Printed by Zachary Tatlock

Nov 04, 16 8:56 StructTactics.v Page 1/7 Nov 04, 16 8:56 StructTactics.v Page 2/7
(** https://github.com/uwplse/StructTact *) | [H : exists (name : _), _ |- _ 1 =>
let x := fresh name in
Ltac subst_max := destruct H as [x]
repeat match goal with end.
| [H: 22X = _ |- _1 => subst X
| [H: _ =2?2X |- _] => subst X Ltac break_exists_exists :=
end. repeat match goal with
| H:exists _, _ |- _ =>
Ltac inv H := inversion H; subst_max. let x := fresh "Xx" in
Ltac invc H := inv H; clear H. destruct H as [x]; exists x
Ltac invecs H := invc H; simpl in *. end.
Ltac break_if := Ltac break_and :=
match goal with repeat match goal with
| [|- context [if ?X then _ else _]] => | [H: _/\ _ |- _1 => destruct H
match type of X with end.
| sumbool _ _ => destruct X
| _ => destruct X eqgn:? Ltac break_and_goal :=
end repeat match goal with
| [H : context [if ?X then _ else _ 1 |- _] => | [|- _ /\ _ 1 => split
match type of X with end.
| sumbool _ _ => destruct X
| _ => destruct X eqn:? Ltac solve_by_inversion’ tac :=
end match goal with
end. | [H : _ |- _] => solve [inv H; tac]
end.
Ltac break_match_hyp :=
match goal with Ltac solve_by_inversion := solve_by_inversion’ auto.
| [H : context [match ?X with _ => _ end] |- _]
match type of X with Ltac apply_fun f H:=
| sumbool _ _ => destruct X match type of H with
| _ => destruct X eqn:? | ?X = ?Y => assert (f X = £ Y)
end end.
end.
Ltac conclude H tac :=
Ltac break_match_goal := (let H’ := fresh in
match goal with match type of H with
| [|- context [match ?X with _ => _ end]] => | 2P -> _ => assert P as H’ by (tac)
match type of X with end; specialize (H H’); clear H’).
| sumbool _ _ => destruct X
| _ => destruct X eqn:? Ltac concludes :=
end match goal with
end. | [H: ?P => _ |- _] => conclude H auto
end.
Ltac break_match := break_match_goal || break_match_hyp.
Ltac forward H :=
Ltac break_inner_match’ t := let H’ := fresh in
match t with match type of H with
| context[match ?X with _ => _ end] => | ?P -=> _ => assert P as H’
break_inner_match’ X || destruct X eqgn:? end.
| _ => destruct t eqgn:?
end. Ltac forwards :=
match goal with
Ltac break_inner_match_goal := | [H: ?Pp -> _ |- _ 1 => forward H
match goal with end.
| [|- context[match ?X with _ => _ end]] =>
break_inner_match’ X Ltac find_contradiction :=
end. match goal with
| [H: ?X=_, H : ?X = _ |- _ 1 => rewrite H in H’; solve_by_inversion
Ltac break_inner_match_hyp := end.
match goal with
| [H : context[match ?X with _ => _ end] |- _ 1 => Ltac find_rewrite :=
break_inner_match’ X match goal with
end. | [H:?X _ _ _ _=_,H :7?2X__ _ _=_1-_1=>rewrite H in H'
| [H ?X = _, H' : ?2X = _ |- _ 1 => rewrite H in H’
Ltac break_inner_match := break_inner_match_goal || break_inner_match_hyp. | [H: ?X=_, H' context [?X] |- _] => rewrite H in H’
| [H ?X = _ |- context [?X]] => rewrite H
Ltac break_exists := end
repeat match goal with

Friday November 04, 2016

lec11/StructTactics.v

1/4

Printed by Zachary Tatlock

Nov 04, 16 8:56 StructTactics.v Page 3/7

Nov 04, 16 8:56

StructTactics.v

Page 4/7

Ltac find_erewrite :=
match goal with

| [H:?X _ _ _ _=_,H ::?2X _ _ _ _=_1-_1 => erewrite H in H’
| [H: ?X=_, H ?X = _ |- _] => erewrite H in H’

| [H: ?X = _, H' context [?X] |- _] => erewrite H in H’

| [H : 2?2X = |- context [?X]] => erewrite H

end.

Ltac find_rewrite_lem lem :=
match goal with
' [LH: = _ 1 =
rewrite lem in H;
end.

[idtac]

Ltac find_rewrite_lem by lem t :=
match goal with
I [H =1 =
rewrite lem in H by t
end.

Ltac find_erewrite_lem lem :=
match goal with
LR _ 1= _]
end.

=> erewrite lem in H by eauto

Ltac find_reverse_rewrite :=
match goal with

| T H: _=92X__ _ _, H «:?2X _ _ _ _=_1-_1 => rewrite <- H in H’
| [H : _ = ?X, H context [?X] |- _] => rewrite <- H in H'
| [H: _ = 2?X |- context [?X]] => rewrite <- H
end.
Ltac find_inversion :=
match goal with
[[H : ?X _ _ _ _ _ _ = °?X _ _ _ _ _ _ |- _] => invc H
| [H : 2?2X _ _ _ _ _ = ?X _ _ _ _ _ |- _ 1 => invc H
| [H ?X _ _ _ _=22X_ _ _ _ |- _1 =>invc H
| [H ?2X _ _ _ =12X _ _ _ |- _1 = invc H
| [H ?2X _ _ =2?2X _ _ |- _ 1 => invc H
| [H ?X _ =72X _ |- _ 1 => invc H
end.
Ltac prove_eq :=
match goal with
| [H ?X ?xl ?x2 ?x3 = ?X ?yl ?y2 ?y3 |- _] =>
assert (x1 = yl) by congruence;
assert (x2 = y2) by congruence;
assert (x3 = y3) by congruence;
clear H
| [H : ?X ?x1 ?x2 = 2X 2yl ?y2 |- _] =>
assert (x1 = yl) by congruence;
assert (x2 = y2) by congruence;
clear H
[H: ?X ?2xl =2X 2yl |- _] =>
assert (x1 = yl) by congruence;
clear H
end.
Ltac tuple_inversion :=
match goal with
' I H: (L o vy)= (s _y _») |I-_1=>invc H
' [H: (L, —»)= (—) |=-_1=>1invc H
[H: (o,)= () |-] => invc H

end.

Ltac f_apply H f :=
match type of H with
X = ?2Y =>
assert (f X = £ Y) by

(rewrite H; auto)

end.

Ltac break_let :=
match goal with
| [H context
| [|- context [
end.

Ltac break_or_hyp :=
match goal with

I [H
end.

N/ _ -2

[(let (_,_)
(let

Ltac copy_apply lem H :=

let x := fresh in
pose proof H as x;
apply lem in x.

Ltac copy_eapply lem H :=

let x := fresh in
pose proof H as x;
eapply lem in x.

Ltac conclude_using tac :=

match goal with
| [H ?P -> _
end.

= _1

Ltac find_higher_order_rewrite :=

match goal with

' [H: _=_1-
| [H forall _
| [H forall _

end.

= ?X in _) 1 |-]

_ => destruct X eqn:?
?X in _)]] => destruct X eqgn:?

=> conclude H tac

_] => rewrite H in *

_ = = _ 1

. —_=_1=-_1

=> rewrite H in *
=> rewrite H in *

Ltac find_reverse_higher_order_rewrite :=

match goal with

' [H: _=_I-
| [H forall
[H : forall

end.

Ltac clean :=
match goal with
| [H ?X = ?X
end.

Ltac find_apply_hyp_

match goal with
I [H = _]
end.

_] => rewrite <- H in *

= =]

= _1=_1

= _1

goal :=

=> solve

Ltac find_copy_apply_lem_hyp lem

match goal with
I [H = _ 1
end.

Ltac find_apply_hyp_.

match goal with

| [H : forall
H 0 _ |- _
apply H in H’;
| [H : - _ .,

apply H in H';
end.

=> rewrite <- H in *
=> rewrite <- H in *

=> clear H

lapply H]

=> copy_apply lem H

hyp :=

— —-> —

] =
[idtac]
H' |-

_ _]
auto; [idtac]

Ltac find_copy_apply_hyp_hyp :=

match goal with
| [H forall

— p— —-> —

=>

Friday November 04, 2016

lec11/StructTactics.v

2/4

Printed by Zachary Tatlock

Nov 04, 16 8:56 StructTactics.v Page 5/7 Nov 04, 16 8:56 StructTactics.v Page 6/7
H ¢ _ |- _ 1 => remGenIfNotVar f£f;
copy_apply H H’; [idtac] remGenIfNotVar g
| [H: _->_, H = _|-_1=> | _ ?a ?b ?c ?d ?e ?f =>
copy_apply H H’; auto; [idtac] remGenIfNotVar a;
end. remGenIfNotVar b;
remGenIfNotVar c;
Ltac find_apply_lem_hyp lem := remGenIfNotVar d;
match goal with remGenIfNotVar e;
| [H: _ |- _ 1 => apply lem in H remGenIfNotVar £
end. | _ ?a ?b ?2c ?2d ?e =>
remGenIfNotVar a;
Ltac find_eapply_lem _hyp lem := remGenIfNotVar b;
match goal with remGenIfNotVar c;
| T H: _ |- _ 1 => eapply lem in H remGenIfNotVar d;
end. remGenIfNotVar e
| _ ?a ?b ?2c ?d =>
Ltac insterU H := remGenIfNotVar a;
match type of H with remGenIfNotVar b;
| forall _ : 2T, _ => remGenIfNotVar c;
let x := fresh "x" in remGenIfNotVar d
evar (x : T); | _ ?a ?b ?c =>
let x’ := (eval unfold x in x) in remGenIfNotVar a;
clear x; specialize (H x’) remGenIfNotVar b;
end. remGenIfNotVar c
| _ ?a ?b =>
Ltac find_insterU := remGenIfNotVar a;
match goal with remGenIfNotVar b
| [H : forall _, _ |- _ 1 => insterU H | _ ?2a =>
end. remGenIfNotVar a
end.
Ltac eapply_prop P :=
match goal with Ltac generalizeEverythingElse H :=
| H: P _ |- _ => repeat match goal with
eapply H | [x ¢ 2T |- _ 1 =>
end. first [
match H with
Ltac isVar t := | x => fail 2
match goal with end |
v _ |- _ => match type of H with
match t with | context [x] => fail 2
| v => idtac end |
end revert x]
end. end.
Ltac remGen t := Ltac prep_induction H :=
let x := fresh in rememberNonVars H;
let H := fresh in generalizeEverythingElse H.
remember t as x eqn:H;
generalize dependent H. Ltac econcludes :=
match goal with
Ltac remGenIfNotVar t := first [isVar t| remGen t]. | [H: ?P => _ |- _] => conclude H eauto
end.
Ltac rememberNonVars H :=
match type of H with Ltac find_copy_eapply_lem_hyp lem :=
| _ ?a ?b 2?2c ?2d ?e ?f ?g ?h => match goal with
remGenIfNotVar a; | [H: _ |- _ 1 => copy_eapply lem H
remGenIfNotVar b; end.
remGenIfNotVar c;
remGenIfNotVar d; Ltac apply_prop_hyp P Q :=
remGenIfNotVar e; match goal with
remGenIfNotVar f; | [H : context [P], H’ : context [Q] |- _ 1 =>
remGenIfNotVar g; apply H in H'
remGenIfNotVar h end.
| _ ?a ?b ?2c ?d ?e ?f ?2g =>
remGenIfNotVar a;
remGenIfNotVar b; Ltac eapply_prop_hyp P Q :=
remGenIfNotVar c; match goal with
remGenIfNotVar d; | [H : context [P], H'" : context [Q] |- _] =>
remGenIfNotVar e; eapply H in H’
Friday November 04, 2016 lec11/StructTactics.v 3/4

Nov 04, 16 8:56 StructTactics.v Page 7/7

end.

Ltac copy_eapply_prop_hyp P Q :=
match goal with
| [H : context [P], H" : context [Q] |- _] =>
copy_eapply H H’
end.

Ltac find_false :=
match goal with
| H: _ -> False |- _ => exfalso; apply H
end.

Ltac injc H :=
injection H; clear H; intros; subst_max.

Ltac find_injection :=
match goal with
|1 X =°?X _ _ _ _ _ _ |- _ 1 =>injc H
HES = ?X _ _ _ _ _ |- _ 1 => injc H
?X = ?X |- _ 1 => injc H
?X
?X

?2X _ = ?X _ |- _ 1 => injc H

jaxjieniia e viasijes)

|

|

I

|

I
end.
Ltac aggressive_rewrite_goal :=

match goal with H : _ |- _ => rewrite H end.

Ltac break_exists_name x :=
match goal with
| [H : exists _, _ |- _ 1 => destruct H as [x H]
end.

Tactic Notation "unify" uconstr (x) "with" uconstr(y) :=
let Htmp := fresh "Htmp" in
refine (let Htmp : False -> x := fun false : False =>
match false return y with end
in _);
clear Htmp.

Tactic Notation "on" uconstr(x) "," tactic3(tac) :=
match goal with
' [H 2y |- _ 1 =>
unify x with y;
tac H
end.

(** generic forward reasoning *)

Tactic Notation "fwd" tactic3(tac) "as" ident (H) :=
simple refine (let H : _ := _ in _);
[shelve
| tac

| clearbody H 1.

Tactic Notation "fwd" tactic3(tac) :=
let H := fresh "H" in
fwd tac as H.

Ltac ee :=
econstructor; eauto.

Friday November 04, 2016 lec11/StructTactics.v

Printed by Zachary Tatlock

4/4

