
CS-XXX: Graduate Programming Languages

Lecture 8 — Reduction Strategies; Substitution

Dan Grossman
2012

Review

λ-calculus syntax:
e ::= λx. e | x | e e
v ::= λx. e

Call-By-Value Left-To-Right Small-Step Operational Semantics:

e→ e′

(λx. e) v → e[v/x]

e1 → e′1
e1 e2 → e′1 e2

e2 → e′2
v e2 → v e′2

Previously wrote the first rule as follows:

e[v/x] = e′

(λx. e) v → e′

I The more concise axiom is more common

I But the more verbose version fits better with how we will
formally define substitution at the end of this lecture

Dan Grossman CS-XXX 2012, Lecture 8 2

Other Reduction “Strategies”

Suppose we allowed any substitution to take place in any order:

e→ e′

(λx. e) e′ → e[e′/x]
e1 → e′1

e1 e2 → e′1 e2

e2 → e′2
e1 e2 → e1 e

′
2

e→ e′

λx. e→ λx. e′

Programming languages do not typically do this, but it has uses:

I Optimize/pessimize/partially evaluate programs

I Prove programs equivalent by reducing them to the same term

Dan Grossman CS-XXX 2012, Lecture 8 3

Church-Rosser

The order in which you reduce is a “strategy”

Non-obvious fact — “Confluence” or “Church-Rosser”:
In this pure calculus,

If e→∗ e1 and e→∗ e2,
then there exists an e3 such that e1 →∗ e3 and e2 →∗ e3

“No strategy gets painted into a corner”

I Useful: No rewriting via the full-reduction rules prevents you
from getting an answer (Wow!)

Any rewriting system with this property is said to,
“have the Church-Rosser property”

Dan Grossman CS-XXX 2012, Lecture 8 4

Equivalence via rewriting

We can add two more rewriting rules:

I Replace λx. e with λy. e′ where e′ is e with “free” x
replaced with y (assuming y not already used in e)

λx. e→ λy. e[y/x]

I Replace λx. e x with e if x does not occur “free” in e

x is not free in e

λx. e x→ e

Analogies: if e then true else false

List.map (fun x -> f x) lst

But beware side-effects/non-termination under call-by-value

Dan Grossman CS-XXX 2012, Lecture 8 5

No more rules to add

Now consider the system with:

I The 4 rules on slide 3

I The 2 rules on slide 5

I Rules can also run backwards (rewrite right-side to left-side)

Amazing: Under the natural denotational semantics (basically treat
lambdas as functions), e and e′ denote the same thing if and only
if this rewriting system can show e→∗ e′

I So the rules are sound, meaning they respect the semantics

I So the rules are complete, meaning there is no need to add
any more rules in order to show some equivalence they can’t

But program equivalence in a Turing-complete PL is undecidable

I So there is no perfect (always terminates, always correctly
says yes or no) rewriting strategy for equivalence

Dan Grossman CS-XXX 2012, Lecture 8 6

Some other common semantics

We have seen “full reduction” and left-to-right CBV

I (OCaml is unspecified order, but actually right-to-left)

Claim: Without assignment, I/O, exceptions, . . . , you cannot
distinguish left-to-right CBV from right-to-left CBV

I How would you prove this equivalence? (Hint: Lecture 6)

Another option: call-by-name (CBN) — even “smaller” than CBV!

e→ e′

(λx. e) e′ → e[e′/x]
e1 → e′1

e1 e2 → e′1 e2

Diverges strictly less often than CBV, e.g., (λy. λz. z) e
Can be faster (fewer steps), but not usually (reuse args)

Dan Grossman CS-XXX 2012, Lecture 8 7

More on evaluation order

In “purely functional” code, evaluation order matters “only” for
performance and termination

Example: Imagine CBV for conditionals!
let rec f n = if n=0 then 1 else n*(f (n-1))

Call-by-need or “lazy evaluation”:

I Evaluate the argument the first time it’s used and
memoize the result

I Useful idiom for programmers too

Best of both worlds?

I For purely functional code, total equivalence with CBN and
asymptotically no slower than CBV. (Note: asymptotic!)

I But hard to reason about side-effects

Dan Grossman CS-XXX 2012, Lecture 8 8

More on Call-By-Need

This course will mostly assume Call-By-Value

Haskell uses Call-By-Need

Example:

four = length (9:(8+5):17:42:[])

eight = four + four

main = do { putStrLn (show eight) }

Example:

ones = 1 : ones

nats_from x = x : (nats_from (x + 1))

Dan Grossman CS-XXX 2012, Lecture 8 9

Formalism not done yet

Need to define substitution (used in our function-call rule)

I Shockingly subtle

Informally: e[e′/x] “replaces occurrences of x in e with e′”

Examples:

x[(λy. y)/x] = λy. y

(λy. y x)[(λz. z)/x] = λy. y λz. z

(x x)[(λx. x x)/x] = (λx. x x)(λx. x x)

Dan Grossman CS-XXX 2012, Lecture 8 10

Substitution gone wrong

Attempt #1:

e1[e2/x] = e3

x[e/x] = e

y 6= x

y[e/x] = y

e1[e/x] = e′1
(λy. e1)[e/x] = λy. e′1

e1[e/x] = e′1 e2[e/x] = e′2
(e1 e2)[e/x] = e′1 e

′
2

Recursively replace every x leaf with e

The rule for substituting into (nested) functions is wrong: If the
function’s argument binds the same variable (shadowing), we
should not change the function’s body

Example program: (λx. λx. x) 42

Dan Grossman CS-XXX 2012, Lecture 8 11

Substitution gone wrong

Attempt #1:

e1[e2/x] = e3

x[e/x] = e

y 6= x

y[e/x] = y

e1[e/x] = e′1
(λy. e1)[e/x] = λy. e′1

e1[e/x] = e′1 e2[e/x] = e′2
(e1 e2)[e/x] = e′1 e

′
2

Recursively replace every x leaf with e

The rule for substituting into (nested) functions is wrong: If the
function’s argument binds the same variable (shadowing), we
should not change the function’s body

Example program: (λx. λx. x) 42
Dan Grossman CS-XXX 2012, Lecture 8 11

Substitution gone wrong: Attempt #2

e1[e2/x] = e3

x[e/x] = e

y 6= x

y[e/x] = y

e1[e/x] = e′1 y 6= x

(λy. e1)[e/x] = λy. e′1

(λx. e1)[e/x] = λx. e1

e1[e/x] = e′1 e2[e/x] = e′2
(e1 e2)[e/x] = e′1 e

′
2

Recursively replace every x leaf with e but respect shadowing

Substituting into (nested) functions is still wrong: If e uses an
outer y, then substitution captures y (actual technical name)

I Example program capturing y:
(λx. λy. x) (λz. y)→ λy. (λz. y)

I Different(!) from: (λa. λb. a) (λz. y)→ λb. (λz. y)

I Capture won’t happen under CBV/CBN if our source program
has no free variables, but can happen under full reduction

Dan Grossman CS-XXX 2012, Lecture 8 12

Substitution gone wrong: Attempt #2

e1[e2/x] = e3

x[e/x] = e

y 6= x

y[e/x] = y

e1[e/x] = e′1 y 6= x

(λy. e1)[e/x] = λy. e′1

(λx. e1)[e/x] = λx. e1

e1[e/x] = e′1 e2[e/x] = e′2
(e1 e2)[e/x] = e′1 e

′
2

Recursively replace every x leaf with e but respect shadowing

Substituting into (nested) functions is still wrong: If e uses an
outer y, then substitution captures y (actual technical name)

I Example program capturing y:
(λx. λy. x) (λz. y)→ λy. (λz. y)

I Different(!) from: (λa. λb. a) (λz. y)→ λb. (λz. y)

I Capture won’t happen under CBV/CBN if our source program
has no free variables, but can happen under full reduction

Dan Grossman CS-XXX 2012, Lecture 8 12

Attempt #3

First define the “free variables of an expression” FV (e):

FV (x) = {x}
FV (e1 e2) = FV (e1) ∪ FV (e2)
FV (λx. e) = FV (e)− {x}

e1[e2/x] = e3

x[e/x] = e

y 6= x

y[e/x] = y

e1[e/x] = e′1 y 6= x y 6∈ FV (e)

(λy. e1)[e/x] = λy. e′1

(λx. e1)[e/x] = λx. e1

e1[e/x] = e′1 e2[e/x] = e′2
(e1 e2)[e/x] = e′1 e

′
2

But this is a partial definition
I Could get stuck if there is no substitution

Dan Grossman CS-XXX 2012, Lecture 8 13

Attempt #3

First define the “free variables of an expression” FV (e):

FV (x) = {x}
FV (e1 e2) = FV (e1) ∪ FV (e2)
FV (λx. e) = FV (e)− {x}

e1[e2/x] = e3

x[e/x] = e

y 6= x

y[e/x] = y

e1[e/x] = e′1 y 6= x y 6∈ FV (e)

(λy. e1)[e/x] = λy. e′1

(λx. e1)[e/x] = λx. e1

e1[e/x] = e′1 e2[e/x] = e′2
(e1 e2)[e/x] = e′1 e

′
2

But this is a partial definition
I Could get stuck if there is no substitution

Dan Grossman CS-XXX 2012, Lecture 8 13

Attempt #3

First define the “free variables of an expression” FV (e):

FV (x) = {x}
FV (e1 e2) = FV (e1) ∪ FV (e2)
FV (λx. e) = FV (e)− {x}

e1[e2/x] = e3

x[e/x] = e

y 6= x

y[e/x] = y

e1[e/x] = e′1 y 6= x y 6∈ FV (e)

(λy. e1)[e/x] = λy. e′1

(λx. e1)[e/x] = λx. e1

e1[e/x] = e′1 e2[e/x] = e′2
(e1 e2)[e/x] = e′1 e

′
2

But this is a partial definition
I Could get stuck if there is no substitution

Dan Grossman CS-XXX 2012, Lecture 8 13

Implicit Renaming

I A partial definition because of the syntactic accident that y
was used as a binder

I Choice of local names should be irrelevant/invisible

I So we allow implicit systematic renaming of a binding and all
its bound occurrences

I So via renaming the rule with y 6= x can always apply and we
can remove the rule where x is shadowed

I In general, we never distinguish terms that differ only in the
names of variables (A key language-design principle!)

I So now even “different syntax trees” can be the “same term”
I Treat particular choice of variable as a concrete-syntax thing

Dan Grossman CS-XXX 2012, Lecture 8 14

Correct Substitution

Assume implicit systematic renaming of a binding and all its bound
occurrences

I Lets one rule match any substitution into a function

And these rules:

e1[e2/x] = e3

x[e/x] = e

y 6= x

y[e/x] = y

e1[e/x] = e′1 e2[e/x] = e′2
(e1 e2)[e/x] = e′1 e

′
2

e1[e/x] = e′1 y 6= x y 6∈ FV (e)

(λy. e1)[e/x] = λy. e′1

Dan Grossman CS-XXX 2012, Lecture 8 15

More explicit approach

While everyone in PL:

I Understands the capture problem

I Avoids it via implicit systematic renaming

you may find that unsatisfying, especially if you have to implement
substitution and full reduction in a meta-language that doesn’t
have implicit renaming

This more explicit version also works

z 6= x z 6∈ FV (e1) z 6∈ FV (e) e1[z/y] = e′1 e′1[e/x] = e′′1
(λy. e1)[e/x] = λz. e′′1

I You have to find an appropriate z, but one always exists and
__$compilerGenerated appended to a global counter works

Dan Grossman CS-XXX 2012, Lecture 8 16

Some jargon

If you want to study/read PL research, some jargon for things we
have studied is helpful...

I Implicit systematic renaming is α-conversion. If renaming in
e1 can produce e2, then e1 and e2 are α-equivalent.

I α-equivalence is an equivalence relation

I Replacing (λx. e1) e2 with e1[e2/x], i.e., doing a function
call, is a β-reduction

I (The reverse step is meaning-preserving, but unusual)

I Replacing λx. e x with e is an η-reduction or η-contraction
(since it’s always smaller)

I Replacing e with e with λx. e x is an η-expansion
I It can delay evaluation of e under CBV
I It is sometimes necessary in languages (e.g., OCaml does not

treat constructors as first-class functions)

Dan Grossman CS-XXX 2012, Lecture 8 17

