Language Design

What have we been up to?

- Define a programming language
- we've been fairly formal
- pretty close to SML if you squint real hard

Lecture 17 - The Curry-Howard Isomorphism

Zach Tatlock

Autumn 2017

Language Design

What have we been up to?

- Define a programming language
- we've been fairly formal
- pretty close to SML if you squint real hard
- Define a type system
- outlaw bad programs that "get stuck"
- sound: no typable programs get stuck
- incomplete: knocked out some OK programs too, ohwell

Elsewhere in the Universe (or the other side of campus)
What do logicians do?

- Define formal logics
- tools to precisely state propositions

Elsewhere in the Universe (or the other side of campus)
What do logicians do?

- Define formal logics
- tools to precisely state propositions
- Define proof systems
- tools to figure out which propositions are true

Elsewhere in the Universe (or the other side of campus)
What do logicians do?

- Define formal logics
- tools to precisely state propositions
- Define proof systems
- tools to figure out which propositions are true

Turns out, we did that too!

Punchline
We are accidental logicians!

Punchline
We are accidental logicians!

The Curry-Howard Isomorphism

- Proofs : Propositions :: Programs: Types
- proofs are to propositions as programs are to types

Woah. Back up a second. Logic?!
Let's trim down our (explicitly typed) simply-typed $\boldsymbol{\lambda}$-calculus to:

```
\(e::=x|\lambda x . e| e e\)
    \(|\quad(e, e)| e .1 \mid e .2\)
    \(|\quad \mathrm{A}(e)| \mathrm{B}(e) \mid\) match \(e\) with \(\mathrm{A} x . e \mid \mathrm{B} x . e\)
\(\tau::=b|\tau \rightarrow \tau| \tau * \tau \mid \tau+\tau\)
```

- Lambdas, Pairs, and Sums
- Any number of base types b_{1}, b_{2}, \ldots
- No constants (can add one or more if you want)
- No fix

Woah. Back up a second. Logic?!
Let's trim down our (explicitly typed) simply-typed $\boldsymbol{\lambda}$-calculus to:
$e::=x|\lambda x . e| e e$
$|\quad(e, e)| e .1 \mid e .2$
$|\quad \mathbf{A}(e)| \mathbf{B}(e) \mid$ match e with $\mathbf{A x} . e \mid \mathbf{B} x . e$
$\tau::=b|\tau \rightarrow \tau| \tau * \tau \mid \tau+\tau$

- Lambdas, Pairs, and Sums
- Any number of base types b_{1}, b_{2}, \ldots
- No constants (can add one or more if you want)
- No fix

What good is this?!
Well, even sans constants, plenty of terms type-check with $\boldsymbol{\Gamma}=$.
has type

$$
b \rightarrow b
$$

has type
$\lambda x: b_{1}, \lambda f: b_{1} \rightarrow b_{2} . f x$
has type

$$
b_{1} \rightarrow\left(b_{1} \rightarrow b_{2}\right) \rightarrow b_{2}
$$

$\lambda x: b_{1} \rightarrow b_{2} \rightarrow b_{3} . \lambda y: b_{2} . \lambda z: b_{1} . x z y$
has type
者

$$
\lambda x: b_{1} \rightarrow b_{2} \rightarrow b_{3} . \lambda y: b_{2} . \lambda z: b_{1} . x z y
$$

has type

$$
\left(b_{1} \rightarrow b_{2} \rightarrow b_{3}\right) \rightarrow b_{2} \rightarrow b_{1} \rightarrow b_{3}
$$

$\lambda x: b_{1} \cdot(\mathbf{A}(x), \mathbf{A}(x))$
has type

$$
\lambda x: b_{1} \cdot(\mathbf{A}(x), \mathbf{A}(x))
$$

has type

$$
b_{1} \rightarrow\left(\left(b_{1}+b_{7}\right) *\left(b_{1}+b_{4}\right)\right)
$$

$$
\lambda f: b_{1} \rightarrow b_{3} . \lambda g: b_{2} \rightarrow b_{3} . \lambda z: b_{1}+b_{2}
$$

$$
\text { (match } z \text { with } \mathrm{A} x . f x \mid \mathrm{B} x . g x)
$$

has type
$\lambda f: b_{1} \rightarrow b_{3} . \lambda g: b_{2} \rightarrow b_{3} . \lambda z: b_{1}+b_{2}$.
(match z with $\mathrm{A} x . f x \mid \mathrm{B} x . g x$)
has type

$$
\left(b_{1} \rightarrow b_{3}\right) \rightarrow\left(b_{2} \rightarrow b_{3}\right) \rightarrow\left(b_{1}+b_{2}\right) \rightarrow b_{3}
$$

$\lambda x: b_{1} * b_{2} . \lambda y: b_{3} .((y, x .1), x .2)$
has type

Empty and Nonempty Types
Just saw a few "nonempty" types

- $\boldsymbol{\tau}$ nonempy if closed term e has type $\boldsymbol{\tau}$
- $\boldsymbol{\tau}$ empty otherwise
has type

$$
\left(b_{1} * b_{2}\right) \rightarrow b_{3} \rightarrow\left(\left(b_{3} * b_{1}\right) * b_{2}\right)
$$

Empty and Nonempty Types
Just saw a few "nonempty" types

- $\boldsymbol{\tau}$ nonempy if closed term \boldsymbol{e} has type $\boldsymbol{\tau}$
- $\boldsymbol{\tau}$ empty otherwise

Are there any empty types?

Empty and Nonempty Types
Just saw a few "nonempty" types

- $\boldsymbol{\tau}$ nonempy if closed term \boldsymbol{e} has type $\boldsymbol{\tau}$
- τ empty otherwise

Are there any empty types?
Sure! $\quad b_{1} \quad b_{1} \rightarrow b_{2} \quad b_{1} \rightarrow\left(b_{2} \rightarrow b_{1}\right) \rightarrow b_{2}$

Empty and Nonempty Types
Just saw a few "nonempty" types

- $\boldsymbol{\tau}$ nonempy if closed term \boldsymbol{e} has type $\boldsymbol{\tau}$
- $\boldsymbol{\tau}$ empty otherwise

Are there any empty types?
Sure! $\quad b_{1} \quad b_{1} \rightarrow b_{2} \quad b_{1} \rightarrow\left(b_{2} \rightarrow b_{1}\right) \rightarrow b_{2}$

What does this one mean?

$$
b_{1}+\left(b_{1} \rightarrow b_{2}\right)
$$

Empty and Nonempty Types
Just saw a few "nonempty" types

- $\boldsymbol{\tau}$ nonempy if closed term e has type $\boldsymbol{\tau}$
- $\boldsymbol{\tau}$ empty otherwise

Are there any empty types?
Sure! $\quad b_{1} \quad b_{1} \rightarrow b_{2} \quad b_{1} \rightarrow\left(b_{2} \rightarrow b_{1}\right) \rightarrow b_{2}$

What does this one mean?

$$
b_{1}+\left(b_{1} \rightarrow b_{2}\right)
$$

I wonder if there's any way to distinguish empty vs. nonempty...

Empty and Nonempty Types
Just saw a few "nonempty" types

- $\boldsymbol{\tau}$ nonempy if closed term \boldsymbol{e} has type $\boldsymbol{\tau}$
- $\boldsymbol{\tau}$ empty otherwise

Are there any empty types?
Sure! $\quad b_{1} \quad b_{1} \rightarrow b_{2} \quad b_{1} \rightarrow\left(b_{2} \rightarrow b_{1}\right) \rightarrow b_{2}$

What does this one mean?

$$
b_{1}+\left(b_{1} \rightarrow b_{2}\right)
$$

I wonder if there's any way to distinguish empty vs. nonempty...
Ohwell, now for a totally irrelevant tangent!

Totally irrelevant tangent.

Propositional Logic

Suppose we have some set b of basic propositions b_{1}, b_{2}, \ldots

- e.g. "ML is better than Haskell"

Propositional Logic

Suppose we have some set \boldsymbol{b} of basic propositions $\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \ldots$

- e.g. "ML is better than Haskell"

Then, using standard operators \supset, \wedge, \vee, we can define formulas:

$$
p::=b|p \supset p| p \wedge p \mid p \vee p
$$

- e.g. "ML is better than Haskell" \wedge "Haskell is not pure"

Propositional Logic

Suppose we have some set \boldsymbol{b} of basic propositions $\boldsymbol{b}_{\mathbf{1}}, \boldsymbol{b}_{\mathbf{2}}, \ldots$

- e.g. "ML is better than Haskell"

Then, using standard operators \supset, \wedge, \vee, we can define formulas:

$$
p::=b|p \supset p| p \wedge p \mid p \vee p
$$

- e.g. "ML is better than Haskell" \wedge "Haskell is not pure"

Some formulas are tautologies: by virtue of their structure, they are always true regardless of the truth of their constituent propositions.

- e.g. $\boldsymbol{p}_{1} \supset \boldsymbol{p}_{1}$

Propositional Logic

Suppose we have some set b of basic propositions b_{1}, b_{2}, \ldots

- e.g. "ML is better than Haskell"

Then, using standard operators \supset, \wedge, \vee, we can define formulas:

$$
p::=b|p \supset p| p \wedge p \mid p \vee p
$$

- e.g. "ML is better than Haskell" \wedge "Haskell is not pure"

Some formulas are tautologies: by virtue of their structure, they are always true regardless of the truth of their constituent propositions.

- e.g. $p_{1} \supset p_{1}$

Not too hard to build a proof system to establish tautologyhood.

$$
\Gamma::=\cdot \mid \Gamma, p
$$

$$
\begin{aligned}
& \Gamma \vdash p \\
& \frac{\Gamma \vdash p_{1} \quad \Gamma \vdash p_{2}}{\Gamma \vdash p_{1} \wedge p_{2}}
\end{aligned}
$$

$$
\Gamma::=\cdot \mid \Gamma, p
$$

$$
\begin{aligned}
& \Gamma \vdash p \\
& \frac{\Gamma \vdash p_{1} \quad \Gamma \vdash p_{2}}{\Gamma \vdash p_{1} \wedge p_{2}} \quad \frac{\Gamma \vdash p_{1} \wedge p_{2}}{\Gamma \vdash p_{1}}
\end{aligned}
$$

Proof System

$$
\Gamma::=\cdot \mid \Gamma, p
$$

$$
\begin{aligned}
& \overline{\Gamma \vdash p} \\
& \frac{\Gamma \vdash p_{1} \quad \Gamma \vdash p_{2}}{\Gamma \vdash p_{1} \wedge p_{2}} \quad \frac{\Gamma \vdash p_{1} \wedge p_{2}}{\Gamma \vdash p_{1}} \quad \frac{\Gamma \vdash p_{1} \wedge p_{2}}{\Gamma \vdash p_{2}}
\end{aligned}
$$

Proof System
$\Gamma::=\cdot \mid \Gamma, p$

$$
\begin{aligned}
& \begin{array}{l}
\Gamma \vdash p \\
\frac{\Gamma \vdash p_{1}}{\Gamma \vdash p_{1} \wedge p_{2}} \\
\\
\frac{\Gamma \vdash p_{1}}{\Gamma \vdash p_{1} \vee p_{2}}
\end{array} \\
& \frac{\Gamma \vdash p_{1} \wedge p_{2}}{\Gamma \vdash p_{1}}
\end{aligned} \quad \frac{\Gamma \vdash p_{1} \wedge p_{2}}{\Gamma \vdash p_{2}}
$$

$$
\Gamma::=\cdot \mid \Gamma, p
$$

$$
\begin{aligned}
& \begin{array}{l}
\overline{\Gamma \vdash p} \\
\frac{\Gamma \vdash p_{1}}{\Gamma \vdash p_{1} \wedge p_{2}} \\
\frac{\Gamma \vdash p_{1}}{\Gamma \vdash p_{1} \vee p_{2}}
\end{array} \\
& \frac{\Gamma \vdash p_{1} \wedge p_{2}}{\Gamma \vdash p_{1}} \quad \frac{\Gamma \vdash p_{1} \wedge p_{2}}{\Gamma \vdash p_{2}} \\
&
\end{aligned}
$$

$$
\Gamma::=\cdot \mid \Gamma, p
$$

$$
\begin{aligned}
& \boxed{\Gamma \vdash p} \\
& \frac{\Gamma \vdash p_{1}}{\Gamma \vdash p_{1} \wedge p_{2}} \quad \frac{\Gamma \vdash p_{2}}{\Gamma \vdash p_{1}} \quad \frac{\Gamma \vdash p_{1} \wedge p_{2}}{\Gamma \vdash p_{2}} \\
& \frac{\Gamma \vdash p_{1}}{\Gamma \vdash p_{1} \vee p_{2}} \\
& \frac{\Gamma \vdash p_{1} \vee p_{2}}{} \\
& \\
& \\
& \frac{\Gamma, p_{1} \vdash p_{3}}{\Gamma \vdash p_{3}} \quad \frac{\Gamma, p_{2} \vdash p_{3}}{\Gamma \vdash p_{1} \vee p_{2}}
\end{aligned}
$$

Proof System

$$
\Gamma::=\cdot \mid \Gamma, p
$$

$$
\begin{aligned}
& \begin{array}{l}
\underline{\Gamma \vdash p} \\
\frac{\Gamma \vdash p_{1}}{\Gamma \vdash p_{1} \wedge p_{2}} \\
\frac{\Gamma \vdash p_{1}}{\Gamma \vdash p_{1} \vee p_{2}} \\
\\
\\
\\
\frac{\Gamma \vdash p_{1} \vee p_{2}}{\Gamma \vdash p_{1}} \quad \frac{\Gamma, p_{1} \vdash p_{3}}{\Gamma \vdash p_{3}} \quad \frac{\Gamma, p_{2} \vdash p_{3}}{\Gamma \vdash p_{2}}
\end{array}
\end{aligned}
$$

$$
\frac{p \in \Gamma}{\Gamma \vdash p}
$$

Proof System

$$
\Gamma::=\cdot \mid \Gamma, p
$$

$$
\Gamma \vdash p
$$

$$
\begin{aligned}
& \frac{\Gamma \vdash p_{1}}{\Gamma \vdash p_{1} \wedge p_{2}} \quad \frac{\Gamma \vdash p_{2}}{\Gamma \vdash p_{1}} \quad \frac{\Gamma \vdash p_{1} \wedge p_{2}}{\Gamma \vdash p_{2}} \\
& \frac{\Gamma \vdash p_{1}}{\Gamma \vdash p_{1} \vee p_{2}} \\
& \frac{\Gamma \vdash p_{1} \vee p_{2} \quad \Gamma, p_{1} \vdash p_{3} \quad \Gamma, p_{2} \vdash p_{3}}{\Gamma \vdash p_{3}} \\
& \frac{p \in \Gamma}{\Gamma \vdash p} \\
& \frac{\Gamma \vdash p_{1} \vdash p_{2}}{\Gamma \vdash p_{1} \supset p_{2}}
\end{aligned}
$$

$$
\Gamma::=\cdot \mid \Gamma, p
$$

$$
\begin{aligned}
& \Gamma \vdash \boldsymbol{p} \\
& \frac{\Gamma \vdash p_{1} \quad \Gamma \vdash p_{2}}{\Gamma \vdash p_{1} \wedge p_{2}} \quad \frac{\Gamma \vdash p_{1} \wedge p_{2}}{\Gamma \vdash p_{1}} \quad \frac{\Gamma \vdash p_{1} \wedge p_{2}}{\Gamma \vdash p_{2}} \\
& \frac{\Gamma \vdash p_{1}}{\Gamma \vdash p_{1} \vee p_{2}} \quad \frac{\Gamma \vdash p_{2}}{\Gamma \vdash p_{1} \vee p_{2}} \\
& \frac{\Gamma \vdash p_{1} \vee p_{2} \quad \Gamma, p_{1} \vdash p_{3} \quad \Gamma, p_{2} \vdash p_{3}}{\Gamma \vdash p_{3}} \\
& \frac{p \in \Gamma}{\Gamma \vdash p} \quad \frac{\Gamma, p_{1} \vdash p_{2}}{\Gamma \vdash p_{1} \supset p_{2}} \quad \frac{\Gamma \vdash p_{1} \supset p_{2} \quad \Gamma \vdash p_{1}}{\Gamma \vdash p_{2}}
\end{aligned}
$$

Wait a second...

Wait a second... ZOMG!
That's exactly our type system! Just erase terms, change each τ to a \boldsymbol{p}, and translate \rightarrow to $\supset, *$ to $\wedge,+$ to \vee.

$\Gamma \vdash e: \tau$

$$
\frac{\Gamma \vdash e_{1}: \tau_{1} \quad \Gamma \vdash e_{2}: \tau_{2}}{\Gamma \vdash\left(e_{1}, e_{2}\right): \tau_{1} * \tau_{2}} \quad \frac{\Gamma \vdash e: \tau_{1} * \tau_{2}}{\Gamma \vdash e .1: \tau_{1}} \quad \frac{\Gamma \vdash e: \tau_{1} * \tau_{2}}{\Gamma \vdash e .2: \tau_{2}}
$$

$$
\frac{\Gamma \vdash e: \tau_{1}}{\Gamma \vdash \mathbf{A}(e): \tau_{1}+\tau_{2}} \quad \frac{\Gamma \vdash e: \tau_{2}}{\Gamma \vdash \mathrm{~B}(e): \tau_{1}+\tau_{2}}
$$

$$
\frac{\Gamma \vdash e: \tau_{1}+\tau_{2} \quad \Gamma, x: \tau_{1} \vdash e_{1}: \tau \quad \Gamma, y: \tau_{2} \vdash e_{2}: \tau}{\Gamma \vdash \text { match } e \text { with Ax. } e_{1} \mid \mathrm{B} y . e_{2}: \tau}
$$

$$
\frac{\Gamma(x)=\tau}{\Gamma \vdash x: \tau} \quad \frac{\Gamma, x: \tau_{1} \vdash e: \tau_{2}}{\Gamma \vdash \lambda x . e: \tau_{1} \rightarrow \tau_{2}} \quad \frac{\Gamma \vdash e_{1}: \tau_{2} \rightarrow \tau_{1} \quad \Gamma \vdash e_{2}: \tau_{2}}{\Gamma \vdash e_{1} e_{2}: \tau_{1}}
$$

What does it all mean? The Curry-Howard Isomorphism.

- Given a well-typed closed term, take the typing derivation, erase the terms, and have a propositional-logic proof
- Given a propositional-logic proof, there exists a closed term with that type
- A term that type-checks is a proof - it tells you exactly how to derive the logicical formula corresponding to its type

What does it all mean? The Curry-Howard Isomorphism.

- Given a well-typed closed term, take the typing derivation, erase the terms, and have a propositional-logic proof
- Given a propositional-logic proof, there exists a closed term with that type
- A term that type-checks is a proof - it tells you exactly how to derive the logicical formula corresponding to its type
- Constructive (hold that thought) propositional logic and simply-typed lambda-calculus with pairs and sums are the same thing.
- Computation and logic are deeply connected
- $\boldsymbol{\lambda}$ is no more or less made up than implication
- Revisit our examples under the logical interpretation...

$\lambda x: b . x$

is a proof that
$b \rightarrow b$

$$
\lambda x: b_{1} \cdot \lambda f: b_{1} \rightarrow b_{2} \cdot f x
$$

is a proof that
$b_{1} \rightarrow\left(b_{1} \rightarrow b_{2}\right) \rightarrow b_{2}$

$$
\lambda x: b_{1} \rightarrow b_{2} \rightarrow b_{3} . \lambda y: b_{2} . \lambda z: b_{1}, x z y
$$

$$
\lambda x: b_{1} \cdot(\mathbf{A}(x), \mathbf{A}(x))
$$

is a proof that
is a proof that

$$
\left(b_{1} \rightarrow b_{2} \rightarrow b_{3}\right) \rightarrow b_{2} \rightarrow b_{1} \rightarrow b_{3}
$$

$$
b_{1} \rightarrow\left(\left(b_{1}+b_{7}\right) *\left(b_{1}+b_{4}\right)\right)
$$

$$
\lambda f: b_{1} \rightarrow b_{3} . \lambda g: b_{2} \rightarrow b_{3} . \lambda z: b_{1}+b_{2} .
$$ (match z with $\mathrm{A} x . f x \mid \mathrm{B} x . g x)$

is a proof that

$$
\left(b_{1} \rightarrow b_{3}\right) \rightarrow\left(b_{2} \rightarrow b_{3}\right) \rightarrow\left(b_{1}+b_{2}\right) \rightarrow b_{3}
$$

$\lambda x: b_{1} * b_{2} . \lambda y: b_{3} .((y, x .1), x .2)$
is a proof that

$$
\left(b_{1} * b_{2}\right) \rightarrow b_{3} \rightarrow\left(\left(b_{3} * b_{1}\right) * b_{2}\right)
$$

So what?

Because:

- This is just fascinating (glad I'm not a dog)
- Don't think of logic and computing as distinct fields
- Thinking "the other way" can help you know what's possible/impossible
- Can form the basis for theorem provers
- Type systems should not be ad hoc piles of rules!

Classical vs. Constructive

Classical propositional logic has the "law of the excluded middle":

$$
\overline{\Gamma \vdash p_{1}+\left(p_{1} \rightarrow p_{2}\right)}
$$

(Think " $p+\neg p$ " - also equivalent to double-negation $\neg \neg \boldsymbol{p} \rightarrow \boldsymbol{p}$)
STLC does not support this law; for example, no closed expression has type $b_{1}+\left(b_{1} \rightarrow b_{2}\right)$

Classical vs. Constructive

Classical propositional logic has the "law of the excluded middle":

$$
\overline{\Gamma \vdash p_{1}+\left(p_{1} \rightarrow p_{2}\right)}
$$

(Think " $\boldsymbol{p}+\neg \boldsymbol{p}$ " - also equivalent to double-negation $\neg \neg \boldsymbol{p} \rightarrow \boldsymbol{p}$)
STLC does not support this law; for example, no closed expression has type $\boldsymbol{b}_{1}+\left(\boldsymbol{b}_{\mathbf{1}} \rightarrow \boldsymbol{b}_{\mathbf{2}}\right)$

Logics without this rule are called constructive. They're useful because proofs "know how the world is" and "are executable" and "produce examples"

Classical vs. Constructive
Classical propositional logic has the "law of the excluded middle":

$$
\overline{\Gamma \vdash p_{1}+\left(p_{1} \rightarrow p_{2}\right)}
$$

(Think " $\boldsymbol{p}+\neg \boldsymbol{p}$ " - also equivalent to double-negation $\neg \neg \boldsymbol{p} \rightarrow \boldsymbol{p}$)

STLC does not support this law; for example, no closed expression has type $\boldsymbol{b}_{1}+\left(\boldsymbol{b}_{1} \rightarrow \boldsymbol{b}_{2}\right)$

Logics without this rule are called constructive. They're useful because proofs "know how the world is" and "are executable" and "produce examples"

Can still "branch on possibilities" by making the excluded middle an explicit assumption:
$\left(\left(p_{1}+\left(p_{1} \rightarrow p_{2}\right)\right) *\left(p_{1} \rightarrow p_{3}\right) *\left(\left(p_{1} \rightarrow p_{2}\right) \rightarrow p_{3}\right)\right) \rightarrow p_{3}$

Classical vs. Constructive, an Example
Theorem: There exist irrational numbers \boldsymbol{a} and \boldsymbol{b} such that $\boldsymbol{a}^{\boldsymbol{b}}$ is rational.

Classical vs. Constructive, an Example
Theorem: There exist irrational numbers \boldsymbol{a} and \boldsymbol{b} such that $\boldsymbol{a}^{\boldsymbol{b}}$ is rational.
Classical Proof:

$$
\begin{aligned}
& \text { Let } x=\sqrt{2} \text {. Either } x^{x} \text { is rational or it is irrational. } \\
& \text { If } x^{x} \text { is rational, let } a=b=\sqrt{2} \text {, done. } \\
& \text { If } x^{x} \text { is irrational, let } a=x^{x} \text { and } b=x \text {. Since } \\
& \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}=\sqrt{2}^{(\sqrt{2} \cdot \sqrt{2})}=\sqrt{2}^{2}=2 \text {, done. }
\end{aligned}
$$

Classical vs. Constructive, an Example

Theorem: There exist irrational numbers \boldsymbol{a} and \boldsymbol{b} such that $\boldsymbol{a}^{\boldsymbol{b}}$ is rational.
Classical Proof:

$$
\begin{aligned}
& \text { Let } x=\sqrt{2} \text {. Either } x^{x} \text { is rational or it is irrational. } \\
& \text { If } x^{x} \text { is rational, let } a=b=\sqrt{2} \text {, done. } \\
& \text { If } x^{x} \text { is irrational, let } a=x^{x} \text { and } b=x \text {. Since } \\
& \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}=\sqrt{2}^{(\sqrt{2} \cdot \sqrt{2})}=\sqrt{2}^{2}=2 \text {, done. }
\end{aligned}
$$

Well, I guess we know there are some \boldsymbol{a} and \boldsymbol{b} satisfying the theorem... but which ones?

Classical vs. Constructive, an Example

Theorem: There exist irrational numbers \boldsymbol{a} and \boldsymbol{b} such that $\boldsymbol{a}^{\boldsymbol{b}}$ is rational.
Classical Proof:

$$
\begin{aligned}
& \text { Let } x=\sqrt{2} \text {. Either } x^{x} \text { is rational or it is irrational. } \\
& \text { If } x^{x} \text { is rational, let } a=b=\sqrt{2} \text {, done. } \\
& \text { If } x^{x} \text { is irrational, let } a=x^{x} \text { and } b=x \text {. Since } \\
& \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}=\sqrt{2}^{(\sqrt{2} \cdot \sqrt{2})}=\sqrt{2}^{2}=2 \text {, done. }
\end{aligned}
$$

Well, I guess we know there are some \boldsymbol{a} and \boldsymbol{b} satisfying the theorem... but which ones? LAME.

Classical vs. Constructive, an Example

Theorem: There exist irrational numbers \boldsymbol{a} and \boldsymbol{b} such that $\boldsymbol{a}^{\boldsymbol{b}}$ is rational.
Classical Proof:

$$
\begin{aligned}
& \text { Let } x=\sqrt{2} \text {. Either } x^{x} \text { is rational or it is irrational. } \\
& \text { If } x^{x} \text { is rational, let } a=b=\sqrt{2} \text {, done. } \\
& \text { If } x^{x} \text { is irrational, let } a=x^{x} \text { and } b=x \text {. Since } \\
& \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}=\sqrt{2}^{(\sqrt{2} \cdot \sqrt{2})}=\sqrt{2}^{2}=2 \text {, done. }
\end{aligned}
$$

Well, I guess we know there are some \boldsymbol{a} and \boldsymbol{b} satisfying the theorem... but which ones? LAME.

Constructive Proof:

$$
\begin{aligned}
& \text { Let } a=\sqrt{2}, b=\log _{2} 9 \\
& \text { Since } \sqrt{2}^{\log _{2} 9}=9^{\log _{2} \sqrt{2}}=9^{\log _{2}\left(2^{0.5}\right)}=9^{0.5}=3 \text {, done. }
\end{aligned}
$$

To prove that something exists, we actually had to produce it. SWEET.

Classical vs. Constructive, a Perspective
Constructive logic allows us to distinguish between things that classical logic lumps together.

Classical vs. Constructive, a Perspective
Constructive logic allows us to distinguish between things that classical logic lumps together.

Consider " \boldsymbol{P} is true." vs. "It would be absurd if \boldsymbol{P} were false."

- \boldsymbol{P} vs. $\neg \neg \boldsymbol{P}$

Classical vs. Constructive, a Perspective
Constructive logic allows us to distinguish between things that classical logic lumps together.
Consider " \boldsymbol{P} is true." vs

- \boldsymbol{P} vs. $\neg \neg \boldsymbol{P}$

Those are different things, but classical logic can't tell.

Our friends Gödel and Gentzen gave us this nice result:
\boldsymbol{P} is provable in classical logic iff $\neg \neg \boldsymbol{P}$ is provable in constructive logic.

A "non-terminating proof" is no proof at all.

Remember the typing rule for fix:

$$
\frac{\Gamma \vdash e: \tau \rightarrow \tau}{\Gamma \vdash \mathrm{fix} e: \tau}
$$

That let's us prove anything! Example: fix $\boldsymbol{\lambda} \boldsymbol{x}: \boldsymbol{b} . \boldsymbol{x}$ has type \boldsymbol{b}

So the "logic" is inconsistent (and therefore worthless)
Related: In ML, a value of type 'a never terminates normally
(raises an exception, infinite loop, etc.)

```
let rec f x = f x
let z = f 0
```

It's not just STLC and constructive propositional logic
Every logic has a correspondng typed $\boldsymbol{\lambda}$ calculus (and no consistent logic has something as "powerful" as fix).

Last word on Curry-Howard

It's not just STLC and constructive propositional logic

Every logic has a correspondng typed $\boldsymbol{\lambda}$ calculus (and no consistent logic has something as "powerful" as fix).

If you remember one thing: the typing rule for function application
is modus ponens

