserving evaluation order isn’t crucial, but it is
with fix, exceptions, mutation, etc.

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 25

Erasure

Erasure is easy to define:

erase(c) = c
erase(x) = x

erase(e1 e2) =

erase(e1) erase(e2)
erase(λx:τ . e) = λx. erase(e)
erase(Λα. e) = λ . erase(e)
erase(e [τ]) = erase(e) 0

In pure System F, preserving evaluation order isn’t crucial, but it is
with fix, exceptions, mutation, etc.

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 25

Erasure

Erasure is easy to define:

erase(c) = c
erase(x) = x

erase(e1 e2) = erase(e1) erase(e2)

erase(λx:τ . e) = λx. erase(e)
erase(Λα. e) = λ . erase(e)
erase(e [τ]) = erase(e) 0

In pure System F, preserving evaluation order isn’t crucial, but it is
with fix, exceptions, mutation, etc.

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 25

Erasure

Erasure is easy to define:

erase(c) = c
erase(x) = x

erase(e1 e2) = erase(e1) erase(e2)
erase(λx:τ . e) =

λx. erase(e)
erase(Λα. e) = λ . erase(e)
erase(e [τ]) = erase(e) 0

In pure System F, preserving evaluation order isn’t crucial, but it is
with fix, exceptions, mutation, etc.

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 25

Erasure

Erasure is easy to define:

erase(c) = c
erase(x) = x

erase(e1 e2) = erase(e1) erase(e2)
erase(λx:τ . e) = λx. erase(e)

erase(Λα. e) = λ . erase(e)
erase(e [τ]) = erase(e) 0

In pure System F, preserving evaluation order isn’t crucial, but it is
with fix, exceptions, mutation, etc.

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 25

Erasure

Erasure is easy to define:

erase(c) = c
erase(x) = x

erase(e1 e2) = erase(e1) erase(e2)
erase(λx:τ . e) = λx. erase(e)
erase(Λα. e) =

λ . erase(e)
erase(e [τ]) = erase(e) 0

In pure System F, preserving evaluation order isn’t crucial, but it is
with fix, exceptions, mutation, etc.

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 25

Erasure

Erasure is easy to define:

erase(c) = c
erase(x) = x

erase(e1 e2) = erase(e1) erase(e2)
erase(λx:τ . e) = λx. erase(e)
erase(Λα. e) = λ . erase(e)

erase(e [τ]) = erase(e) 0

In pure System F, preserving evaluation order isn’t crucial, but it is
with fix, exceptions, mutation, etc.

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 25

Erasure

Erasure is easy to define:

erase(c) = c
erase(x) = x

erase(e1 e2) = erase(e1) erase(e2)
erase(λx:τ . e) = λx. erase(e)
erase(Λα. e) = λ . erase(e)
erase(e [τ]) =

erase(e) 0

In pure System F, preserving evaluation order isn’t crucial, but it is
with fix, exceptions, mutation, etc.

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 25

Erasure

Erasure is easy to define:

erase(c) = c
erase(x) = x

erase(e1 e2) = erase(e1) erase(e2)
erase(λx:τ . e) = λx. erase(e)
erase(Λα. e) = λ . erase(e)
erase(e [τ]) = erase(e) 0

In pure System F, preserving evaluation order isn’t crucial, but it is
with fix, exceptions, mutation, etc.

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 25

Erasure

Erasure is easy to define:

erase(c) = c
erase(x) = x

erase(e1 e2) = erase(e1) erase(e2)
erase(λx:τ . e) = λx. erase(e)
erase(Λα. e) = λ . erase(e)
erase(e [τ]) = erase(e) 0

In pure System F, preserving evaluation order isn’t crucial, but it is
with fix, exceptions, mutation, etc.

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 25

Connection to reality... or at least ML

System F has been one of the most important theoretical PL
models since the 1970s and inspires languages like ML.

But you have seen ML polymorphism and it looks different. In
fact, it is an implicitly typed restriction of System F.

These two qualifications ((1) implicit, (2) restriction) are deeply
related.

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 26

ML Restrictions

I All types have the form ∀α1, . . . , αn.τ where n ≥ 0 and τ
has no ∀. (Prenex-quantification; no first-class
polymorphism.)

I Only let (rec) variables (e.g., x in let x = e1 in e2) can
have polymorphic types. So n = 0 for function arguments,
pattern variables, etc. (Let-bound polymorphism)

I So cannot (always) desugar let to λ in ML

I In let rec f x = e1 in e2, the variable f can have type
∀α1, . . . , αn.τ1 → τ2 only if every use of f in e1

instantiates each αi with αi. (No polymorphic recursion)

I Let variables can be polymorphic only if e1 is a “syntactic
value”

I A variable, constant, function definition, ...
I Called the “value restriction” (relaxed partially in OCaml)

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 27

ML Restrictions

I All types have the form ∀α1, . . . , αn.τ where n ≥ 0 and τ
has no ∀. (Prenex-quantification; no first-class
polymorphism.)

I Only let (rec) variables (e.g., x in let x = e1 in e2) can
have polymorphic types. So n = 0 for function arguments,
pattern variables, etc. (Let-bound polymorphism)

I So cannot (always) desugar let to λ in ML

I In let rec f x = e1 in e2, the variable f can have type
∀α1, . . . , αn.τ1 → τ2 only if every use of f in e1

instantiates each αi with αi. (No polymorphic recursion)

I Let variables can be polymorphic only if e1 is a “syntactic
value”

I A variable, constant, function definition, ...
I Called the “value restriction” (relaxed partially in OCaml)

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 27

ML Restrictions

I All types have the form ∀α1, . . . , αn.τ where n ≥ 0 and τ
has no ∀. (Prenex-quantification; no first-class
polymorphism.)

I Only let (rec) variables (e.g., x in let x = e1 in e2) can
have polymorphic types. So n = 0 for function arguments,
pattern variables, etc. (Let-bound polymorphism)

I So cannot (always) desugar let to λ in ML

I In let rec f x = e1 in e2, the variable f can have type
∀α1, . . . , αn.τ1 → τ2 only if every use of f in e1

instantiates each αi with αi. (No polymorphic recursion)

I Let variables can be polymorphic only if e1 is a “syntactic
value”

I A variable, constant, function definition, ...
I Called the “value restriction” (relaxed partially in OCaml)

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 27

ML Restrictions

I All types have the form ∀α1, . . . , αn.τ where n ≥ 0 and τ
has no ∀. (Prenex-quantification; no first-class
polymorphism.)

I Only let (rec) variables (e.g., x in let x = e1 in e2) can
have polymorphic types. So n = 0 for function arguments,
pattern variables, etc. (Let-bound polymorphism)

I So cannot (always) desugar let to λ in ML

I In let rec f x = e1 in e2, the variable f can have type
∀α1, . . . , αn.τ1 → τ2 only if every use of f in e1

instantiates each αi with αi. (No polymorphic recursion)

I Let variables can be polymorphic only if e1 is a “syntactic
value”

I A variable, constant, function definition, ...
I Called the “value restriction” (relaxed partially in OCaml)

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 27

ML Restrictions: Why?

ML-style polymorphism can seem weird after you have seen System
F. And the restrictions do come up in practice, though tolerable.

I Type inference for System F (given untyped e, is there a
System F term e′ such that erase(e′) = e) is undecidable
(1995)

I Type inference for ML with polymorphic recursion is
undecidable (1992)

I Type inference for ML is decidable and efficient in practice,
though pathological programs of size O(n) and run-time
O(n) can have types of size O(22n

)

I The type inference algorithm is unsound in the presence of
ML-style mutation, but value-restriction restores soundness

I Based on unification

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 28

ML Restrictions: Why?

ML-style polymorphism can seem weird after you have seen System
F. And the restrictions do come up in practice, though tolerable.

I Type inference for System F (given untyped e, is there a
System F term e′ such that erase(e′) = e) is undecidable
(1995)

I Type inference for ML with polymorphic recursion is
undecidable (1992)

I Type inference for ML is decidable and efficient in practice,
though pathological programs of size O(n) and run-time
O(n) can have types of size O(22n

)

I The type inference algorithm is unsound in the presence of
ML-style mutation, but value-restriction restores soundness

I Based on unification

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 28

ML Restrictions: Why?

ML-style polymorphism can seem weird after you have seen System
F. And the restrictions do come up in practice, though tolerable.

I Type inference for System F (given untyped e, is there a
System F term e′ such that erase(e′) = e) is undecidable
(1995)

I Type inference for ML with polymorphic recursion is
undecidable (1992)

I Type inference for ML is decidable and efficient in practice,
though pathological programs of size O(n) and run-time
O(n) can have types of size O(22n

)

I The type inference algorithm is unsound in the presence of
ML-style mutation, but value-restriction restores soundness

I Based on unification

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 28

ML Restrictions: Why?

ML-style polymorphism can seem weird after you have seen System
F. And the restrictions do come up in practice, though tolerable.

I Type inference for System F (given untyped e, is there a
System F term e′ such that erase(e′) = e) is undecidable
(1995)

I Type inference for ML with polymorphic recursion is
undecidable (1992)

I Type inference for ML is decidable and efficient in practice,
though pathological programs of size O(n) and run-time
O(n) can have types of size O(22n

)

I The type inference algorithm is unsound in the presence of
ML-style mutation, but value-restriction restores soundness

I Based on unification

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 28

ML Restrictions: Why?

ML-style polymorphism can seem weird after you have seen System
F. And the restrictions do come up in practice, though tolerable.

I Type inference for System F (given untyped e, is there a
System F term e′ such that erase(e′) = e) is undecidable
(1995)

I Type inference for ML with polymorphic recursion is
undecidable (1992)

I Type inference for ML is decidable and efficient in practice,
though pathological programs of size O(n) and run-time
O(n) can have types of size O(22n

)

I The type inference algorithm is unsound in the presence of
ML-style mutation, but value-restriction restores soundness

I Based on unification

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 28

Recover Lost Ground

Extensions to the ML type system to be closer to System F:

I Usually require some type annotations

I Are judged by:

I Soundness: Do programs still not get stuck?

I Conservatism: Do all (or most) old ML programs still
type-check?

I Power: Does it accept many more useful programs?

I Convenience: Are many new types still inferred?

Zach Tatlock CSE 505 Autumn 2017, Lecture 18 29

