
(** * Lecture 02 *)

(** Infer some type arguments automatically. *)
Set Implicit Arguments.

(**

 Note that the type constructor for functions (arrow "−>")
 associates to the right:
<<
 A −> B −> C = A −> (B −> C)
>>
*)

Inductive list (A: Type) : Type :=
| nil : list A
| cons : A −> list A −> list A.

Fixpoint length (A: Type) (l: list A) : nat :=
 match l with
 | nil _ => O
 | cons x xs => S (length xs)
 end.

(**

 So far, Coq will not infer the type argument for [nil]:
<<
Check (cons 1 nil).

Error: The term "nil" has type "forall A : Type, list A"
 while it is expected to have type "list nat".
>>
*)

Check (cons 1 (nil nat)).

(** We can tell Coq to always try though: *)
Arguments nil {A}.

Check (cons 1 nil).

(**
 [countdown] is a useful function for testing.
 [countdown n] produces the list:
<<
 n :: (n − 1) :: (n − 2) :: .. :: 1 :: 0 :: nil
>>
*)
Fixpoint countdown (n: nat) :=
 match n with
 | O => cons n nil
 | S m => cons n (countdown m)
 end.

(**
 We can run our [countdown] function on some example inputs:
*)
Eval cbv in (countdown 0).
(**
<<
 = cons 0 nil
 : list nat
>>
*)
Eval cbv in (countdown 3).
(**
<<
 = cons 3 (cons 2 (cons 1 (cons 0 nil)))

Oct 04, 16 21:55 Page 1/10MoreIntro_annotated.v
 : list nat
>>
*)
Eval cbv in (countdown 10).
(**
<<
 = cons 10
 (cons 9
 (cons 8
 (cons 7
 (cons 6
 (cons 5
 (cons 4
 (cons 3
 (cons 2
 (cons 1
 (cons 0 nil))))))))))
 : list nat
>>
*)

(**
 [map] takes a function [f] and list [l] and produces a new
 list by applying [f] to each element of [l].

 (Note that because Gallina is a pure functional programming
 language, the original input list is completely unchanged.)
*)
Fixpoint map (A B: Type) (f: A −> B) (l: list A) : list B :=
 match l with
 | nil => nil
 | cons x xs => cons (f x) (map f xs)
 end.

Eval cbv in (map (plus 1) (countdown 3)).
(**
<<
 = cons 4 (cons 3 (cons 2 (cons 1 nil)))
 : list nat
>>
*)
Eval cbv in (map (fun _ => true) (countdown 3)).
(**
<<
 = cons true (cons true (cons true (cons true nil)))
 : list bool
>>
*)

Definition is_zero (n: nat) : bool :=
 match n with
 | O => true
 | S m => false
 end.

Eval cbv in (map is_zero (countdown 3)).
(**
<<
 = cons false (cons false (cons false (cons true nil)))
 : list bool
>>
*)

Fixpoint is_even (n: nat) : bool :=
 match n with
 | O => true
 | S O => false
 | S (S m) => is_even m

Oct 04, 16 21:55 Page 2/10MoreIntro_annotated.v

Printed by Zach Tatlock

Monday October 10, 2016 1/5lec02/MoreIntro_annotated.v

 end.

Eval cbv in (map is_even (countdown 3)).
(**
<<
 = cons false (cons true (cons false (cons true nil)))
 : list bool
>>
*)

(**
 [map] produces an output list which is exactly the
 same length as its input list.

 (Note that this proof uses bullets (+).
 See the course web page for more info.)
*)
Lemma map_length :
 forall (A B : Type) (f : A −> B) (l : list A),
 length (map f l) = length l.
Proof.
 intros.
 induction l.
 + simpl. reflexivity.
 + simpl.
 (** Replace "length (map f l)" with "length l" *)
 rewrite IHl.
 reflexivity.
Qed.

(**

 To prove properties about all elements of a type, we typically
 use _induction_.

 We do this by proving that the property holds on the "base cases",
 that is, for nonrecursive constructors.

 For example, [(O : nat)] and [(nil : list A)] are base cases for
 [nat] and [list] respectively.

 Then, we prove that the property is _preserved_ by each of the
 recursive constructors, _assuming_ it holds for all the recursive
 arguments to that constructor.

 To prove the inductive case for a property [P] of nats, we need to prove
<<
 forall n, P n −> P (S n)
>>
 For lists, we need to prove
<<
 forall l x, P l −> P (cons x l)
>>
*)

(**
 Function composition, like from math class.
*)
Definition compose
 (A B C : Type)
 (f : B −> C)
 (g : A −> B)
 : A −> C :=
 fun x => f (g x).

(**
 Mapping two functions one after the other over a list
 is the same as just mapping their composition over the list.
*)

Oct 04, 16 21:55 Page 3/10MoreIntro_annotated.v
Lemma map_map_compose:
 forall (A B C : Type)
 (g : A −> B) (f : B −> C) (l : list A),
 map f (map g l) = map (compose f g) l.
Proof.
 intros.
 induction l.
 + simpl. reflexivity.
 + simpl. rewrite IHl.
 (** need to "unfold" [compose] so simpl can grind *)
 unfold compose. reflexivity.
Qed.

(**
 Often we’d like to process a list by "crunching" it
 down into a single value.

 [foldr] does this by taking a function [f], a list
 [cons e1 (cons e2 (cons e3 ... (cons eN nil) ...))],
 and an initial "accumulator" or "state" [b] and computing:
<<
 f e1 (f e2 (f e3 ... (f eN b) ...))
>>
*)
Fixpoint foldr (A B : Type) (f : A −> B −> B)
 (l : list A) (b : B) : B :=
 match l with
 | nil => b
 | cons x xs => f x (foldr f xs b)
 end.

(**
 Again, [foldr] works by putting a function [f] in for each [cons]:
<<
 foldr f (cons 1 (cons 2 (cons 3 nil))) x
 −−>
 f 1 (f 2 (f 3 x))
>>
 See how [foldr] replaces [cons] with [f] and [nil] with [x].
*)

(**
 [foldr plus] sums a list of [nat]s.
 Let’s sum the values from 0 to 10
*)
Eval cbv in (foldr plus (countdown 10) 0).
(**
<<
 = 55
 : nat
>>
*)

(**
 Consider our good friend the factorial function:
*)
Fixpoint fact (n: nat) : nat :=
 match n with
 | O => 1
 | S m => mult n (fact m)
 end.

Eval cbv in (fact 0).
Eval cbv in (fact 1).
Eval cbv in (fact 2).
Eval cbv in (fact 3).
Eval cbv in (fact 4).

(**

Oct 04, 16 21:55 Page 4/10MoreIntro_annotated.v

Printed by Zach Tatlock

Monday October 10, 2016 2/5lec02/MoreIntro_annotated.v

 We can write it slightly differently using [foldr]:
*)
Definition fact’ (n: nat) : nat :=
 match n with
 | O => 1
 | S m => foldr mult (map (plus 1) (countdown m)) 1
 end.

Eval cbv in (fact’ 0).
Eval cbv in (fact’ 1).
Eval cbv in (fact’ 2).
Eval cbv in (fact’ 3).
Eval cbv in (fact’ 4).

(**
 As an exercise, please prove these two versions of
 factorial equivalent:
*)
Lemma fact_fact’:
 forall n,
 fact n = fact’ n.
Proof.
 (** challenge problem *)
Admitted.

(**
 It turns out we can write many list function
 just in terms of [foldr]. Here’s a definition
 of [map] using [foldr]:
*)
Definition map’ (A B : Type)
 (f : A −> B) (l : list A) : list B :=
 foldr (fun x acc => cons (f x) acc) l nil.

(**
 We can prove our "foldr" version of map equivalent
 to the direct definition:
*)
Lemma map_map’ :
 forall (A B : Type) (f : A −> B) (l : list A),
 map f l = map’ f l.
Proof.
 intros.
 induction l.
 + simpl. unfold map’. simpl. reflexivity.
 + simpl. rewrite IHl.
 (** again, need to unfold so simpl can grind *)
 unfold map’. simpl.
 reflexivity.
(**
 Note: this proof is very sensitive
 to the order of rewrite and unfold!
*)
Qed.

(**
 We can also define another flavor of fold, called
 [foldl], that starts applying [f] to the first element
 of the list instead of the last.

 What’s the difference?
 When would you use [foldl] instead of [foldr]?
*)
Fixpoint foldl (A B : Type)
 (f : A −> B −> B)
 (l : list A) (b : B) : B :=
 match l with
 | nil => b
 | cons x xs => foldl f xs (f x b)

Oct 04, 16 21:55 Page 5/10MoreIntro_annotated.v
 end.

(**
 When working with lists, appending one list onto the
 end of another is very useful. This [app] function
 does exactly that. Notice how similar it is to adding
 [nat]s.
*)
Fixpoint app (A : Type)
 (l1 : list A) (l2 : list A) : list A :=
 match l1 with
 | nil => l2
 | cons x xs => cons x (app xs l2)
 end.

Eval cbv in (app (cons 1 (cons 2 nil)) (cons 3 nil)).
(**
<<
 = cons 1 (cons 2 (cons 3 nil))
 : list nat
>>
*)

(**
 This is the analog of our lemma about (n + 0) from
 Lecture 01, but for appending [nil] onto a list.

 Notice how similar the proofs are! We have seen
 this pattern several times already.
*)
Theorem app_nil:
 forall A (l: list A),
 app l nil = l.
Proof.
 intros.
 induction l.
 + simpl. reflexivity.
 + simpl. rewrite IHl. reflexivity.
Qed.

(**
 [app] is associative, meaning we can freely
 re−associate (move parens around).

 There’s the same proof pattern again!
*)
Theorem app_assoc:
 forall A (l1 l2 l3: list A),
 app (app l1 l2) l3 = app l1 (app l2 l3).
Proof.
 intros.
 induction l1.
 + simpl. reflexivity.
 + simpl. rewrite IHl1. reflexivity.
Qed.

(**
 Sometimes a list is "backward" from the order
 we would prefer it in.

 Here is a simple but "inefficient" way to reverse
 a list.
*)
Fixpoint rev (A: Type) (l: list A) : list A :=
 match l with
 | nil => nil
 | cons x xs => app (rev xs) (cons x nil)
 end.

Oct 04, 16 21:55 Page 6/10MoreIntro_annotated.v

Printed by Zach Tatlock

Monday October 10, 2016 3/5lec02/MoreIntro_annotated.v

(**
 We say that the version of [rev] above is "inefficient"
 because it is not _tail recursive_. A function is tail
 recursive when all recursive calls are the final action
 of the function. You can read more about tail recursion
 here:
 https://en.wikipedia.org/wiki/Tail_call

 Tail recursion is generally faster and leads to less
 stack space consumption, but it is more complicated
 and therefore often trickier to reason about.

 Below we define a tail recursive function to reverse a list.
 We first define a helper function [fast_rev_aux] which takes
 an additional argument [acc] ("acc" is short for "accumulator").
 We "accumulate" the resulting reversed list with each recursive call.

 Note how [fast_rev_aux] only calls itself in tail position,
 i.e., as its result.

 Tail recursion is typically faster because compilers for
 functional programming languages often perform tail−call
 optimization ("TCO"), in which stack frames are re−used
 by recursive calls.
*)
Fixpoint fast_rev_aux (A : Type)
 (l : list A) (acc : list A) : list A :=
 match l with
 | nil => acc
 | cons x xs => fast_rev_aux xs (cons x acc)
 end.

Definition fast_rev (A : Type)
 (l : list A) : list A :=
 fast_rev_aux l nil.

(**
 We can make sure our faster, tail−recursive version
 of reverse is right by proving it equivalent to the
 simpler, non−tail−recursive version.

 However, as we see below, we will not be able to do
 this directly. We will first need to prove a helper
 lemma with a _stronger_ induction hypothesis.
*)
Theorem rev_ok:
 forall A (l : list A),
 fast_rev l = rev l.
Proof.
 intros.
 induction l.
 + simpl. (** reduces rev, but does nothing to rev_fast *)
 unfold fast_rev. (** unfold fast_rev to fast_rev_aux *)
 simpl. (** now we can simplify the term *)
 reflexivity.
 (** TIP: if simpl doesn’t work, try unfolding! *)
 + unfold fast_rev in *.
 (** this looks like it could be trouble... *)
 simpl. rewrite <− IHl.
 (** STUCK! need to know about the rev_aux accumulator (acc) *)
 (** TIP: if your IH seems weak, try proving something more general *)
Abort.

Lemma fast_rev_aux_ok:
 forall A (l1 l2 : list A),
 fast_rev_aux l1 l2 = app (rev l1) l2.
Proof.
 intros.
 induction l1.

Oct 04, 16 21:55 Page 7/10MoreIntro_annotated.v
 + simpl. reflexivity.
 + simpl.
 (** STUCK AGAIN! need to know for *any* l2 *)
 (** TIP: if your IH seems weak, only intro up to the induction variable *)
Abort.

Lemma fast_rev_aux_ok:
 forall A (l1 l2: list A),
 fast_rev_aux l1 l2 = app (rev l1) l2.
Proof.
 intros A l1.
 induction l1.
 + intros. simpl. reflexivity.
 +
(**
 Compare the induction hypothesis (IHl1) here with
 the one we had before. What’s different? Why is
 this called "generalizing" the induction hypothesis?
*)
 intros. simpl.
 rename l2 into foo.
(**
 Note that we can rewrite by IHl1 even though it is
 universally quantified (i.e., there’s a [forall]).
 Coq will figure out what to replace [l2] with
 in [IHl1 (cons a foo)].
*)
 rewrite IHl1. rewrite app_assoc.
 simpl.
 reflexivity.
Qed.

(**
 With our stronger induction hypothesis from the lemma,
 we can now prove [rev_ok] as a special case of [rev_aux_ok].
*)
Lemma rev_ok:
 forall A (l: list A),
 fast_rev l = rev l.
Proof.
 intros.
 unfold fast_rev.
 rewrite fast_rev_aux_ok.
 rewrite app_nil.
 reflexivity.
Qed.

(**

Here we’ll stop for an in class exercise!

<<

 ~−.
 ,,,; ~−.~−.~−
 (.../ ~−.~−.~−.~−.~−.
 } o~‘, ~−.~−.~−.~−.~−.~−.
 (/ \ ~−.~−.~−.~−.~−.~−.~−.
 ; \ ~−.~−.~−.~−.~−.~−.~−.
 ; {_.~−.~−.~−.~−.~−.~−.~
 ;: .−~‘ ~−.~−.~−.~−.~−.
 ;.: :’ ._ ~−.~−.~−.~−.~−
 ;::‘−. ’−._ ~−.~−.~−.~−
 ;::. ‘−. ’−,~−.~−.~−.
 ’;::::.‘’’−.−’
 ’;::;;:,:’
 ’||"
 / |

Oct 04, 16 21:55 Page 8/10MoreIntro_annotated.v

Printed by Zach Tatlock

Monday October 10, 2016 4/5lec02/MoreIntro_annotated.v

 ~‘ ~"’

>>
*)

(** add an element to the end of a list *)
Fixpoint snoc (A : Type)
 (l : list A) (x : A) : list A :=
 match l with
 | nil => cons x nil
 | cons y ys => cons y (snoc ys x)
 end.

Theorem snoc_app_singleton :
 forall A (l : list A) (x : A),
 snoc l x = app l (cons x nil).
Proof.
 intros.
 induction l.
 + simpl. reflexivity.
 + simpl. rewrite IHl. reflexivity.
Qed.

Theorem app_snoc_l :
 forall A (l1 : list A) (l2 : list A) (x : A),
 app (snoc l1 x) l2 = app l1 (cons x l2).
Proof.
 intros.
 induction l1.
 + simpl. reflexivity.
 + simpl. rewrite IHl1. reflexivity.
Qed.

Theorem app_snoc_r :
 forall A (l1 : list A) (l2 : list A) (x : A),
 app l1 (snoc l2 x) = snoc (app l1 l2) x.
Proof.
 intros.
 induction l1.
 + simpl. reflexivity.
 + simpl. rewrite IHl1. reflexivity.
Qed.

(** Another simple but inefficient way to reverse a list *)
Fixpoint rev_snoc (A : Type) (l : list A) : list A :=
 match l with
 | nil => nil
 | cons x xs => snoc (rev_snoc xs) x
 end.

Lemma fast_rev_aux_ok_snoc:
 forall A (l1 l2 : list A),
 fast_rev_aux l1 l2 = app (rev_snoc l1) l2.
Proof.
 intros A l1.
 induction l1.
 + intros. simpl. reflexivity.
 + intros. simpl.
 rewrite IHl1.
 rewrite app_snoc_l.
 reflexivity.
Qed.

Lemma fast_rev_ok_snoc:
 forall A (l : list A),
 fast_rev l = rev_snoc l.
Proof.
 intros.
 unfold fast_rev.

Oct 04, 16 21:55 Page 9/10MoreIntro_annotated.v
 rewrite fast_rev_aux_ok_snoc.
 rewrite app_nil.
 reflexivity.
Qed.

(**
 We’ll finish off with some example lemmas
 about [rev] and [length].

 Note how often the same proof pattern keeps emerging!
*)

Lemma length_app:
 forall A (l1 l2 : list A),
 length (app l1 l2) = plus (length l1) (length l2).
Proof.
 intros.
 induction l1.
 + simpl. reflexivity.
 + simpl. rewrite IHl1. reflexivity.
Qed.

Lemma plus_1_S:
 forall n,
 plus n 1 = S n.
Proof.
 intros.
 induction n.
 + simpl. reflexivity.
 + simpl. rewrite IHn. reflexivity.
Qed.

Lemma rev_length:
 forall A (l: list A),
 length (rev l) = length l.
Proof.
 intros.
 induction l.
 + simpl. reflexivity.
 + simpl. rewrite length_app.
 simpl. rewrite plus_1_S.
 rewrite IHl. reflexivity.
Qed.

Lemma rev_app:
 forall A (l1 l2: list A),
 rev (app l1 l2) = app (rev l2) (rev l1).
Proof.
 intros.
 induction l1.
 + simpl. rewrite app_nil. reflexivity.
 + simpl. rewrite IHl1. rewrite app_assoc.
 reflexivity.
Qed.

Lemma rev_involutive:
 forall A (l: list A),
 rev (rev l) = l.
Proof.
 intros.
 induction l.
 + simpl. reflexivity.
 + simpl. rewrite rev_app.
 simpl. rewrite IHl. reflexivity.
Qed.

Oct 04, 16 21:55 Page 10/10MoreIntro_annotated.v

Printed by Zach Tatlock

Monday October 10, 2016 5/5lec02/MoreIntro_annotated.v

