
(** https://github.com/uwplse/StructTact *)

Ltac subst_max :=
 repeat match goal with
 | [H : ?X = _ |− _] => subst X
 | [H : _ = ?X |− _] => subst X
 end.

Ltac inv H := inversion H; subst_max.
Ltac invc H := inv H; clear H.
Ltac invcs H := invc H; simpl in *.

Ltac break_if :=
 match goal with
 | [|− context [if ?X then _ else _]] =>
 match type of X with
 | sumbool _ _ => destruct X
 | _ => destruct X eqn:?
 end
 | [H : context [if ?X then _ else _] |− _] =>
 match type of X with
 | sumbool _ _ => destruct X
 | _ => destruct X eqn:?
 end
 end.

Ltac break_match_hyp :=
 match goal with
 | [H : context [match ?X with _ => _ end] |− _] =>
 match type of X with
 | sumbool _ _ => destruct X
 | _ => destruct X eqn:?
 end
 end.

Ltac break_match_goal :=
 match goal with
 | [|− context [match ?X with _ => _ end]] =>
 match type of X with
 | sumbool _ _ => destruct X
 | _ => destruct X eqn:?
 end
 end.

Ltac break_match := break_match_goal || break_match_hyp.

Ltac break_inner_match’ t :=
 match t with
 | context[match ?X with _ => _ end] =>
 break_inner_match’ X || destruct X eqn:?
 | _ => destruct t eqn:?
 end.

Ltac break_inner_match_goal :=
 match goal with
 | [|− context[match ?X with _ => _ end]] =>
 break_inner_match’ X
 end.

Ltac break_inner_match_hyp :=
 match goal with
 | [H : context[match ?X with _ => _ end] |− _] =>
 break_inner_match’ X
 end.

Ltac break_inner_match := break_inner_match_goal || break_inner_match_hyp.

Ltac break_exists :=
 repeat match goal with

Nov 04, 16 8:56 Page 1/7StructTactics.v

 | [H : exists (name : _), _ |− _] =>
 let x := fresh name in
 destruct H as [x]
 end.

Ltac break_exists_exists :=
 repeat match goal with
 | H:exists _, _ |− _ =>
 let x := fresh "x" in
 destruct H as [x]; exists x
 end.

Ltac break_and :=
 repeat match goal with
 | [H : _ /\ _ |− _] => destruct H
 end.

Ltac break_and_goal :=
 repeat match goal with
 | [|− _ /\ _] => split
 end.

Ltac solve_by_inversion’ tac :=
 match goal with
 | [H : _ |− _] => solve [inv H; tac]
 end.

Ltac solve_by_inversion := solve_by_inversion’ auto.

Ltac apply_fun f H:=
 match type of H with
 | ?X = ?Y => assert (f X = f Y)
 end.

Ltac conclude H tac :=
 (let H’ := fresh in
 match type of H with
 | ?P −> _ => assert P as H’ by (tac)
 end; specialize (H H’); clear H’).

Ltac concludes :=
 match goal with
 | [H : ?P −> _ |− _] => conclude H auto
 end.

Ltac forward H :=
 let H’ := fresh in
 match type of H with
 | ?P −> _ => assert P as H’
 end.

Ltac forwards :=
 match goal with
 | [H : ?P −> _ |− _] => forward H
 end.

Ltac find_contradiction :=
 match goal with
 | [H : ?X = _, H’ : ?X = _ |− _] => rewrite H in H’; solve_by_inversion
 end.

Ltac find_rewrite :=
 match goal with
 | [H : ?X _ _ _ _ = _, H’ : ?X _ _ _ _ = _ |− _] => rewrite H in H’
 | [H : ?X = _, H’ : ?X = _ |− _] => rewrite H in H’
 | [H : ?X = _, H’ : context [?X] |− _] => rewrite H in H’
 | [H : ?X = _ |− context [?X]] => rewrite H
 end.

Nov 04, 16 8:56 Page 2/7StructTactics.v

Printed by Zachary Tatlock

Friday November 04, 2016 1/4lec11/StructTactics.v

Ltac find_erewrite :=
 match goal with
 | [H : ?X _ _ _ _ = _, H’ : ?X _ _ _ _ = _ |− _] => erewrite H in H’
 | [H : ?X = _, H’ : ?X = _ |− _] => erewrite H in H’
 | [H : ?X = _, H’ : context [?X] |− _] => erewrite H in H’
 | [H : ?X = _ |− context [?X]] => erewrite H
 end.

Ltac find_rewrite_lem lem :=
 match goal with
 | [H : _ |− _] =>
 rewrite lem in H; [idtac]
 end.

Ltac find_rewrite_lem_by lem t :=
 match goal with
 | [H : _ |− _] =>
 rewrite lem in H by t
 end.

Ltac find_erewrite_lem lem :=
 match goal with
 | [H : _ |− _] => erewrite lem in H by eauto
 end.

Ltac find_reverse_rewrite :=
 match goal with
 | [H : _ = ?X _ _ _ _, H’ : ?X _ _ _ _ = _ |− _] => rewrite <− H in H’
 | [H : _ = ?X, H’ : context [?X] |− _] => rewrite <− H in H’
 | [H : _ = ?X |− context [?X]] => rewrite <− H
 end.

Ltac find_inversion :=
 match goal with
 | [H : ?X _ _ _ _ _ _ = ?X _ _ _ _ _ _ |− _] => invc H
 | [H : ?X _ _ _ _ _ = ?X _ _ _ _ _ |− _] => invc H
 | [H : ?X _ _ _ _ = ?X _ _ _ _ |− _] => invc H
 | [H : ?X _ _ _ = ?X _ _ _ |− _] => invc H
 | [H : ?X _ _ = ?X _ _ |− _] => invc H
 | [H : ?X _ = ?X _ |− _] => invc H
 end.

Ltac prove_eq :=
 match goal with
 | [H : ?X ?x1 ?x2 ?x3 = ?X ?y1 ?y2 ?y3 |− _] =>
 assert (x1 = y1) by congruence;
 assert (x2 = y2) by congruence;
 assert (x3 = y3) by congruence;
 clear H
 | [H : ?X ?x1 ?x2 = ?X ?y1 ?y2 |− _] =>
 assert (x1 = y1) by congruence;
 assert (x2 = y2) by congruence;
 clear H
 | [H : ?X ?x1 = ?X ?y1 |− _] =>
 assert (x1 = y1) by congruence;
 clear H
 end.

Ltac tuple_inversion :=
 match goal with
 | [H : (_, _, _, _) = (_, _, _, _) |− _] => invc H
 | [H : (_, _, _) = (_, _, _) |− _] => invc H
 | [H : (_, _) = (_, _) |− _] => invc H
 end.

Ltac f_apply H f :=
 match type of H with
 | ?X = ?Y =>
 assert (f X = f Y) by (rewrite H; auto)

Nov 04, 16 8:56 Page 3/7StructTactics.v

 end.

Ltac break_let :=
 match goal with
 | [H : context [(let (_,_) := ?X in _)] |− _] => destruct X eqn:?
 | [|− context [(let (_,_) := ?X in _)]] => destruct X eqn:?
 end.

Ltac break_or_hyp :=
 match goal with
 | [H : _ \/ _ |− _] => invc H
 end.

Ltac copy_apply lem H :=
 let x := fresh in
 pose proof H as x;
 apply lem in x.

Ltac copy_eapply lem H :=
 let x := fresh in
 pose proof H as x;
 eapply lem in x.

Ltac conclude_using tac :=
 match goal with
 | [H : ?P −> _ |− _] => conclude H tac
 end.

Ltac find_higher_order_rewrite :=
 match goal with
 | [H : _ = _ |− _] => rewrite H in *
 | [H : forall _, _ = _ |− _] => rewrite H in *
 | [H : forall _ _, _ = _ |− _] => rewrite H in *
 end.

Ltac find_reverse_higher_order_rewrite :=
 match goal with
 | [H : _ = _ |− _] => rewrite <− H in *
 | [H : forall _, _ = _ |− _] => rewrite <− H in *
 | [H : forall _ _, _ = _ |− _] => rewrite <− H in *
 end.

Ltac clean :=
 match goal with
 | [H : ?X = ?X |− _] => clear H
 end.

Ltac find_apply_hyp_goal :=
 match goal with
 | [H : _ |− _] => solve [apply H]
 end.

Ltac find_copy_apply_lem_hyp lem :=
 match goal with
 | [H : _ |− _] => copy_apply lem H
 end.

Ltac find_apply_hyp_hyp :=
 match goal with
 | [H : forall _, _ −> _,
 H’ : _ |− _] =>
 apply H in H’; [idtac]
 | [H : _ −> _ , H’ : _ |− _] =>
 apply H in H’; auto; [idtac]
 end.

Ltac find_copy_apply_hyp_hyp :=
 match goal with
 | [H : forall _, _ −> _,

Nov 04, 16 8:56 Page 4/7StructTactics.v

Printed by Zachary Tatlock

Friday November 04, 2016 2/4lec11/StructTactics.v

 H’ : _ |− _] =>
 copy_apply H H’; [idtac]
 | [H : _ −> _ , H’ : _ |− _] =>
 copy_apply H H’; auto; [idtac]
 end.

Ltac find_apply_lem_hyp lem :=
 match goal with
 | [H : _ |− _] => apply lem in H
 end.

Ltac find_eapply_lem_hyp lem :=
 match goal with
 | [H : _ |− _] => eapply lem in H
 end.

Ltac insterU H :=
 match type of H with
 | forall _ : ?T, _ =>
 let x := fresh "x" in
 evar (x : T);
 let x’ := (eval unfold x in x) in
 clear x; specialize (H x’)
 end.

Ltac find_insterU :=
 match goal with
 | [H : forall _, _ |− _] => insterU H
 end.

Ltac eapply_prop P :=
 match goal with
 | H : P _ |− _ =>
 eapply H
 end.

Ltac isVar t :=
 match goal with
 | v : _ |− _ =>
 match t with
 | v => idtac
 end
 end.

Ltac remGen t :=
 let x := fresh in
 let H := fresh in
 remember t as x eqn:H;
 generalize dependent H.

Ltac remGenIfNotVar t := first [isVar t| remGen t].

Ltac rememberNonVars H :=
 match type of H with
 | _ ?a ?b ?c ?d ?e ?f ?g ?h =>
 remGenIfNotVar a;
 remGenIfNotVar b;
 remGenIfNotVar c;
 remGenIfNotVar d;
 remGenIfNotVar e;
 remGenIfNotVar f;
 remGenIfNotVar g;
 remGenIfNotVar h
 | _ ?a ?b ?c ?d ?e ?f ?g =>
 remGenIfNotVar a;
 remGenIfNotVar b;
 remGenIfNotVar c;
 remGenIfNotVar d;
 remGenIfNotVar e;

Nov 04, 16 8:56 Page 5/7StructTactics.v

 remGenIfNotVar f;
 remGenIfNotVar g
 | _ ?a ?b ?c ?d ?e ?f =>
 remGenIfNotVar a;
 remGenIfNotVar b;
 remGenIfNotVar c;
 remGenIfNotVar d;
 remGenIfNotVar e;
 remGenIfNotVar f
 | _ ?a ?b ?c ?d ?e =>
 remGenIfNotVar a;
 remGenIfNotVar b;
 remGenIfNotVar c;
 remGenIfNotVar d;
 remGenIfNotVar e
 | _ ?a ?b ?c ?d =>
 remGenIfNotVar a;
 remGenIfNotVar b;
 remGenIfNotVar c;
 remGenIfNotVar d
 | _ ?a ?b ?c =>
 remGenIfNotVar a;
 remGenIfNotVar b;
 remGenIfNotVar c
 | _ ?a ?b =>
 remGenIfNotVar a;
 remGenIfNotVar b
 | _ ?a =>
 remGenIfNotVar a
 end.

Ltac generalizeEverythingElse H :=
 repeat match goal with
 | [x : ?T |− _] =>
 first [
 match H with
 | x => fail 2
 end |
 match type of H with
 | context [x] => fail 2
 end |
 revert x]
 end.

Ltac prep_induction H :=
 rememberNonVars H;
 generalizeEverythingElse H.

Ltac econcludes :=
 match goal with
 | [H : ?P −> _ |− _] => conclude H eauto
 end.

Ltac find_copy_eapply_lem_hyp lem :=
 match goal with
 | [H : _ |− _] => copy_eapply lem H
 end.

Ltac apply_prop_hyp P Q :=
 match goal with
 | [H : context [P], H’ : context [Q] |− _] =>
 apply H in H’
 end.

Ltac eapply_prop_hyp P Q :=
 match goal with
 | [H : context [P], H’ : context [Q] |− _] =>
 eapply H in H’

Nov 04, 16 8:56 Page 6/7StructTactics.v

Printed by Zachary Tatlock

Friday November 04, 2016 3/4lec11/StructTactics.v

 end.

Ltac copy_eapply_prop_hyp P Q :=
 match goal with
 | [H : context [P], H’ : context [Q] |− _] =>
 copy_eapply H H’
 end.

Ltac find_false :=
 match goal with
 | H : _ −> False |− _ => exfalso; apply H
 end.

Ltac injc H :=
 injection H; clear H; intros; subst_max.

Ltac find_injection :=
 match goal with
 | [H : ?X _ _ _ _ _ _ = ?X _ _ _ _ _ _ |− _] => injc H
 | [H : ?X _ _ _ _ _ = ?X _ _ _ _ _ |− _] => injc H
 | [H : ?X _ _ _ _ = ?X _ _ _ _ |− _] => injc H
 | [H : ?X _ _ _ = ?X _ _ _ |− _] => injc H
 | [H : ?X _ _ = ?X _ _ |− _] => injc H
 | [H : ?X _ = ?X _ |− _] => injc H
 end.

Ltac aggressive_rewrite_goal :=
 match goal with H : _ |− _ => rewrite H end.

Ltac break_exists_name x :=
 match goal with
 | [H : exists _, _ |− _] => destruct H as [x H]
 end.

Tactic Notation "unify" uconstr(x) "with" uconstr(y) :=
 let Htmp := fresh "Htmp" in
 refine (let Htmp : False −> x := fun false : False =>
 match false return y with end
 in _);
 clear Htmp.

Tactic Notation "on" uconstr(x) "," tactic3(tac) :=
 match goal with
 | [H : ?y |− _] =>
 unify x with y;
 tac H
 end.

(** generic forward reasoning *)

Tactic Notation "fwd" tactic3(tac) "as" ident(H) :=
 simple refine (let H : _ := _ in _);
 [shelve
 | tac
 | clearbody H].

Tactic Notation "fwd" tactic3(tac) :=
 let H := fresh "H" in
 fwd tac as H.

Ltac ee :=
 econstructor; eauto.

Nov 04, 16 8:56 Page 7/7StructTactics.v

Printed by Zachary Tatlock

Friday November 04, 2016 4/4lec11/StructTactics.v

