Language Design

What have we been up to?

- Define a programming language
 - we've been fairly formal
 - pretty close to SML if you squint real hard

CSE 505: Programming Languages

Lecture 17 — The Curry-Howard Isomorphism

Zach Tatlock Autumn 2017

Language Design

What have we been up to?

- Define a programming language
 - we've been fairly formal
 - pretty close to SML if you squint real hard
- Define a type system
 - outlaw bad programs that "get stuck"
 - sound: no typable programs get stuck
 - incomplete: knocked out some OK programs too, ohwell

Elsewhere in the Universe (or the other side of campus)

CSE 505 Autumn 2017, Lecture 17

What do logicians do?

- Define formal logics
 - tools to precisely state propositions

Zach Tatlock

Elsewhere in the Universe (or the other side of campus)

What do logicians do?

- Define formal logics
 - tools to precisely state propositions
- Define proof systems
 - tools to figure out which propositions are true

CSE 505 Autumn 2017, Lecture 17

Elsewhere in the Universe (or the other side of campus)

What do logicians do?

- Define formal logics
 - tools to precisely state propositions
- Define proof systems
 - tools to figure out which propositions are true

Turns out, we did that too!

Zach Tatlock

Punchline

We are accidental logicians!

Zach Tatlock

CSE 505 Autumn 2017, Lecture 17

Punchline

We are accidental logicians!

The Curry-Howard Isomorphism

- Proofs : Propositions :: Programs : Types
- proofs are to propositions as programs are to types

Woah. Back up a second. Logic?!

Woah. Back up a second. Logic?!

Let's trim down our (explicitly typed) simply-typed λ -calculus to:

 $e ::= x | \lambda x. e | e e$ | (e, e) | e.1 | e.2| A(e) | B(e) | match e with Ax. e | Bx. e

 $\tau ::= b \mid \tau \to \tau \mid \tau * \tau \mid \tau + \tau$

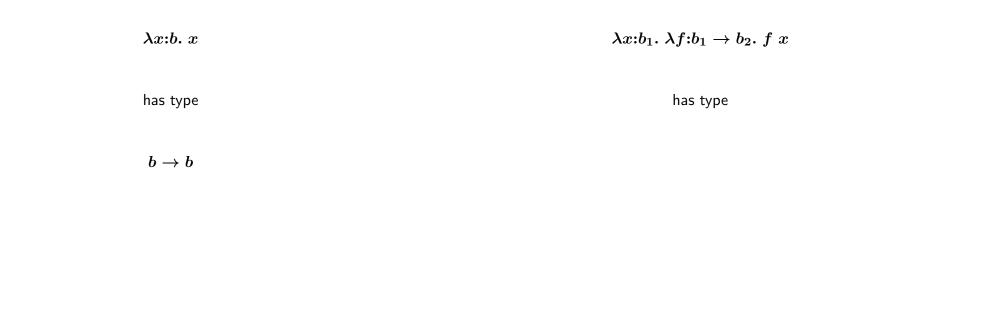
- Lambdas, Pairs, and Sums
- Any number of base types b_1, b_2, \ldots
- No constants (can add one or more if you want)
- ► No fix

Zach TatlockCSE 505 Autumn 2017, Lecture 175Zach TatlockCSE 505 Autumn 2017, Lecture 175Woah. Back up a second. Logic?!Let's trim down our (explicitly typed) simply-typed λ -calculus to: $e ::= x \mid \lambda x. e \mid e e$ $\lambda x:b. x$ $\mid (e, e) \mid e.1 \mid e.2$ has type $\mid A(e) \mid B(e) \mid match e with Ax. e \mid Bx. e$ has type $\tau ::= b \mid \tau \rightarrow \tau \mid \tau * \tau \mid \tau + \tau$ Lambdas, Pairs, and SumsAny number of base types b_1, b_2, \ldots

- No constants (can add one or more if you want)
- ► No fix

What good is this?!

Well, even sans constants, plenty of terms type-check with $\Gamma=\cdot$



Zach Tatlock

CSE 505 Autumn 2017, Lecture 17

6 Zach Tatlock

CSE 505 Autumn 2017, Lecture 17

 $\lambda x: b_1. \ \lambda f: b_1 o b_2. \ f \ x$

has type

 $b_1 o (b_1 o b_2) o b_2$

 $\lambda x: b_1 \rightarrow b_2 \rightarrow b_3. \ \lambda y: b_2. \ \lambda z: b_1. \ x \ z \ y$

has type

$$\lambda x: b_1 \rightarrow b_2 \rightarrow b_3. \ \lambda y: b_2. \ \lambda z: b_1. \ x \ z \ y$$

has type

 $(b_1
ightarrow b_2
ightarrow b_3)
ightarrow b_2
ightarrow b_1
ightarrow b_3$

has type

Zach Tatlock	CSE 505 Autumn 2017, Lecture 17 8	Zach Tatlock	CSE 505 Autumn 2017, Lecture 17

 $\lambda x: b_1. (\mathsf{A}(x), \mathsf{A}(x))$

has type

 $b_1 \to ((b_1 + b_7) * (b_1 + b_4))$

 $\lambda f: b_1 \rightarrow b_3. \ \lambda g: b_2 \rightarrow b_3. \ \lambda z: b_1 + b_2.$ (match z with Ax. $f \ x \mid Bx. \ g \ x)$

has type

$$\lambda f: b_1 \rightarrow b_3. \ \lambda g: b_2 \rightarrow b_3. \ \lambda z: b_1 + b_2.$$

(match z with Ax. $f \ x \mid Bx. \ g \ x)$

has type

 $(b_1
ightarrow b_3)
ightarrow (b_2
ightarrow b_3)
ightarrow (b_1 + b_2)
ightarrow b_3$

has type

Zach Tatlock	CSE 505 Autumn 2017, Lecture 17	10 Zach Tatlock	CSE 505 Autumn 2017, Lecture 17	11		
		Empty and Nonempty Types				
		Just saw a	few "nonempty" types			
	$\lambda x{:}b_1*b_2.\;\lambda y{:}b_3.\;((y,x.1),x.2)$	$\blacktriangleright au$ non	empy if closed term e has type $ au$			
		$\blacktriangleright au$ emp	<i>pty</i> otherwise			
	has type					
	$(b_1 * b_2) ightarrow b_3 ightarrow ((b_3 * b_1) * b_2)$					

Empty and Nonempty Types

Just saw a few "nonempty" types

- $\blacktriangleright \ \tau$ nonempy if closed term e has type τ
- au *empty* otherwise

Are there any empty types?

Empty and Nonempty Types

Just saw a few "nonempty" types

- au nonempy if closed term e has type au
- au *empty* otherwise

Are there any empty types?

Sure! $b_1 \quad b_1 \rightarrow b_2 \quad b_1 \rightarrow (b_2 \rightarrow b_1) \rightarrow b_2$

Zach Tatlock CSE 505 Autumn 2017, Lecture 17	12 Zach Tatlock CSE 505 Autumn 2017, Lecture 17 12
Empty and Nonempty Types	Empty and Nonempty Types
 Just saw a few "nonempty" types <i>τ</i> nonempy if closed term e has type <i>τ</i> <i>τ</i> empty otherwise 	 Just saw a few "nonempty" types <i>τ</i> nonempy if closed term <i>e</i> has type <i>τ</i> <i>τ</i> empty otherwise
Are there any empty types?	Are there any empty types?
Sure! b_1 $b_1 ightarrow b_2$ $b_1 ightarrow (b_2 ightarrow b_1) ightarrow b_2$	Sure! b_1 $b_1 ightarrow b_2$ $b_1 ightarrow (b_2 ightarrow b_1) ightarrow b_2$
What does this one mean?	What does this one mean?
$b_1 + (b_1 o b_2)$	$b_1 + (b_1 o b_2)$
	I wonder if there's any way to distinguish empty vs. nonempty

Empty and Nonempty Types

Just saw a few "nonempty" types

- $\blacktriangleright \ \tau \ \textit{nonempy}$ if closed term e has type τ
- au *empty* otherwise

Are there any empty types?

Sure! $b_1 \quad b_1 \rightarrow b_2 \quad b_1 \rightarrow (b_2 \rightarrow b_1) \rightarrow b_2$

What does this one mean?

 $b_1 + (b_1
ightarrow b_2)$

I wonder if there's any way to distinguish empty vs. nonempty...

Ohwell, now for a *totally irrelevant* tangent!

Zach Tatlock

Propositional Logic

CSE 505 Autumn 2017, Lecture 17

12 Zach Tatlock

CSE 505 Autumn 2017, Lecture 17

Propositional Logic

Suppose we have some set b of basic propositions b_1, b_2, \ldots

▶ e.g. "ML is better than Haskell"

Totally irrelevant tangent.

Propositional Logic

Suppose we have some set b of basic propositions b_1, b_2, \ldots

▶ e.g. "ML is better than Haskell"

Then, using standard operators \supset , \land , \lor , we can define formulas:

 $p ::= b \mid p \supset p \mid p \land p \mid p \lor p$

 \blacktriangleright e.g. "ML is better than Haskell" \land "Haskell is not pure"

Propositional Logic

Suppose we have some set b of basic propositions b_1, b_2, \ldots

▶ e.g. "ML is better than Haskell"

Then, using standard operators \supset , \land , \lor , we can define formulas:

 $p ::= b \mid p \supset p \mid p \land p \mid p \lor p$

 \blacktriangleright e.g. "ML is better than Haskell" \land "Haskell is not pure"

Some formulas are *tautologies*: by virtue of their structure, they are always true regardless of the truth of their constituent propositions.

▶ e.g. $p_1 \supset p_1$

Zach Tatlock	CSE 505 Autumn 2017, Lecture 17	14	Zach Tatlock	CSE 505 Autumn 2017, Lecture 17	14
Propositional Logic	2		Proof System		
Suppose we have so ► e.g. "ML is be	ome set b of basic propositions $b_1, b_2, .$ tter than Haskell"			$\Gamma \;::=\; \cdot \mid \Gamma, p$	
Then, using standa	rd operators \supset, \land, \lor , we can define for	mulas:			
p :	$= b \mid p \supset p \mid p \land p \mid p \lor p$				
► e.g. "ML is be	tter than Haskell" \wedge "Haskell is not pu	ire"			

Some formulas are *tautologies*: by virtue of their structure, they are always true regardless of the truth of their constituent propositions.

 \blacktriangleright e.g. $p_1 \supset p_1$

Not too hard to build a proof system to establish tautologyhood.

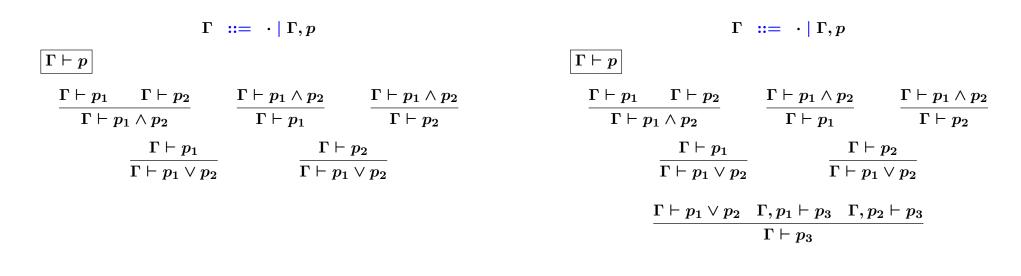
Proof System

Proof System

$\Gamma \hspace{0.1in} ::= \hspace{0.1in} \cdot \mid \Gamma, p$	$\Gamma \;\; ::= \; \cdot \mid \Gamma, p$
$\fbox{\Gamma \vdash p}$	$\boxed{\boldsymbol{\Gamma}\vdash \boldsymbol{p}}$
$rac{\Gammadash p_1 \qquad \Gammadash p_2}{\Gammadash p_1 \wedge p_2}$	$rac{\Gammadash p_1 \Gammadash p_2}{\Gammadash p_1 \wedge p_2} \qquad rac{\Gammadash p_1 \wedge p_2}{\Gammadash p_1}$

Zach Tatlock	CSE 5	505 Autumn 2017, Lecture 17		15 Zach	Tatlock	CSE	505 Autumn 2017, Lecture 17	
Proof System				Pi	roof System			
	Г	$::= \ \cdot \mid \Gamma, p$]	Γ ::= $\cdot \mid \Gamma, p$	
$\Gamma \vdash p$					$\Gamma \vdash p$			
$\Gamma \vdash p_1$	$\Gamma dash p_2$	$\Gamma dash p_1 \wedge p_2$	$\Gamma dash p_1 \wedge p_2$		$\Gamma \vdash p_1$	$\Gamma \vdash p_2$	$\Gamma dash p_1 \wedge p_2$	$\Gamma dash p_1 \wedge p_2$
$\overline{ \Gamma \vdash p}$	$_1 \wedge p_2$	$\Gamma \vdash p_1$	$\overline{\Gamma \vdash p_2}$		$\Gamma \vdash p$	$p_1 \wedge p_2$	$\Gamma \vdash p_1$	$\overline{\Gamma \vdash p_2}$
						$\Gamma \vdash p_1$		
						$\overline{\Gamma dash p_1 ee p_1}$	$\overline{D_2}$	

Proof System



Zach Tatlock CSE 505 Autumn 2017, Lecture 1	7	15 Zach Tatlock	CSE 505	5 Autumn 2017, Lecture 17	
Proof System		Proof System			
Γ ::= $\cdot \mid \Gamma, p$			Г	$::= \ \cdot \mid \Gamma, p$	
$\boxed{\Gamma \vdash p}$		$\Gamma \vdash p$			
$\Gammadash p_1 \qquad \Gammadash p_2 \qquad \Gammadash p_1\wedge p_2$	$_2 \qquad \Gamma dash p_1 \wedge p_2$	$\Gamma \vdash p_1$	$\Gamma \vdash p_2$	$\Gamma dash p_1 \wedge p_2$	$\Gamma dash p_1 \wedge p_2$
$\hline \Gamma \vdash p_1 \land p_2 \qquad \hline \Gamma \vdash p_1$				$\Gamma \vdash p_1$	
$\Gamma dash p_1$	$\Gamma dash p_{2}$		$\Gamma \vdash p_1$	$\Gamma \vdash$	p_2
$\overline{\Gammadash p_1ee p_2}$ $\overline{\Gammaash}$	$p_1 ee p_2$			$\overline{\Gamma \vdash p_1}$	$1 \lor p_2$
$\Gamma dash p_1 ee p_2 \Gamma, p_1 dash p_3$.	$\Gamma, p_2 \vdash p_3$		$\Gamma dash p_1 ee p_2$	$\Gamma, p_1 \vdash p_3$ Γ, p	$p_2 \vdash p_3$
$\Gamma \vdash p_3$				$\Gamma \vdash p_3$	
$\underline{p\in\Gamma}$		$p\in \Gamma$	$\Gamma, p_1 \vdash p$	\mathcal{D}_2	
$\overline{\Gamma \vdash p}$		$\overline{\Gamma \vdash p}$	$rac{\Gamma, p_1 dash p}{\Gammadash p_1 \supset}$	p_2	

Wait a second...

	Γ	$::= \cdot \mid \Gamma,$	p	
$\Gamma \vdash p$				
$\frac{\Gamma \vdash p_1}{\Gamma \vdash p_1}$	-	$\frac{\Gamma \vdash p_1 \wedge}{\Gamma \vdash p_1}$		$rac{arphi p_1 \wedge p_2}{\Gammadash p_2}$
Ŧ	$\frac{\Gamma \vdash p_1}{\Gamma \vdash p_1}$	Ē	$\frac{\Gamma \vdash p_2}{\Gamma \vdash p_2}$	
	$\Gamma \vdash p_1 \lor p_2$ $\vdash p_1 \lor p_2$		$\Gamma \vdash p_1 \lor p_2$ $\Gamma, p_2 \vdash p_2$	
_		$\frac{\Gamma + p_3}{\Gamma + p_3}$	-,P2 · P	<u> </u>
$\frac{p\in\Gamma}{\Gamma\vdash p}$	$rac{\Gamma, p_1 dash p_2}{\Gammadash p_1 \supset p_1}$		$rac{p_1 \supset p_2}{\Gamma \vdash p}$	

CSE 505 Autumn 2017, Lecture 17

Zach Tatlock

Wait a second...

Wait a second... ZOMG!

That's *exactly* our type system! Just erase terms, change each τ to a p, and translate \rightarrow to \supset , * to \land , + to \lor .

CSE 505 Autumn 2017, Lecture 17

 $\Gamma \vdash e : \tau$

15 Zach Tatlock

$\Gamma \vdash e.1:\tau_1$	$\Gamma \vdash e.2:\tau_2$
	$e: au_2 \ ert : au_1 + au_2$
$x: au_1dash e_1: au$ Γ,y	$:\!\tau_2 \vdash e_2 : \tau$
vith A $x.~e_1 \mid$ B $y.~e_2$	$e_2: au$
	$egin{array}{cccc} ec{ au_2} ightarrow au_1 & \Gamma dash e_2 ec{ au_2} \ ec{ au_1} ightarrow ec{ au_2} ec{ au_1} ec{ au_2} ec{ au_1} ec{ au_2} ec{ au_1} ec{ au_2} ec{ au_1} ec{ au_2} $
	$\overline{\Gamma dash B(e)}$ $e: au_1 dash e_1: au \ \ \ \Gamma, y$ vith A $x.\ e_1 \mid B y.\ e$

Zach Tatlock

CSE 505 Autumn 2017, Lecture 17

What does it all mean? The Curry-Howard Isomorphism.

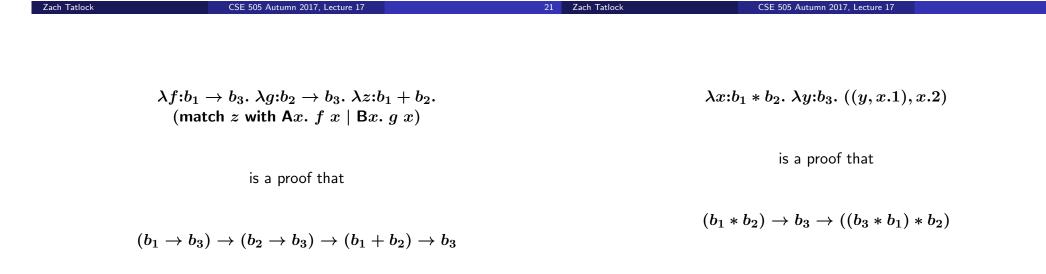
- Given a well-typed closed term, take the typing derivation, erase the terms, and have a propositional-logic proof
- Given a propositional-logic proof, there exists a closed term with that type
- A term that type-checks is a proof it tells you exactly how to derive the logicical formula corresponding to its type

What does it all mean? The Curry-Howard Isomorphism.

- Given a well-typed closed term, take the typing derivation, erase the terms, and have a propositional-logic proof
- Given a propositional-logic proof, there exists a closed term with that type
- A term that type-checks is a *proof* it tells you exactly how to derive the logicical formula corresponding to its type
- Constructive (hold that thought) propositional logic and simply-typed lambda-calculus with pairs and sums are the same thing.
 - Computation and logic are *deeply* connected
 - \blacktriangleright λ is no more or less made up than implication
- Revisit our examples under the logical interpretation...

Zach Tatlock	CSE 505 Autumn 2017, Lecture 17	18 Zach Tatlock	CSE 505 Autumn 2017, Lecture 17	18
	λx :b. x		$\lambda x{:}b_1.\ \lambda f{:}b_1 o b_2.\ f\ x$	
	Ad.0. d		$\lambda x \cdot v_1 \cdot \lambda j \cdot v_1 \forall \ v_2 \cdot j \cdot x$	
	is a proof that		is a proof that	
	b ightarrow b		$b_1 o (b_1 o b_2) o b_2$	

$$egin{aligned} &\lambda x{:}b_1 o b_2 o b_3. \ \lambda y{:}b_2. \ \lambda z{:}b_1. \ x \ z \ y & \lambda x{:}b_1. \ ({\sf A}(x), {\sf A}(x)) \end{aligned}$$
 is a proof that is a proof that $(b_1 o b_2 o b_3) o b_2 o b_1 o b_3 & b_1 o ((b_1 + b_7)*(b_1 + b_4)) \end{aligned}$



So what?

Because:

- This is just fascinating (glad I'm not a dog)
- Don't think of logic and computing as distinct fields
- Thinking "the other way" can help you know what's possible/impossible
- Can form the basis for theorem provers
- Type systems should not be *ad hoc* piles of rules!

So what?

Zach Tatlock

25

Because:

- This is just fascinating (glad I'm not a dog)
- Don't think of logic and computing as distinct fields
- Thinking "the other way" can help you know what's possible/impossible
- Can form the basis for theorem provers
- Type systems should not be *ad hoc* piles of rules!

So, every typed λ -calculus is a proof system for some logic...

Is STLC with pairs and sums a *complete* proof system for propositional logic? Almost...

Zach Tatlock

CSE 505 Autumn 2017, Lecture 17

Classical vs. Constructive

Classical propositional logic has the "law of the excluded middle":

$$\overline{\Gamma \vdash p_1 + (p_1 \rightarrow p_2)}$$

(Think " $p + \neg p$ " – also equivalent to double-negation $\neg \neg p \rightarrow p$)

Classical vs. Constructive

Classical propositional logic has the "law of the excluded middle":

CSE 505 Autumn 2017, Lecture 17

$$\overline{\Gamma \vdash p_1 + (p_1 \to p_2)}$$

(Think " $p + \neg p$ " – also equivalent to double-negation $\neg \neg p \rightarrow p$)

STLC does not support this law; for example, no closed expression has type $b_1+(b_1
ightarrow b_2)$

Classical vs. Constructive

Classical propositional logic has the "law of the excluded middle":

 $\overline{\Gamma \vdash p_1 + (p_1 \to p_2)}$

(Think " $p + \neg p$ " – also equivalent to double-negation $\neg \neg p
ightarrow p$)

STLC does not support this law; for example, no closed expression has type $b_1 + (b_1
ightarrow b_2)$

Logics without this rule are called *constructive*. They're useful because proofs "know how the world is" and "are executable" and "produce examples"

Classical vs. Constructive

Classical propositional logic has the "law of the excluded middle":

$$\Gamma \vdash p_1 + (p_1 o p_2)$$

(Think " $p+\neg p$ " – also equivalent to double-negation $\neg \neg p \rightarrow p)$

STLC does not support this law; for example, no closed expression has type $b_1 + (b_1
ightarrow b_2)$

Logics without this rule are called *constructive*. They're useful because proofs "know how the world is" and "are executable" and "produce examples"

Can still "branch on possibilities" by making the excluded middle an explicit assumption:

$$((p_1 + (p_1 \to p_2)) * (p_1 \to p_3) * ((p_1 \to p_2) \to p_3)) \to p_3$$

CSE 505 Autumn 2017, Lecture 17

Zach Tatlock

CSE 505 Autumn 2017, Lecture 17

Classical vs. Constructive, an Example

Theorem: There exist irrational numbers a and b such that a^b is rational.

Classical vs. Constructive, an Example

Theorem: There exist irrational numbers a and b such that a^b is rational.

Classical Proof:

Zach Tatlock

Let $x = \sqrt{2}$. Either x^x is rational or it is irrational. If x^x is rational, let $a = b = \sqrt{2}$, done. If x^x is irrational, let $a = x^x$ and b = x. Since $\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{(\sqrt{2} \cdot \sqrt{2})} = \sqrt{2}^2 = 2$, done.

Classical vs. Constructive, an Example

Theorem: There exist irrational numbers a and b such that a^b is rational.

Classical Proof:

Let $x = \sqrt{2}$. Either x^x is rational or it is irrational. If x^x is rational, let $a = b = \sqrt{2}$, done. If x^x is irrational, let $a = x^x$ and b = x. Since $\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{(\sqrt{2} \cdot \sqrt{2})} = \sqrt{2}^2 = 2$, done.

Well, I guess we know there are some a and b satisfying the theorem... but which ones?

Classical vs. Constructive, an Example

Theorem: There exist irrational numbers a and b such that a^b is rational.

Classical Proof:

Let $x = \sqrt{2}$. Either x^x is rational or it is irrational. If x^x is rational, let $a = b = \sqrt{2}$, done. If x^x is irrational, let $a = x^x$ and b = x. Since $\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{(\sqrt{2} \cdot \sqrt{2})} = \sqrt{2}^2 = 2$, done.

Well, I guess we know there are some a and b satisfying the theorem... but which ones? LAME.

Zach Tatlock

CSE 505 Autumn 2017, Lecture 17

Classical vs. Constructive, an Example

Theorem: There exist irrational numbers a and b such that a^b is rational.

Classical Proof:

Let
$$x = \sqrt{2}$$
. Either x^x is rational or it is irrational.
If x^x is rational, let $a = b = \sqrt{2}$, done.
If x^x is irrational, let $a = x^x$ and $b = x$. Since
 $\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{(\sqrt{2} \cdot \sqrt{2})} = \sqrt{2}^2 = 2$, done.

Well, I guess we know there are some a and b satisfying the theorem... but which ones? LAME.

Constructive Proof:

Let
$$a = \sqrt{2}$$
, $b = \log_2 9$.
Since $\sqrt{2}^{\log_2 9} = 9^{\log_2 \sqrt{2}} = 9^{\log_2 (2^{0.5})} = 9^{0.5} = 3$, done.

Classical vs. Constructive, an Example

Theorem: There exist irrational numbers a and b such that a^b is rational.

CSE 505 Autumn 2017, Lecture 17

Classical Proof:

Zach Tatlock

Let
$$x = \sqrt{2}$$
. Either x^x is rational or it is irrational.
If x^x is rational, let $a = b = \sqrt{2}$, done.
If x^x is irrational, let $a = x^x$ and $b = x$. Since
 $\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{(\sqrt{2} \cdot \sqrt{2})} = \sqrt{2}^2 = 2$, done.

Well, I guess we know there are some a and b satisfying the theorem... but which ones? LAME.

Constructive Proof:

Let
$$a = \sqrt{2}$$
, $b = \log_2 9$.
Since $\sqrt{2}^{\log_2 9} = 9^{\log_2 \sqrt{2}} = 9^{\log_2(2^{0.5})} = 9^{0.5} = 3$, done.

To prove that something exists, we actually had to produce it. SWEET. atlock CSE 505 Autumn 2017, Lecture 17

Classical vs. Constructive, a Perspective

Constructive logic allows us to distinguish between things that classical logic lumps together.

Classical vs. Constructive, a Perspective

Constructive logic allows us to distinguish between things that classical logic lumps together.

Consider "P is true." vs. "It would be absurd if P were false." $\triangleright P$ vs. $\neg \neg P$

CSE 505 Autumn 2017, Lecture 17

Classical vs. Constructive, a Perspective

Constructive logic allows us to distinguish between things that classical logic lumps together.

Consider "P is true." vs. "It would be absurd if P were false." P vs. $\neg \neg P$

Those are different things, but classical logic can't tell.

Classical vs. Constructive, a Perspective

Constructive logic allows us to distinguish between things that classical logic lumps together.

CSE 505 Autumn 2017, Lecture 17

Consider "P is true." vs. "It would be absurd if P were false." P vs. $\neg \neg P$

Those are different things, but classical logic can't tell.

Our friends Gödel and Gentzen gave us this nice result:

P is provable in classical logic iff $\neg \neg P$ is provable in constructive logic.

Zach Tatlock

Fix

A "non-terminating proof" is no proof at all.

Remember the typing rule for **fix**:

$$\frac{\Gamma \vdash e: \tau \rightarrow \tau}{\Gamma \vdash \mathsf{fix} \; e: \tau}$$

That let's us prove anything! Example: fix $\lambda x:b. x$ has type b

So the "logic" is *inconsistent* (and therefore worthless)

Related: In ML, a value of type 'a never terminates normally (raises an exception, infinite loop, etc.)

let rec f x = f xlet z = f 0

Zach Tatlock

CSE 505 Autumn 2017, Lecture 17

29 Zach Tatlock

CSE 505 Autumn 2017, Lecture 17

30

Last word on Curry-Howard

It's not just STLC and constructive propositional logic

Every logic has a corresponding typed λ calculus (and no consistent logic has something as "powerful" as fix).

If you remember one thing: the typing rule for function application is modus ponens

Last word on Curry-Howard

It's not just STLC and constructive propositional logic

Every logic has a corresponding typed λ calculus (and no consistent logic has something as "powerful" as **fix**).