CS-XXX: Graduate Programming Languages

Lecture 8 — Reduction Strategies; Substitution

Dan Grossman
2012

Other Reduction “Strategies”
Suppose we allowed any substitution to take place in any order:

e — ¢

e1 — €] ez — €,

(Az. e) e’ — ele’/x] e1 ez — €] ez e1 ez — ey €,

e — e

Ax. e > . €

Programming languages do not typically do this, but it has uses:
» Optimize/pessimize/partially evaluate programs

» Prove programs equivalent by reducing them to the same term

Dan Grossman CS-XXX 2012, Lecture 8

Review
A-calculus syntax:
e = Az.e|xz|ee
v o= Azx.e

Call-By-Value Left-To-Right Small-Step Operational Semantics:

e — ¢

61—)6’1 62—)6’2

(Az.e) v > e[v/x] e1 ez —>ejex vex—ve,

Previously wrote the first rule as follows:

elv/x] = €

Azx. e) v — €
» The more concise axiom is more common

» But the more verbose version fits better with how we will
formally define substitution at the end of this lecture

Dan Grossman CS-XXX 2012, Lecture 8

Church-Rosser

The order in which you reduce is a “strategy”

Non-obvious fact — “Confluence” or “Church-Rosser”:
In this pure calculus,

If e —* e1 and e =™ e3,
then there exists an es such that e; —™* e3 and es —™* e3

“No strategy gets painted into a corner”

» Useful: No rewriting via the full-reduction rules prevents you
from getting an answer (Wow!)

Any rewriting system with this property is said to,
“have the Church-Rosser property”

Dan Grossman CS-XXX 2012, Lecture 8

Equivalence via rewriting No more rules to add

We can add two more rewriting rules: Now consider the system with:

» The 4 rules on slide 3
» Replace Axz. e with Ay. €’ where €’ is e with “free” =

i i : > The 2 rul lide 5
replaced with y (assuming y not already used in e) e 2 rules on slide

» Rules can also run backwards (rewrite right-side to left-side)

Az. e = Ay. ely/2] Amazing: Under the natural denotational semantics (basically treat

lambdas as functions), e and e’ denote the same thing if and only

» Replace Ax. e x with e if & does not occur “free” in e 1 !
if this rewriting system can show e —* €’

x is not free in e » So the rules are sound, meaning they respect the semantics

Az.ex — e » So the rules are complete, meaning there is no need to add

)) any more rules in order to show some equivalence they can't
Analogies: if e then true else false

List.map (fun x -> f x) 1lst

But program equivalence in a Turing-complete PL is undecidable

But beware side-effects/non-termination under call-by-value > So there is no perfect (always terminates, always correctly
says yes or no) rewriting strategy for equivalence

Dan Grossman CS-XXX 2012, Lecture 8) Dan Grossman CS-XXX 2012, Lecture 8
Some other common semantics More on evaluation order
We have seen “full reduction” and left-to-right CBV In “purely functional” code, evaluation order matters “only” for

» (OCaml is unspecified order, but actually right-to-left) performance and termination
Example: Imagine CBV for conditionals!

Claim: Without assignment, /O, exceptions, ..., you cannot]
let rec £ n = if n=0 then 1 else n*x(f (n-1))

distinguish left-to-right CBV from right-to-left CBV

» How would you prove this equivalence? (Hint: Lecture 6) Call-by-need or “lazy evaluation”:

» Evaluate the argument the first time it's used and

Another option: call-by-name (CBN) — even “smaller” than CBV! memoize the result
e — e > Useful idiom for programmers too
e — 6’1
;
(Az. e) &/ — ele’/x] e1 ez — €} ey Best of both worlds®

» For purely functional code, total equivalence with CBN and

Diverges strictly less often than CBV, e.g., (Ay. Az. 2) e asymptotically no slower than CBV. (Note: asymptotic!)

Can be faster (fewer steps), but not usually (reuse args) > But hard to reason about side-effects

Dan Grossman CS-XXX 2012, Lecture 8 7 Dan Grossman CS-XXX 2012, Lecture 8

More on Call-By-Need

This course will mostly assume Call-By-Value
Haskell uses Call-By-Need

Example:

four = length (9:(8+5):17:42:[])
eight = four + four
main = do { putStrLn (show eight) }

Example:

ones = 1 : ones

nats_from x = x : (nats_from (x + 1))

CS-XXX 2012, Lecture 8

Dan Grossman

Substitution gone wrong
Attempt #1:

eilea/x] = es

y#x eile/z] = €]

zle/z]=e yle/x] =y (Ay. e1)le/z] = Ay. €]

eile/z] = €] ezle/x] = €l

(e1 e2)[e/x] = €] €

Recursively replace every x leaf with e

CS-XXX 2012, Lecture 8

Dan Grossman

9

11

Formalism not done yet

Need to define substitution (used in our function-call rule)

» Shockingly subtle

Informally: e[e’/x] “replaces occurrences of x in e with e’”

Examples:
z[(Ay. y)/x] = Ay y
(Ay. y x)[(Az. 2)/x] = Ay. y Az. z

(x 2)[(Ax. ¢) /] = (Az.) (Ax. = x)

Dan Grossman CS-XXX 2012, Lecture 8

Substitution gone wrong

Attempt #1:

eilez/x] = es

eile/z] = €]

y#Few

zle/x] =e yle/xz] =y

(Ay. e1)[e/x] = Ay. e’1

ezle/x] = €

(e1 e2)[e/x] = €] €

eile/z] = €]

Recursively replace every x leaf with e

The rule for substituting into (nested) functions is wrong: If the
function’s argument binds the same variable (shadowing), we
should not change the function's body

Example program: (Az. Az. x) 42

Dan Grossman CS-XXX 2012, Lecture 8

Substitution gone wrong: Attempt #2 Substitution gone wrong: Attempt #2

ei1lez/x] = eg eilez/x] = e3
y#e erle/al =¢) y#w y#e eile/al =¢) y#a
zle/z] = e yle/xz] =y (Ay. e1)le/z] = Ay. €] zle/z] = e yle/z] =y (Ay. e1)[e/x] = Ay. €]
eile/x] = €] ezle/x] = € eile/z] = e} ezle/x] = e
(Azx. e1)e/x] = Ax. e1 (e1 e2)[e/x] = €] € (Azx. e1)[e/x] = Ax. ex (e1 e2)[e/x] = €] €,
Recursively replace every x leaf with e but respect shadowing Recursively replace every x leaf with e but respect shadowing

Substituting into (nested) functions is still wrong: If e uses an
outer y, then substitution captures y (actual technical name)

» Example program capturing y:
(Az. Ay.) (Az. y) = Ay. (Az. v)
» Different(!) from: (Aa. Ab. a) (Az. y) = Ab. (Az. y)

» Capture won't happen under CBV/CBN if our source program
has no free variables, but can happen under full reduction

Dan Grossman CS-XXX 2012, Lecture 8 12 Dan Grossman CS-XXX 2012, Lecture 8
Attempt #3 Attempt #3
First define the “free variables of an expression” F'V (e): First define the “free variables of an expression” F'V (e):
FV(z) = {z} FV(z) = {z}
FV(el 62) = FV(el) UFV(ez) FV(el 62) = FV(el) UFV(ez)
FV(Ax.e) = FV(e)— {x} FV(Ax.e) = FV(e)— {x}

ei1le2/x] = es

yF« eile/z]=¢, y#zx ygFV(e)

zle/z] =e yle/z] =1y (Ay. e1)le/x] = Ay. €]
eile/x] = € ezle/xz] = e
(Az. e1)[e/x] = Ax. e1 (e1 e2)[e/x] = €] €,

Dan Grossman CS-XXX 2012, Lecture 8 13 Dan Grossman CS-XXX 2012, Lecture 8

Attempt #3 Implicit Renaming

First define the “free variables of an expression” F'V'(e): » A partial definition because of the syntactic accident that y

was used as a binder

FV(z) = {z} » Choice of local names should be irrelevant/invisible
FV(el 62) = FV(el) UFV(ez)
FV(Az.e) = FV(e)—{z} » So we allow implicit systematic renaming of a binding and all
its bound occurrences
eilea/x] = es
y £ elle/z] = ¢ y#z ydFV(e) » So via renaming the rule with y # @ can always apply and we
1 n can remove the rule where x is shadowed
zle/x] = e wyle/x] =1y (Ay. e1)[e/z] = Ay. €]
oy, o » In general, we never distinguish terms that differ only in the
eile/x] = e exle/x] = e names of variables (A key language-design principle!)
(Az. e1)[e/x] = Ax. e1 (e1 e2)[e/x] = €] €,

» So now even “different syntax trees” can be the “same term”

But this is a partial definition » Treat particular choice of variable as a concrete-syntax thing
» Could get stuck if there is no substitution

Dan Grossman CS-XXX 2012, Lecture 8 13 Dan Grossman CS-XXX 2012, Lecture 8

Correct Substitution More explicit approach

While everyone in PL:
Assume implicit systematic renaming of a binding and all its bound
occurrences

» Understands the capture problem

» Avoids it via implicit systematic renaming

Lets one rule match any substitution into a function you may find that unsatisfying, especially if you have to implement

substitution and full reduction in a meta-language that doesn’t

And these rules: have implicit renaming

ei1lez/z] = e3 This more explicit version also works

y#z elefol=¢, esle/a]= ¢
zle/sl=c yle/al =y (e1 e2)le/a] = €] ¢ s#a 2@ FV(e) 2¢FV(e) ealz/yl=¢, ele/al=e]
(Ay. e1)[e/x] = Az. €

e1le/x] :e’l YyF£x y & FV(e)

(Ay. e1)[e/z] = Ay. e} » You have to find an appropriate z, but one always exists and
__$compilerGenerated appended to a global counter works

Dan Grossman CS-XXX 2012, Lecture 8 15 Dan Grossman CS-XXX 2012, Lecture 8

Some jargon

If you want to study/read PL research, some jargon for things we
have studied is helpful...

Dan Grossman

Implicit systematic renaming is a-conversion. If renaming in
ey can produce es, then e; and ez are a-equivalent.
» «-equivalence is an equivalence relation

Replacing (Ax. e1) ez with ej[es/x], i.e., doing a function
call, is a B-reduction
» (The reverse step is meaning-preserving, but unusual)

Replacing Ax. e x with e is an m-reduction or n-contraction
(since it's always smaller)

Replacing e with e with Ax. e x is an n-expansion
» It can delay evaluation of e under CBV
> It is sometimes necessary in languages (e.g., OCaml does not
treat constructors as first-class functions)

CS-XXX 2012, Lecture 8

