Oct 04, 16 21:55	MoreIntro_annotated.v	Page 1/10	Oct 04, 16 21:55 MoreIntro_annotated.v	Page 2/10
(** * Lecture 02 *)		-	: list nat	_
(** Infer some type argumen Set Implicit Arguments.	nts automatically. *)		>> *) Eval cbv in (countdown 10).	
(**			(** <<	
Note that the type constr associates to the right: << A -> B -> C = A -> (B - >>	cuctor for functions (arrow "->") -> C)		= cons 10 (cons 9 (cons 8 (cons 7 (cons 6 (cons 5	
*)			(cons 4 (cons 3	
<pre>Inductive list (A: Type) : nil : list A cons : A -> list A -> list</pre>			(cons 2 (cons 1 (cons 0 nil))))))))); ; list nat	
<pre>Fixpoint length (A: Type) (match l with l nil _ => 0 l cons x xs => S (length</pre>			>> *)	
end.	A5)		(** [map] takes a function [f] and list [l] and produces a new list by applying [f] to each element of [l].	
So far, Coq will not infe	er the type argument for [nil]:		(Note that because Gallina is a pure functional programming language, the original input list is completely unchanged.)	
Check (cons 1 nil).			*) Fixpoint map (A B: Type) (f: A -> B) (l: list A) : list B :=	
<pre>Error: The term "nil" has t while it is expected to ha >> *)</pre>	type "forall A : Type, list A" ave type "list nat".		<pre>match l with nil => nil cons x xs => cons (f x) (map f xs)</pre>	
Check (cons 1 (nil nat)).			end. Eval cbv in (map (plus 1) (countdown 3)).	
(** We can tell Coq to alwa Arguments nil {A}.	ays try though: *)		(** << = cons 4 (cons 3 (cons 2 (cons 1 nil)))	
Check (cons 1 nil).			: list nat	
(**			*) Eval cbv in (map (fun _ => true) (countdown 3)).	
<pre>[[countdown] is a useful f [countdown n] produces th <<</pre>			<pre>(** (**</pre>	
n :: (n - 1) :: (n - 2) : >> *)	:: :: 1 :: 0 :: nil		<pre>: list bool >> *)</pre>	
<pre>/ Fixpoint countdown (n: nat) match n with 0 => cons n nil S m => cons n (countdow end. (**</pre>			<pre>> Definition is_zero (n: nat) : bool := match n with 0 => true S m => false end.</pre>	
We can run our [countdown	n] function on some example inputs:		<pre>Eval cbv in (map is_zero (countdown 3)). (**</pre>	
<pre>Eval cbv in (countdown 0). (** <<</pre>			< <pre><< = cons false (cons false (cons false (cons true nil))) : list bool >> *)</pre>	
<pre>: list nat >> *) Eval cbv in (countdown 3). (** <<</pre>	s 1 (cons 0 nil)))		<pre>*) Fixpoint is_even (n: nat) : bool := match n with 0 => true S 0 => false S (S m) => is_even m</pre>	

Oct 04, 16 21:55 MoreIntro_annotated.v	Page 3/10	Oct 04, 16 21:55 MoreIntro_annotated.v Page 4/1
end.		Lemma map_map_compose:
<pre>Eval cbv in (map is_even (countdown 3)). (** <<</pre>		<pre>forall (A B C : Type) (g : A -> B) (f : B -> C) (l : list A), map f (map g l) = map (compose f g) l. Proof. intros.</pre>
: list bool >> *) (**		<pre>induction 1. + simpl. reflexivity. + simpl. rewrite IH1. (** need to "unfold" [compose] so simpl can grind *) unfold compose. reflexivity.</pre>
[map] produces an output list which is exactly the same length as its input list.		Qed.
<pre>(Note that this proof uses bullets (+). See the course web page for more info.) *)</pre>		Often we'd like to process a list by "crunching" it down into a single value.
<pre>Lemma map_length : forall (A B : Type) (f : A -> B) (l : list A), length (map f l) = length l. Proof. intros. induction l.</pre>		<pre>[foldr] does this by taking a function [f], a list [cons el (cons e2 (cons e3 (cons eN nil)))], and an initial "accumulator" or "state" [b] and computing: << f el (f e2 (f e3 (f eN b))) >></pre>
<pre>+ simpl. reflexivity. + simpl. (** Replace "length (map f l)" with "length l" *) rewrite IH1. reflexivity.</pre>		<pre>*) Fixpoint foldr (A B : Type) (f : A -> B -> B)</pre>
Qed.		<pre> cons x xs => f x (foldr f xs b) end.</pre>
To prove properties about all elements of a type, we typically use _induction		(** Again, [foldr] works by putting a function [f] in for each [cons]: <<
We do this by proving that the property holds on the "base cases", that is, for nonrecursive constructors.		<pre>foldr f (cons 1 (cons 2 (cons 3 nil))) x> f 1 (f 2 (f 3 x)) >></pre>
For example, [(0 : nat)] and [(nil : list A)] are base cases for [nat] and [list] respectively.		See how [foldr] replaces [cons] with [f] and [nil] with [x].
Then, we prove that the property is _preserved_ by each of the recursive constructors, _assuming_ it holds for all the recursive arguments to that constructor.		(** [foldr plus] sums a list of [nat]s. Let's sum the values from 0 to 10 *)
To prove the inductive case for a property [P] of nats, we need to $_{\!$	prove	Eval cbv in (foldr plus (countdown 10) 0). (**
forall n, $P n \rightarrow P (S n)$		<< = 55
For lists, we need to prove		: nat
<pre>forall 1 x, P 1 -> P (cons x 1) >> *)</pre>		*) (**
(**		Consider our good friend the factorial function:
<pre>Function composition, like from math class. *)</pre>		<pre>Fixpoint fact (n: nat) : nat := match n with</pre>
Definition compose (A B C : Type) (f : B -> C) (g : A -> B)		0 => 1 S m => mult n (fact m) end.
(* - x) = (-x)		Eval cbv in (fact 0). Eval cbv in (fact 1). Eval cbv in (fact 2).
<pre>(** Mapping two functions one after the other over a list is the same as just mapping their composition over the list. *)</pre>		Eval cbv in (fact 3). Eval cbv in (fact 4). (**

Oct 04, 16 21:55 MoreIntro_annotated.v	Page 5/10	Oct 04, 16 21:55 MoreIntro_annotated.v	Page 6/10
We can write it slightly differently using [foldr]:	_	end.	-
<pre>Definition fact' (n: nat) : nat := match n with 0 => 1 S m => foldr mult (map (plus 1) (countdown m)) 1 end. Eval cbv in (fact' 0).</pre>		<pre>(** When working with lists, appending one list onto the end of another is very useful. This [app] function does exactly that. Notice how similar it is to adding [nat]s. *) Fixpoint app (A : Type)</pre>	
Eval cbv in (fact' 1). Eval cbv in (fact' 2). Eval cbv in (fact' 3). Eval cbv in (fact' 4). (**		<pre>(11 : list A) (12 : list A) : list A := match 11 with nil => 12 cons x xs => cons x (app xs 12) end.</pre>	
<pre>As an exercise, please prove these two versions of factorial equivalent: *)</pre>		<pre>Eval cbv in (app (cons 1 (cons 2 nil)) (cons 3 nil)). (** <<</pre>	
<pre>Lemma fact_fact': forall n, fact n = fact' n. Proof.</pre>		= cons 1 (cons 2 (cons 3 nil)) : list nat *)	
<pre>(** challenge problem *) Admitted. (**</pre>		(** This is the analog of our lemma about (n + 0) from Lecture 01, but for appending [nil] onto a list.	
<pre>It turns out we can write many list function just in terms of [foldr]. Here's a definition of [map] using [foldr]: *)</pre>		Notice how similar the proofs are! We have seen this pattern several times already.	
<pre>Definition map' (A B : Type) (f : A -> B) (l : list A) : list B := foldr (fun x acc => cons (f x) acc) l nil.</pre>		<pre>Theorem app_nil: forall A (l: list A), app l nil = l. Proof.</pre>	
<pre>(** We can prove our "foldr" version of map equivalent to the direct definition: *)</pre>		<pre>intros. induction 1. + simpl. reflexivity. + simpl. rewrite IHL. reflexivity.</pre>	
<pre>Lemma map_map' : forall (A B : Type) (f : A -> B) (l : list A), map f l = map' f l.</pre>		Qed. (**	
<pre>Proof. intros. induction l. + simpl. unfold map'. simpl. reflexivity.</pre>		<pre>[app] is associative, meaning we can freely re-associate (move parens around). There's the same proof pattern again!</pre>	
<pre>+ simpl. rewrite IH1. (** again, need to unfold so simpl can grind *) unfold map'. simpl. reflexivity. (**</pre>		*) Theorem app_assoc: forall A (11 12 13: list A), app (app 11 12) 13 = app 11 (app 12 13).	
<pre>(** _Note_: this proof is very sensitive to the order of rewrite and unfold! *) Qed.</pre>		<pre>Proof. intros. induction l1. + simpl. reflexivity. + simpl. rewrite IH11. reflexivity.</pre>	
(**		Qed.	
We can also define another flavor of fold, called [fold], that starts applying [f] to the first element of the list instead of the last.		(** Sometimes a list is "backward" from the order we would prefer it in.	
What's the difference? When would you use [fold1] instead of [foldr]? *)		<pre>Here is a simple but "inefficient" way to reverse a list. *)</pre>	
<pre>fixpoint foldl (A B : Type) (f : A -> B -> B) (l : list A) (b : B) : B := match l with</pre>		<pre>Fixpoint rev (A: Type) (l: list A) : list A := match l with nil => nil cons x xs => app (rev xs) (cons x nil)</pre>	
<pre> nil => b cons x xs => foldl f xs (f x b)</pre>		end.	

Oct 04, 16 21:55	MoreIntro_annotated.v	Page 7/10	Oct 04, 16 21:55 MoreIntro_annotated.v Page 8
(**			+ simpl. reflexivity.
	of [rev] above is "inefficient"		+ simpl.
	recursive A function is tail		(** STUCK AGAIN! need to know for *any* 12 *)
	rsive calls are the final action an read more about tail recursion		(** TIP: if your IH seems weak, only intro up to the induction variable Abort.
here:	an read more about tarr recursion		Abort.
https://en.wikipedia.o	org/wiki/Tail_call		Lemma fast_rev_aux_ok:
			forall A (11 12: list A),
	ally faster and leads to less but it is more complicated		fast_rev_aux l1 l2 = app (rev l1) l2. Proof.
and therefore often tric			intros A 11.
			induction 11.
	recursive function to reverse a list.		+ intros. simpl. reflexivity.
	r function [fast_rev_aux] which takes [acc] ("acc" is short for "accumulator")		+ (**
	ilting reversed list with each recursive		Compare the induction hypothesis (IH11) here with
	-		the one we had before. What's different? Why is
	only calls itself in tail position,		this called "generalizing" the induction hypothesis?
i.e., as its result.			*) intros. simpl.
Tail recursion is typica	ally faster because compilers for		rename 12 into foo.
functional programming 1	languages often perform tail-call		(**
	n which stack frames are re-used		Note that we can rewrite by IH11 even though it is
by recursive calls.			universally quantified (i.e., there's a [forall]). Cog will figure out what to replace [12] with
Fixpoint fast_rev_aux (A :	: Type)		in [H11 (cons a foo)].
(l : list A) (acc : list			*)
match 1 with			rewrite IH11. rewrite app_assoc.
<pre> nil => acc cons x xs => fast_rev_</pre>	aux xs (cons x acc)		simpl. reflexivity.
end.			Qed.
<pre>Definition fast_rev (A : T (l : list A) : list A :=</pre>			(** With our stronger induction hypothesis from the lemma,
fast_rev_aux l nil.			we can now prove [rev_ok] as a special case of [rev_aux_ok].
			*)
(**			Lemma rev_0k:
	ster, tail-recursive version proving it equivalent to the		forall A (1: list A), fast_rev 1 = rev 1.
simpler, non-tail-recurs			Proof.
			intros.
	v, we will not be able to do first need to prove a helper		unfold fast_rev. rewrite fast_rev_aux_ok.
lemma with a _stronger_			rewrite app_nil.
*)			reflexivity.
Theorem rev_ok:			Qed.
<pre>forall A (l : list A), fast_rev l = rev l.</pre>			(**
Proof.			
intros.			Here we'll stop for an in class exercise!
induction 1.	, but does not hims to you foot *)		
	<pre>v, but does nothing to rev_fast *) unfold fast_rev to fast_rev_aux *)</pre>		
simpl. (** now we can			
reflexivity.			~
(** <i>TIP: if simpl does</i> + unfold fast_rev in *.	sn't work, try unfolding! *)		(/ ~~~
	could be trouble *)		} ~ `, ~ ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ .
simpl. rewrite <- IHl.			(/ \ ~~~~~
	ow about the rev_aux accumulator (acc) *		; \ ~~~~~
Abort.	eems weak, try proving something more ge	netal ~)	; {~~.~~.~~.~~.~~.~ ;: .~~`` ~~.~~.~~.~
			/·····
Lemma fast_rev_aux_ok:			//:: '-·
forall A (11 12 : list A			;::. ' '-,~~ ';::::. ''/'
<pre>fast_rev_aux 11 12 = app Proof.</pre>	· (ICV II) IZ.		///////////////////////////////////////
intros.			<pre>/ "</pre>
induction 11.			

Oct 04, 16 21:55 MoreIntro_annotated.v	Page 9/10	Oct 04, 16 21:55	MoreIntro_annotated.v	Page 10/10
~ ` ~ "' >> *)		<pre>rewrite fast_rev_aux rewrite app_nil. reflexivity. Qed.</pre>	x_ok_snoc.	
<pre>(** add an element to the end of a list *) Fixpoint snoc (A : Type) (l : list A) (x : A) : list A := match l with nil => cons x nil cons y ys => cons y (snoc ys x) end.</pre>		about [rev] and [len Note how often the s *)	th some example lemmas ngth]. same proof pattern keeps emerging!	
<pre>Theorem snoc_app_singleton : forall A (l : list A) (x : A), snoc l x = app l (cons x nil). Proof. intros. induction l. + simpl. reflexivity. + simpl. rewrite IHL. reflexivity. Qed.</pre>		<pre>Lemma length_app: forall A (11 12 : 1: length (app 11 12) = Proof. intros. induction 11. + simpl. reflexivity + simpl. rewrite IH Qed.</pre>	= plus (length l1) (length l2). Y.	
<pre>Theorem app_snoc_l : forall A (l1 : list A) (l2 : list A) (x : A), app (snoc l1 x) l2 = app l1 (cons x l2). Proof. intros. induction l1. + simpl. reflexivity. + simpl. reflexivity. Qed.</pre>		<pre>Lemma plus_1_S: forall n, plus n 1 = S n. Proof. intros. induction n. + simpl. reflexivity + simpl. rewrite IHn Qed.</pre>		
<pre>Theorem app_snoc_r : forall A (11 : list A) (12 : list A) (x : A), app 11 (snoc 12 x) = snoc (app 11 12) x. Proof. intros. induction 11. + simpl. reflexivity. + simpl. reflexivity. ged.</pre>		Lemma rev_length: forall A (l: list A) length (rev l) = len Proof. intros. induction l. + simpl. reflexivity + simpl. rewrite len rewrite IHL. refle	ngth l. y. ngth_app. us_1_S.	
<pre>(** Another simple but inefficient way to reverse a list *) Fixpoint rev_snoc (A : Type) (l : list A) : list A := match l with nil => nil cons x xs => snoc (rev_snoc xs) x end. Lemma fast_rev_aux_ok_snoc:</pre>		<pre>Qed. Lemma rev_app: forall A (11 12: 1is rev (app 11 12) = ap Proof. intros. induction 11. + simpl. rewrite app</pre>	op (rev 12) (rev 11).	
<pre>forall A (l1 l2 : list A), fast_rev_aux l1 l2 = app (rev_snoc l1) l2. Proof. intros A l1. induction l1. + intros. simpl. reflexivity. + intros. simpl. rewrite IH11.</pre>		<pre>+ simpl. rewrite IH: reflexivity. Qed. Lemma rev_involutive: forall A (1: list A) rev (rev 1) = 1. Proof.</pre>	ll. rewrite app_assoc.	
<pre>rewrite app_snoc_l. reflexivity. ged. Lemma fast_rev_ok_snoc: forall A (l : list A), fast_rev l = rev_snoc l. Proof.</pre>		<pre>intros. induction 1. + simpl. reflexivity + simpl. rewrite rev simpl. rewrite IH: Qed.</pre>	v_app.	
intros. unfold fast_rev.				