

Oct 05, 16 8:02 \quad Expr_annotated.v

Lemma also_bogus:
$1=2$-> False.
Proof.
$\underset{(* *}{\text { intros }}$
[discriminate] is a tactic that looks
for mismatching constructors in a hypothesis and uses that contradiction to prove any goal. It is a less-general version of the [congruence there are often many tactics that can solve a particular goal. Sometimes we will use a less general tactic because it can help a reader understand our proof and will usually be faster.

Under the hood, [1] looks like [S 0] and
[2] looks like [S (S 0)]. [discriminate] will peel off one $[S]$, to get $[0=S$ 0]. Since [0] and [S] are different constructors of an inductive type (where all constructors are _distinct_) they are not equal, and Coq can
*) use the contradiction to complete our proof
*)
Qed.
(**
Note that even equality is defined, not builtin
Print eq.
(**
Here's [yo], another definition of an empty type.
Inductive yo : Prop :=
| yolo : yo -> yo.
(**
We will have to do a little more work to
show that [yo] is empty though.
Lemma yoyo:
yo -> False
Proof.
inversion H
(** well, that didn't work *)
induction H .
assumption. (** but that did! *)
Qed.
Negation in Coq is encoded in the [not] type.
It sort of works like our [yoyo] proof above.
Print not.
(** ** Expression Syntax *)
(** Use String and Z notations. *)
Open Scope string_scope.
Open Scope Z_scope.
(**
Now let's build a programming language.
We can define the syntax of a language
as an inductive datatype.

Page 3/14 -

Oct 05, 16 8:02
 Inductive expr : Type :=

Expr_annotated.v
Page 4/14
(** constant expressions, like [3] or [0] *)
| Eint : Z -> expr
(** program variables, like ["x"] or ["foo"] *)
| Evar : string -> expr
(** adding expressions, [e1 + e2] *)
Eadd : expr -> expr -> expr
(** multiplying expressions,
(**
(** comparing expressions,
(** comparing expressions, [e1 <= e2] *)
Elte : expr -> expr -> expr.
(**
On paper, we would typically write this
type down using a "BNF grammar" as:
expr :: = $\begin{aligned} \text { Z } \\ \text { Var }\end{aligned}$
$\left\lvert\, \begin{aligned} & \text { Var } \\ & \text { expr }+ \text { expr } \\ & \text { expr * expr }\end{aligned}\right.$
| expr * expr
>>
(**
Coq provides mechanisms to define
your own notation which we can use
to get "concrete syntax".
Feel free to ignore most of this, especially
the "level" and "associativity" stuff.
*)
Coercion Eint : $Z \quad>->$ expr.
Coercion Evar : string >-> expr.
Notation "X $[+]$ Y" $:=$
Notation "X[+]Y" := (Eadd X Y)
Notation "X[*]Y":= (Emul X Y)
(at level 82, left associativ
(at level 82, left associativity).
(at level 84, no associativity)
Check (1 [+] 2) $\dot{\text { Check }}$ ("x"
Check ("x" [+] 2).
Check ("x"
[+] 2 [<=] "y")
(**
Parsing is a classic CS topic, but won't say much more about it in this course. Parsing is Still a rich and active research topic, and there
are many decent tools out there to help practioner build good parsers. are mat there to help practioners build good parsers.
*)
Note that all we've done so far is define the
syntax of expressions in our language. We
have said NOTHING about what these expressions _mean_i In upcoming lectures we will spend
some time studying how we can describe the meanings of programs by giving _semantics_ for our programming languages.
To make this clear, note that operations like addition and multiplication are NOT commutative in syntax. They will only be commutative in the meaning of expressions later.


```
Oct 05,16 8:02 Expr_annotated.v
    In the case of this lemma, we'd like to:
    do induction, then
    on every resulting subgoal do simpl, then
    on every resulting subgoal do auto, then
    on every resulting subgoal do omega
>>
    induction e; simpl; auto; omega.
    (**
        Note that after the [auto]
        only the Eadd, Emul, and Elte subgoals remain,
        but it's hard to tell since
        the proof does not "pause".
#ed.
***
    Notice how sometime we have to use the scope
    specifier "%nat" so that Coq knows we want
    the [nat] version of some notation instead of
    the [Z] version.
    To figure out where a notation is coming from,
    you can use the [Locate] command:
*)
Locate "<=".
(**
    This generates a lot of output. In this file
    we really only care about the [nat] and [Z]
    entries:
        "x<= y" := Z.le x y : Z_scope (default interpretation)
        "n<=m":= le n m : nat_scope
>>
(** We can also print the definition of [le]: *)
Print le.
M(**
Inductive le (n : nat) : nat -> Prop :=
    le_n : (n <= n)%nat
    le_S : forall m : nat,
                (n<=m)%nat >> (n<=S m)%nat
>>
(**
    [le] is a relation defined as an "inductive predicate".
    We give rules for when the relation holds:
    (1) all nats are less than or equal to themselves and
    (2) if n <= m, then also n <=S m.
    All proofs of [le] are built up from just these
    two constructors!
    We can define our own relations
    to encode properties of expressions.
    In the [has const] inductive predicate
    below, each constructor corresponds to
    one way you could prove that an expression
    has a constant.
*)
```

Page 7/14

Oct 05, 16 8:02 Expr_a	Page 8/14	
```Inductive has_const : expr -> Prop := \| hc_in : forall c, has_const (Eint c)	hc_add_l : forall e1 e2, has_const e1 -> has_const (Eadd e1 e2)```	
```\| hc_add_r : forall e1 e2, has_const e2 -> has_const (Eadd e1 e2)```		
$\begin{aligned} & \text { \| hc_mul_l : } \\ & \text { forall e1 e2, } \\ & \text { has_const e1 -> } \\ & \text { has_const (Emul e1 e2) } \end{aligned}$		
$\begin{aligned} & \text { \| hc_mul_r : } \\ & \text { forall e1 e2, } \\ & \text { has_const e2 -> } \\ & \text { has_const (Emul e1 e2) } \end{aligned}$		
$\begin{aligned} & \text { \| hc_cmp_l : } \\ & \text { forall e1 e2, } \\ & \text { has_const e1 -> } \\ & \text { has_const (Elte e1 e2) } \end{aligned}$		
$\begin{aligned} & \text { I hc_cmp_r : } \\ & \text { forall e1 e2, } \\ & \text { has_const e2 -> } \\ & \text { has_const (Elte e1 e2). } \end{aligned}$		
(**		
```Similarly, we can define a relation that holds on expressions that contain a variable.```*)		
Inductive has_var : expr -> Prop :=		
\| ${ }_{\text {forali }}$ s, has_var (Evar s)		
```\| hv_add_l : forall e1 e2, has_var e1 -> has_var (Eadd e1 e2)```		
$\begin{aligned} & \text { I hv_add_r : } \\ & \text { forall e1 e2, } \\ & \text { has_var e2 -> } \\ & \text { has_var (Eadd e1 e2) } \end{aligned}$		
```\| hv_mul_l : forall e1 e2, has_var e1 -> has_var (Emul e1 e2)```		
```\| hv_mul_r : forall e1 e2, has_var e2 -> has_var (Emul e1 e2)```		
```\| hv_cmp_l : forall e1 e2, has_var e1 -> has_var (Elte e1 e2)```		
$\begin{aligned} & \text { I hv_cmp_r : } \\ & \text { forall e1 e2, } \\ & \text { has_var e2 -> } \\ & \text { has_var (Elte e1 e2). } \end{aligned}$		
(**   We can also write boolean functions that check the same properties.		
Note that [orb] is disjuction over booleans:   *)   Print orb.		

Fixpoint hasConst (e: expr) : bool :=
match e with
| Eint - $=>$ true
| Evar - ${ }_{-}$false
Eadd ē1 e2 $\Rightarrow>$ orb (hasConst e1) (hasConst e2)
Emul e1 e2 $\Rightarrow>$ orb (hasConst e1) (hasConst e2)
| Elte e1 e2 => orb (hasConst e1) (hasConst e2)
end.
We can write that a little more compactly using
the "||" notation for [orb] provided by
the Bool library.
Fixpoint hasVar (e: expr) : bool :=
match e with
Eint - => false
Evar - $=>$ true
Eadd é 1 e2 $\Rightarrow$ hasVar e1 || hasVar e2
Emul e1 e2 $\Rightarrow$ hasVar e1 || hasVar e2
| Elte e
(**
That looks way easier!
However, as the quarter progresses,
we'll see that sometime defining a
property as an inductive relation
*)
(**
We can prove that our relational
and functional versions agree.
This shows that the [hasConst] function is COMPLETE
with respect to the relation [has_const]
Thus, "trun"
to "true" under the function hasconst].
Lemma has_const_hasConst:
forall e,
hasconst e = tr
proof.
intros.
induction e

+ simpl. reflexivity.
$+\underset{(* *}{\text { simpl. }}$.
(** uh oh, trying to prove something false! *)
(** it's OK though because we have a bogus hyp! *)
inversion H
* inversion lets us do case analysis on
how a hypothesis of an inductive type
is no way to build a value of type
"has_const (Var s)", so we complete
the proof of this subgoal for all
zero ways of building such a value
+ (** here we use inversion to consider
how a value of type "has_const (Add e1 e2)" could have been built *)
inversion H .
- (** built with hc_add_l *)
subst. (** subst rewrites all equalities it can *)
apply IHe1 in H1. rewrite H1. simpl. reflexivity.


Oct 05, 16 8:02 Expr_annotated.v

+ (** Lte case is similar *)
simpl in H; apply orb_true_iff in $H$; destruct $H$.
- constructor; auto.
- apply hc_cmp_r; auto.

Qed.
(** we can stitch these two lemmas together *)
Lemma has_const_iff_hasConst:
forall e,
has_const e <-> hasConst e = true.
Proof.
$\underset{+(* *->\star)}{\text { intros. split }}$
$\underset{\text { app }}{\text { app }}$ has_const_hasConst.
apply hasConst_has_const.
Qed.
(**
Notice all that work was only for the "true" cases!
We can prove analogous facts for the "false" cases too.
Here we will prove the "false" cases directly.
However, note that you could use [has_const_iff_hasConst]
to get a much simpler proof.

Lemma not_has_const_hasConst:
forall e,
has_const e ->
hasConst $e=$ false
Proof.
unfold not. intros.
induction e
$+\underset{(* *}{\text { simpl. }}$
(** uh oh, trying to prove something bogus *)
(** better exploit a bogus hypothesis *
exfalso. (** proof by contradiction *)
apply H. constructor.

+ simpl. reflexivity
+ simpl. apply orb_false_iff.
(** prove conjunction by proving left and right *)
split.
apply IHe1. intro.
apply H. apply hc_add_l. assumption.
apply IHe2. intro.
apply H. apply hc_add_r. assumption.
simpl: apply orb false iff.
simpl; apply orb
- apply IHe1; intro.
apply H. apply hc_mul_l. assumption.
apply IHe2; intro.
apply H. apply hc_mul_r. assumption.
+ (** Lte case is similar *)
simpl; apply orb_false_iff.
split.
apply IHe1; intro.
apply H. apply hc_cmp_l. assumption.
apply IHe2; intro.
apply H. apply hc_cmp_r. assumption.
Qed.

Here is a more direct proof based on the iff we proved for the true case.
Lemma not_has_const_hasConst':
forall e,
~ has_const e ->
hasConst $e=$ false.
Proof.
intros.
(** do case analysis on hasConst e *)
(** eqn:? remembers the result in a hypothesis *)
(** eqn:? remembers the resu
destruct (hasConst e) eqn:?.
destruct (hasconst e) eqn:?
(** now we have hasConst $e=$ true in our hypothesis *)
(** We have a contradiction in our hypotheses *)
(** discriminate won't work this time though *)
unfold not in $H$.
apply $H$ in Heqb
inversion Heqb.
reflexivity
(** For the other case, this is easy *)
Qed
(** Now the other direction of the false case *)
Lemma false_hasConst_hasConst
forall e, hasconst_has
~ has_const e.
Proof.
unfold not. intros.
induction e;
(** crunch down everything in subgoals *)
simpl in *.
+ discriminate.
+ inversion H0.
+ apply orb_faise_iff in $H$.
get both proofs out of a conjunction
by dest
(** case analysis on HO *)
(** DISCUSS: how do we know to do this? *)
inversion HO .
- subst. auto. (** auto will chain things for us *)
- subst. auto.

+ (** Mul case similar *)
apply orb_false_iff in H; destruct $H$.
inversion HO; subst; auto.
    + (** Lte case similar *)
apply orb_false_iff in $H$; destruct $H$.
inversion H0; subst; auto.
Qed.
(** Since we've proven the iff for the true case *)
(** We can use it to prove the false case *)
(** This is the same lemma as above, but using our previous results *
Lemma false_hasConst_hasConst':
forall e,
hasConst e = false ->
~has_const e.
Proof.
( $* * \sim X$ is just $X \rightarrow$ False *)
unfold not
rewrite has const iff hasConst in HO
rewrite has_const
rewrite H in HO .
rewcriminate
Qed.
(** We can also do all the same


## Oct 05, 16 8:02 Expr_annotated.v

Page 13/14

Lemma has_var_hasVar:
forall e,
has_var e ->
hasVar e = true.
Proof.
(** TODO: try this without copying from above *) Admitted.

Lemma hasVar_has_var:
forall e,
hasVar e' = true ->
has_var e.
Proof.
(** TODO: try this without copying from above *) Admitted.
Lemma has_var_iff_hasVar:
forall e,
has_var e <-> hasVar e = true
Proof.
(** TODO: try this without copying from above *) Admitted.
(** we can also prove things about expressions *)
Lemma expr_bottoms_out:
forall e, $h a s$ const e $\backslash /$ has_var e
Proof.
intros. induction e.

+ (** prove left side of disjunction *) left.
constructor.
+ (** prove right side of disjunction *) right.
+ (** case
+ (** case analysis on IHe1 *) destruct IHe1.
- right. constructor. assumption.
+ (** Mul case similar. assumption.
destruct IHe1.
- left. constructor. assumption.
- right. constructor. assumption.
+ (** Cmp case similar *)
destruct IHe1.
- left. constructor. assumption.
- right. constructor. assumption.

Qed.
(** we could have gotten some of the
has_const lemmas by being a little clever. (but then we wouldn't have learned as many tactics ;) )
*)
Lemma has_const_hasConst':
forall e,
has_const e ->
hasConst e = true.
Proof.
intros.
induction $H$; simpl; auto.

+ rewrite orb_true_iff. auto.
+ rewrite orb_true_iff. auto.
+ rewrite orb-true-iff. auto.
+ rewrite orb_true_iff. auto.
+ rewrite orb_true_iff. auto.
Monday October 10, 2016

