Oct 05, 16 8:02 Expr_annotated.v	Page 1/14	Oct 05, 16 8:02	Expr_annotated.v	Page 2/14
(** * Lecture 03 *)		constructor.	we could have explicitly told	
<pre>(** Include some useful libraries. *) Require Import Bool. Require Import List. Require Import String. Require Import ZArith. Require Import Omega.</pre>			ch constructor to use with:	
(** List provides the cons notation "::":		(**		
<pre>[x :: xs] is the same as [cons x xs] *) Fixpoint my_length {A: Type} (l: list A) : nat := match l with</pre>		That means there is Since a proposition	proposition. It has ZERO constructors. no way to produce a value of type [myFalse [P] is true only when we can produce a va. w that [myFalse] is in fact false.	
<pre> nil => 0 x :: xs => S (my_length xs) end.</pre>		Inductive myFalse : P:	rop :=	
(** List provides the append notation "++":			yFalse], we can prove _anything	
[xs ++ ys] is the same as [app xs ys]		*) Lemma bogus: False -> 1 = 2.		
<pre>' Fixpoint my_rev {A: Type} (1: list A) : list A := match 1 with nil => nil x :: xs => rev xs ++ x :: nil</pre>		Proof. intros. (**	s case analysis on a hypothesis.	
<pre>end. (** [Prop] is the type we give to propositions.</pre>		Suppose our goal . on hypothesis [H that could have p.	is [G] and we ask Coq to do inversion : T]. For each constructor [C] of [T] roduced [H], we get a new subgoal rove [G] under the assumption that	
<pre>[Prop] basically works the same as [Type]. In fact, its type is [Type]: *) Check Prop. (**</pre>		Often it will be could _not_ have p dispatch those sub	for some arguments [x1 x2] to [C]. the case that some constructors of [T] produced [H]. Coq will automatically bgoals for us which greatly simplifies the primary difference between [destruct]	
<< Prop : Type >>		there are 0 const.	builtin equivalent to myFalse), ructors, so when we perform up with 0 subgoals and the	
The difference is that Coq ensures our programs never depend on inputs whose type is in [Prop]. This helps when we extract programs: we can ensure that all [Prop]-related computations are only done at compile time and that our extracted programs ne compute over data whose type is in Prop. *)	ever	inversion H. Qed. (** When we write a def. "Theorem", what we' a type [T] and then	inition using "Lemma" or re actually doing is giving using tactics to construct a term	
(** [myTrue] is a proposition. It has a single constructor which takes no arguments. This means we can always pro a value of type [myTrue] by just using the [I] construct	oduce	type is in [Prop], types too:	y only do this for types whose but we can do it for "normal"	
<pre>In Coq, we say that a proposition [P] is true if we can produce some term [t] that has type [P]. That is, [P] true if there exists [t : P]. *)</pre>		*) Lemma foo' : Type. Proof. exact bool.		
<pre>Inductive myTrue : Prop := I : myTrue.</pre>		(** exact (list nat, (** exact nat. *)). *)	
<pre>Lemma foo : myTrue. Proof. (** We use the constructor tactic to ask Coq to find a constructor that patiofics the goal *)</pre>		let us prove any go	ion in a hypothesis will al.	
to find a constructor that satisfies the goal. *)		*)		

Printed by Zach Tatlock

Oct 05, 16 8:02 Expr_annotated.v	Page 3/14	Oct 05, 16 8:02	Expr_annotated.v	Page 4/14
Oct 05, 16 8:02 Expr_annotated.v Lemma also_bogus: 1 = 2 -> False. Proof. intros. (** [discriminate] is a tactic that looks for mismatching constructors in a hypothesis and uses that contradiction to prove any goal. It is a less-general version of the [congruence] tactic we saw in lecture last time. In Coq, there are often many tactics that can solve a particular goal. Sometimes we will use a less general tactic because it can help a reader understand our proof and will usually be faster. Under the hood, [1] looks like [S 0] and [2] looks like [S (S 0)]. [discriminate] will peel off one [S], to get [0 = S 0]. Since [0] and [S] are different constructors are _distinct_) they are not equal, and Coq can use the contradiction to complete our proof.	Page 3/14	<pre>*) Inductive expr : Type (** constant expres. [Eint : Z -> expr (** program variable [Evar : string -> expr (** adding expression [Eadd : expr -> expr (** multiplying exp. [Emul : expr -> expr (** comparing expres. [Elte : expr -> expr (** On paper, we would i type down using a "I cv expr ::= Z [Var [expr + ex]expr <= 0] [expr = 0]]]] [expr = 0]]] [expr = 0] [expr = 0] [expr = 0] [expr = 0] [expr = 0]</pre>	<pre>:= sions, like [3] or [0] *) es, like ["x"] or ["foo"] *) or ons, [el + e2] *) -> expr ressions, [el * e2] *) -> expr ssions, [el <= e2] *) -> expr. typically write this BNF grammar" as: </pre>	Page 4/14
*) discriminate.		*)		
<pre>Qed. (** Note that even equality is defined, not builtin. *) Print eq. (** Here's [yo], another definition of an empty type. *) Inductive yo : Prop := yolo : yo -> yo. (** We will have to do a little more work to show that [yo] is empty though. *) Lemma yoyo: yo -> False. Proof. intros. inversion H. (** well, that didn't work *) induction H. assumption. (** but that did! *) Qed. (** Negation in Coq is encoded in the [not] type.</pre>		<pre>the "level" and "as. *) Coercion Eint : Z >-> Coercion Evar : string Notation "X[+]Y" := ((at level 83, left a Notation "X[*]Y" := ((at level 82, left a Notation "X[<=]Y" := (at level 84, no as: Check (1 [+] 2). Check ("x" [+] 2). Check ("x" [+] 2 [<=] (** Parsing is a classing much more about it a still a rich and acc</pre>	<pre>hich we can use htax". most of this, especially sociativity" stuff. expr. g >-> expr. Eadd X Y) associativity). Emul X Y) associativity). (Elte X Y) sociativity).</pre>	
It sort of works like our [yoyo] proof above. *) Print not. (** ** Expression Syntax *) (** Use String and Z notations. *) Open Scope string_scope. Open Scope Z_scope. (** Now let's build a programming language. We can define the syntax of a language as an inductive datatype.		_syntax_ of express have said NOTHING ai _mean In upcomin some time studying of programs by givin languages. To make this clear, and multiplication	done so far is define the ions in our language. We bout what these expressions g lectures we will spend now we can describe the meanings ng _semantics_ for our programming note that operations like addition are NOT commutative in syntax. They ative in the meaning of expressions	

Oct 05, 16 8:02	Expr_annotated.v	Page 5/14	Oct 05, 16 8:02 Expr_annotated.v	Page 6/14
Lemma add_comm_bogus :			*)	
(forall e1 e2, Eadd e1 e2 = False.	= Eadd e2 e1) ->		Print esize.	
Proof.			l kk	
intros.			esize =	
(** The [specialize] tactic	gives concrete		<pre>fix esize (e : expr) : nat := match e with</pre>	
arguments to a forall qu			Eint _ => 1%nat	
*)			Evar _ => 1%nat	
<pre>specialize (H 0 1). (** inversion is smart *)</pre>			e1 [+] e2 => (esize e1 + esize e2)%nat e1 [*] e2 => (esize e1 + esize e2)%nat	
inversion H.			e1 [<=] e2 => (esize e1 + esize e2) %nat	
Qed.			end	
(**			: expr -> nat	
Although we have not yet d			*)	
we can write some function.	s to analyze their syntax.		(**	
Here we simply count the n	umber of [Eint] subexpressions		We can use our analyses to prove properties	
in a given expression.			of the syntax of programs.	
*) Fixpoint nconsts (e: expr) :	nat ·=		For example, always have at least as many	
match e with	nac		nodes in the AST as constants.	
Eint _ =>			*)	
1 (** same as [S 0] *)			<pre>Lemma nconsts_le_size: forall e,</pre>	
Evar _ => 0 (** same as [0] *)			(nconsts e <= esize e)%nat.	
Eadd e1 e2 =>			Proof.	
nconsts e1 + nconsts e2			intros. induction e.	
(** same as [plus (ncon. Emul e1 e2 =>	sts ei) (nconsts ez)j ^)		+ simpl. auto.	
nconsts e1 + nconsts e2	2		(**	
Elte el e2 => nconsts el + nconsts e2	2		The [auto] tactic will solve many simple goals, including those that reflexivity	
end.	2		would solve. [auto] also has the property	
			that it will never fail. If it cannot	
(** We can also use existentia	l quantifiers in Cog		solve your goal, then it just does nothing. This will be particularly useful when we	
we can also use existencia.	i quancifició in coq.		start chaining together sequences of tactics	
To prove an existential, y			to operate simultaneously over multiple subgoals.	
witness, that is, a conc. type you're existentially			*) + simpl. auto.	
*)	quanerryrng.		(**	
Lemma expr_w_3_consts:			The [omega] will solve many arithemetic goals.	
exists e, nconsts e = 3%nat.			Unlike [auto], [omega] will fail if it cannot solve your goal.	
Proof.			*)	
(** Here we give a concrete	e example. *)		+ simpl. omega.	
exists (3 [+] 2 [+] 1). (** Now we have to show the	at the example satisfies the property *	:)	+ simpl. omega. + simpl. omega.	
simpl. reflexivity.			Qed.	
Qed.			(** that proof had a lot of copy-pasta :(*)	
(** Compute the size of an e.	xpression. *)		Lemma nconsts_le_size':	
Fixpoint esize (e: expr) : na			forall e,	
match e with Eint _			<pre>(nconsts e <= esize e)%nat. Proof.</pre>	
Evar _ =>			intros.	
1			(**	
Eadd e1 e2 Emul e1 e2			Here we see our first "tactic combinator", the powerful semicolon ";".	
Elte e1 e2 =>				
esize el + esize e2			For any tactics [a] and [b], [a; b] runs	
end.			[a] on the goal and then runs [b] on all of the subgoals generate by [a].	
(**				
Notice how we grouped simi			We can chain tactics toghether in this	
in the definition of [esize sugar, you can see the ful.			way to make shorter, more automated proofs.	
Manday Ostabar 10, 0010				

Printed by Zach Tatlock

Oct 05, 16 8:02	Expr_annotated.v	Page 7/14	Oct 05, 16 8:02	Expr_annotated.v	Page 8/14
In the case of this le	emma, we'd like to:		Inductive has_const : e	expr -> Prop :=	
<<	,		hc_in :		
do induction, then			forall c, has_const	t (Eint c)	
on every resulting su			hc_add_l :		
on every resulting su			forall e1 e2,		
on every resulting su	ubgoal do omega		has_const e1 -> has_const (Eadd e1	22)	
*)			hc_add_r :	ez)	
induction e; simpl; auto	o: omega.		forall e1 e2,		
(**	-,		has_const e2 ->		
Note that after the [[auto],		has_const (Eadd e1	e2)	
	and Elte subgoals remain,		hc_mul_l :		
but it's hard to tell			forall e1 e2,		
the proof does not "p	pause".		has_const e1 ->	- 2)	
Qed.			has_const (Emul e1	e2)	
geu.			forall e1 e2,		
(**			has_const e2 ->		
Notice how sometime we h	have to use the scope		has_const (Emul e1	e2)	
specifier "%nat" so that	t Coq knows we want		hc_cmp_l :		
the [nat] version of som	me notation instead of		forall e1 e2,		
the [Z] version.			has_const e1 ->	2)	
To figure out where a po	atation is coming from		has_const (Elte el	e2)	
To figure out where a no you can use the [Locate]			<pre> hc_cmp_r : forall e1 e2,</pre>		
*)	j command.		has_const e2 ->		
Locate "<=".			has_const (Elte el	e2).	
(**			(**		
This generates a lot of			Similarly, we can der		
we really only care about	ut the [nat] and [2]		that holds on express a variable.	sions that contain	
entries: <<			*)		
	: Z_scope (default interpretation)		Inductive has_var : exp	or -> Prop :=	
"n <= m" := le n m :			hv_var :		
>>			forall s, has_var	(Evar s)	
*)			hv_add_l :		
(+ + the second state the	Jeffelting of []el. W		forall e1 e2,		
(** We can also print the Print le.	definition of [ie]: ^)		has_var e1 -> has_var (Eadd e1 e2	2)	
(**			hv_add_r :	_)	
<<			forall e1 e2,		
Inductive le (n : nat) : n	nat -> Prop :=		has_var e2 ->		
le_n : (n <= n) %nat			has_var (Eadd e1 e2	2)	
le_S : forall m : nat,			hv_mul_l :		
(11 <= 111) %11dL	-> (n <= S m)%nat		forall e1 e2, has_var e1 ->		
>>			has_var (Emul e1 e2	2)	
*)			hv_mul_r :		
			forall e1 e2,		
(**	· · · · · · · · · · ·		has_var e2 ->	~ .	
[le] is a relation defin	ned as an "inductive predicate".		has_var (Emul e1 e2	∠)	
We give rules for when t	the relation holds.		<pre> hv_cmp_l : forall e1 e2,</pre>		
	han or equal to themselves and		has_var e1 ->		
(2) if $n \leq m$, then also			has_var (Elte el e2	2)	
			hv_cmp_r :		
All proofs of [le] are b	built up from just these		forall e1 e2,		
two constructors!			has_var e2 ->	2)	
			has_var (Elte el e2	~) ·	
We can define our own re	elations		(**		
to encode properties of			We can also write boo	olean functions	
In the [has_const] induc	ctive predicate		that check the same p		
below, each constructor					
one way you could prove	that an expression		Note that [orb] is di	isjuction over	
has a constant.			<pre>booleans: *)</pre>		
···)			*) Print orb.		
			TTTUC OTD.		

Oct 05, 16 8:02 Expr_annotated.v	Page 9/14	Oct 05, 16 8:02	Expr_annotated.v	Page 10/14
<pre>Fixpoint hasConst (e: expr) : bool := match e with Eint _ => true Evar _ => false Eadd el e2 => orb (hasConst el) (hasConst e2) Emul el e2 => orb (hasConst el) (hasConst e2) Elte el e2 => orb (hasConst el) (hasConst e2) end.</pre>		rewrite orb_comm (** you can find	2 in H1. 11. 12 orb is commutative *) 14. 14. 14. 14. 14. 15. 16. 16. 16. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17	
<pre>(** We can write that a little more compactly using the " " notation for [orb] provided by the Bool library. *) Fixpoint hasVar (e: expr) : bool := match e with Eint _ => false Evar _ => true Eadd el e2 => hasVar el hasVar e2 Emul el e2 => hasVar el hasVar e2 Elte el e2 => hasVar el hasVar e2 end.</pre>		<pre>+ (** Mul case is si inversion H; simpl - apply IHel in H1 - apply IHe2 in H1 rewrite orb_comm + (** Lte case is si inversion H; simpl - apply IHe1 in H1 - apply IHe2 in H1 rewrite orb_comm Qed. (**</pre>	<pre>milar *) ; subst. ; rewrite H1; auto. ; rewrite H1; ; auto. milar *) ; subst. ; rewrite H1; auto. ; rewrite H1; ; auto.</pre>	
<pre>(** That looks way easier! However, as the quarter progresses, we'll see that sometime defining a property as an inductive relation is more convenient. *) (** We can prove that our relational and functional versions agree. This shows that the [hasConst] _function_ is COMPLETE</pre>		is SOUND with respec That is, if [hasCons	at the [hasConst] _function_ et to the relation. tt] produces true, proof of the inductive st:	
<pre>with respect to the relation [has_const]. Thus, anything that satisfies the relation evaluates to "true" under the function [hasConst]. *) Lemma has_const_hasConst: forall e, has_const e -> hasConst e = true. Proof. intros. induction e. + simpl. reflexivity.</pre>		constructor. (** t + (** Uh oh, no cons can possibly p goal type! It' we have a bogu simpl in H. discriminate. + (** now do Add cas	this case with a constructor *) this uses hc_const *) tructor for has_const produce a value of our s OK though because is hypothesis. *) se *)	
<pre>+ simpl. (** uh oh, trying to prove something false! *) (** it's OK though because we have a bogus hyp! *) inversion H. (** inversion lets us do case analysis on how a hypothesis of an inductive type may have been built. In this case, there is no way to build a value of type "has_const (Var s)", so we complete the proof of this subgoal for all zero ways of building such a value *)</pre>		<pre>simpl in H. (** either el or e apply orb_true_iff (** consider cases destruct H (** el had a Con apply ILe1. assumption (** e2 had a Con apply hc_add_r. apply LHe2</pre>	in H. ; for H *) ast *)	
<pre>*) + (** here we use inversion to consider how a value of type "has_const (Add el e2)" could have been built *) inversion H (** built with hc_add_l *) subst. (** subst rewrites all equalities it can *) apply IHel in H1. simpl. (** remember notation " " is same as orb *) rewrite H1. simpl. reflexivity.</pre>		- (** constructor constructor. ap - (** constructor	<pre>orb_true_iff in H; destruct H. will just use hc_mul_l *) oply IHe1. assumption. will screw up and try hc_mul_l again! is rather dim *)</pre>	*)

Oct 05, 16 8:02 Expr_annotated.v	Page 11/14	Oct 05, 16 8:02	Expr_annotated.v	Page 12/14
apply hc_mul_r. apply IHe2. assumption.		*)		
+ (** Lte case is similar *) simpl in H; apply orb_true_iff in H; destruct H.		<pre>Lemma not_has_const_has forall e,</pre>	sconst':	
- constructor; auto.		~ has_const e ->		
- apply hc_cmp_r; auto.		hasConst e = false.		
Qed.		Proof. intros.		
(** we can stitch these two lemmas together *)		(** do case analysis	on hasConst e *)	
Lemma has_const_iff_hasConst:			the result in a hypothesis *)	
forall e, has_const e <-> hasConst e = true.		destruct (hasConst e)	eqn:?. st_iff_hasConst in Heqb.	
Proof.			sConst e = true in our hypothesis *)	
intros. split.				
+ (** -> *) apply has_const_hasConst.			radiction in our hypotheses *) on't work this time though *)	
+ (** < - *)		unfold not in H.	, e work enro erno enough ,	
apply hasConst_has_const.		apply H in Heqb.		
Qed.		inversion Heqb. - reflexivity.		
			case, this is easy *)	
		Qed.		
Notice all that work was only for the "true" cases!		(** Now the other direc	ction of the false case *)	
We can prove analogous facts for the "false" cases too.		Lemma false_hasConst_ha		
		forall e,		
Here we will prove the "false" cases directly. However, note that you could use [has_const_iff_hasConst]		hasConst e = false -> ~ has const e.	>	
to get a much simpler proof.		Proof.		
*)		unfold not. intros.		
Lemma not_has_const_hasConst:		induction e;	erything in subgoals *)	
forall e,		simpl in *.	siyening in Subgoard)	
~ has_const e ->		+ discriminate.		
hasConst e = false. Proof.		<pre>+ inversion H0. + apply orb_false_iff</pre>	in H	
unfold not. intros.			s out of a conjunction	
induction e.		by destructing	it *)	
+ simpl. (** uh oh, trying to prove something bogus *)		destruct H. (** case analysis d	H0 *)	
(** better exploit a bogus hypothesis *)			o we know to do this? *)	
exfalso. (** proof by contradiction *)		inversion HO.	auto uill abain things for us th	
apply H. constructor. + simpl. reflexivity.		- subst. auto. (**	auto will chain things for us *)	
+ simpl. apply orb_false_iff.		+ (** Mul case simila		
(** prove conjunction by proving left and right *) split.		apply orb_false_iff inversion H0; subst		
- apply IHe1. intro.		+ (** Lte case simila		
apply H. apply hc_add_1. assumption.		apply orb_false_iff	in H; destruct H.	
 apply IHe2. intro. apply H. apply hc_add_r. assumption. 		inversion HO; subst Qed.	; auto.	
+ (** Mul case is similar *)		geu.		
simpl; apply orb_false_iff.			the iff for the true case *)	
split. - apply IHel; intro.		(** We can use it to pr	rove the false case *) emma as above, but using our previous re	cult c *)
apply H. apply hc_mul_1. assumption.		Lemma false_hasConst_ha		501115 /
- apply IHe2; intro.		forall e,		
<pre>apply H. apply hc_mul_r. assumption. + (** Lte case is similar *)</pre>		<pre>hasConst e = false -> ~ has_const e.</pre>	>	
simpl; apply orb_false_iff.		Proof.		
split.		intros.		
- apply IHe1; intro. apply H. apply hc_cmp_1. assumption.		(** ~ X is just X -> unfold not.	raise *)	
- apply IHe2; intro.		intros.		
apply H. apply hc_cmp_r. assumption.		rewrite has_const_iff	_hasConst in H0.	
Qed.		rewrite H in HO. discriminate.		
(* *		Qed.		
Here is a more direct proof based on the		(** 100 con -111-	the same	
iff we proved for the true case.		(** We can also do all	LIIE SAME	

Printed by Zach Tatlock

Oct 05, 16 8:02	Expr_annotated.v	Page 13/14	Oct 05, 16 8:02	Expr_annotated.v	Page 14/14
sorts of proofs for	has_var and hasVar *)		+ rewrite orb_true_i:	f. auto.	
<pre>Lemma has_var_hasVar: forall e, has_var e -> hasVar e = true. Proof. (** TODO: try this wit Admitted. Lemma hasVar_has_var: forall e, hasVar e = true -> has_var e.</pre>	thout copying from above *)		<pre>Qed. (** or even better *) Lemma has_const_hasConst forall e, has_const e -> hasConst e = true. Proof. intros. induction H; simpl; a rewrite orb_true_i: Qed.</pre>	auto;	
Proof.	chout copying from above *)		<pre>Lemma not_has_const_has forall e, ~ has_const e -> hasConst e = false.</pre>	sConst'':	
<pre>Lemma has_var_iff_hasVar forall e, has_var e <-> hasVar e Proof. (** TODO: try this wit Admitted.</pre>			Proof. unfold not; intros. destruct (hasConst e) - exfalso. apply H. apply hasConst_has - reflexivity. Oed.	-	
<pre>Lemma expr_bottoms_out: forall e, has_const e \/ has_van Proof. intros. induction e. + (** prove left side left. constructor. + (** prove right side right. constructor. + (** case analysis or destruct IHel. - left. constructor. - right. constructor + (** Mul case similar destruct IHel. - left. constructor. - right. constructor + (** Cmp case similar destruct IHel. - left. constructor - right. constructor + (** Cmp case similar destruct IHel. - left. constructor - right. constructor - right. constructor</pre>	<pre>of disjunction *) e of disjunction *) n IHel *) assumption assumption assumption assumption assumption assumption assumption assumption assumption.</pre>		<pre>Lemma false_hasConst_ha forall e, hasConst e = false -: ~ has_const e. Proof. unfold not; intros. destruct (hasConst e) - discriminate. - rewrite has_const_l (** NOTE: we got al * discriminate. * assumption. Qed. (** In general: Relational defns are</pre>	eqn:?. nasConst in Heqb.	
<pre>has_const lemmas by (but then we wouldn' learned as many tac *) Lemma has_const_hasConst forall e, has_const e -> hasConst e = true. Proof. intros. induction H; simpl; au + rewrite orb_true_iff + rewrite orb_true_iff + rewrite orb_true_iff + rewrite orb_true_iff + rewrite orb_true_iff</pre>	etics ;)) 				
Monday October 10, 2016		lec03/Expr	annotated.v		7/7