Oct 04, 16 21:55 Morelntro_annotated.v	Page 1/10	
(** * Lecture 02 *)		
(** Infer some type arguments automatically. *)		
Set Implicit Arguments.		
(**		
Note that the type constructor for functions (arrow "->") associates to the right:		
$A \rightarrow B \rightarrow C=A \rightarrow(B \rightarrow C)$		
$\begin{aligned} & \text { >> } \\ & \text { *) } \end{aligned}$		
Inductive list (A: Type) : Type := \| nil : list A		
\| cons : A \rightarrow list A -> list A.		
```Fixpoint length (A: Type) (l: list A) : nat := match l with \| nil _ => O	cons x xs => S (length xs) end.```	
(**		
So far, Coq will not infer the type argument for [nil]: << Check (cons 1 nil).		
Error: The term "nil" has type "forall A : Type, list A" while it is expected to have type "list nat".		
$\begin{aligned} & \text { >> } \\ & \text { *) } \end{aligned}$		
Check (cons 1 (nil nat)).		
(** We can tell Coq to always try though: *)		
Arguments nil $\{\mathrm{A}\}$.		
Check (cons 1 nil).		
(** ${ }^{\text {* }}$ )		
[countdown] is a useful function for testing. [countdown $n$ ] produces the list:		
$n::(n-1)::(n-2):: \ldots:: 1:: 0:: \text { nil }$		
$\begin{aligned} & \text { >> } \\ & \text { *) } \end{aligned}$		
```Fixpoint countdown (n: nat) := match n with \| O => cons n nil	S m => cons n (countdown m) end.```	
Eval cbv in (countdown 0). $1 * *$		
$\begin{aligned} & =\text { cons } 0 \text { nil } \\ & \text { : list nat } \end{aligned}$		
$\begin{aligned} & \text { >> } \\ & \text { *) } \end{aligned}$		
```Eval cbv in (countdown 3). (** = cons 3 (cons 2 (cons 1 (cons 0 nil)))```		




Oct 04, 16 21:55 Morelntro_annotated.v	Page 5/10	
```We can write it slightly differently using [foldr]: *) Definition fact' (n: nat) : nat := match n with \| 0 => 1	S m => foldr mult (map (plus 1) (countdown m)) 1 end.```	
```(** As an exercise, please prove these two versions of factorial equivalent: *)```		
```Lemma fact_fact': forall n, fact n = fact' n.```		
```Proof. (** challenge problem *) Admitted.```		
```(** It turns out we can write many list function just in terms of [foldr]. Here's a definition of [map] using [foldr]: *)```		
Definition map' (A B : Type) (f : A -> B) (l : list A) : list B := foldr (fun x acc $=>$ cons (f x) acc) l nil.		
```(** We can prove our "foldr" version of map equivalent to the direct definition: *)```		
```Lemma map_map' : forall (A B : Type) (f : A -> B) (l : list A), map f l = map' f l.```		
```Proof. intros. induction l. + simpl. unfold map'. simpl. reflexivity. + simpl. rewrite IHl. (** again, need to unfold so simpl can grind *) unfold map'. simpl. reflexivity.```		
_Note_: this proof is very sensitive to the order of rewrite and unfold! *)		
Qed.		
(**		
We can also define another flavor of fold, called [foldl], that starts applying [f] to the first element of the list instead of the last.   What's the difference?   When would you use [foldl] instead of [foldr]?		
*) ```Fixpoint foldl (A B : Type) (f : A -> B -> B) (l : list A) (b : B) : B := match l with \| nil => b	cons x xs => foldl f xs (f x b)```	



Oct 04, $1621: 55$ Morelntro_annotated.v Page 7/10	Oct 04, $1621: 55$ Morelntro_annotated.v Page 8/10
(**   We say that the version of [rev] above is "inefficient" because it is not _tail recursive_. A function is tail recursive when all recursive calls are the final action of the function. You can read more about tail recursion here:   https://en.wikipedia.org/wiki/Tail_call   Tail recursion is generally faster and leads to less stack space consumption, but it is more complicated and therefore often trickier to reason about.   Below we define a tail recursive function to reverse a list. We first define a helper function [fast_rev_aux] which takes an additional argument [acc] ("acc" is short for "accumulator"). We "accumulate" the resulting reversed list with each recursive call.   Note how [fast_rev_aux] only calls itself in tail position, i.e., as its result.   Tail recursion is typically faster because compilers for functional programming languages often perform tail-call optimization ("TCO"), in which stack frames are re-used by recursive calls.   *)   Fixpoint fast_rev_aux (A : Type)   (1 : list A) (acc : list A) : list A :=   match 1 with   \| nil => acc   \| cons x xs => fast_rev_aux xs (cons x acc)   end.   Definition fast_rev (A : Type)   (l : list A) : list A :=   fast_rev_aux l nil.   (**   We can make sure our faster, tail-recursive version of reverse is right by proving it equivalent to the simpler, non-tail-recursive version.   However, as we see below, we will not be able to do this directly. We will first need to prove a helper lemma with a _stronger_ induction hypothesis.   *)   Theorem rev_ok:   forall A (l : list A),   fast_rev l = rev 1 .   Proof.   intros.   induction 1.   + simpl. (** reduces rev, but does nothing to rev_fast *) unfold fast_rev. (** unfold fast_rev to fast_rev_aux *) simpl. (** now we can simplify the term *) reflexivity.   (** TIP: if simpl doesn't work, try unfolding! *)   + unfold fast_rev in *.   (** this looks like it could be trouble... *)   simpl. rewrite <- IHl.   (** STUCK! need to know about the rev_aux accumulator (acc) *)   (** TIP: if your IH seems weak, try proving something more general *)   Abort. ```Lemma fast_rev__aux_ok: forall A (l1 l2 : list A), fast_rev_aux l1 l2 = app (rev l1) l2. Proof. intros. induction l1.```	```+ simpl. reflexivity. + simpl. (** STUCK AGAIN! need to know for *any* 12 *) (** TIP: if your IH seems weak, only intro up to the induction variable *)``` Abort. Lemma fast_rev_aux_ok: forall A (11 12: list A), fast_rev_aux $1112=a p p(r e v ~ l 1) ~ 12$. Proof. intros A 11. induction 11. + intros. simpl. reflexivity. $+$ (** Compare the induction hypothesis (IHll) here with the one we had before. What's different? Why is this called "generalizing" the induction hypothesis? *) intros. simpl. rename 12 into foo. (** Note that we can rewrite by IHll even though it is universally quantified (i.e., there's a [forall]). Coq will figure out what to replace [12] with in [IHll (cons a foo)]. *) rewrite IHl1. rewrite app_assoc. simpl. reflexivity.   Qed.   (**   With our stronger induction hypothesis from the lemma,


Oct 04, 16 21:55 Morelntro_annotated.v	Page 9/10
~ ' ~"'	
$\begin{array}{\|l\|} \hline \gg \\ \text { *) } \end{array}$	
(** add an element to the end of a list *)Fixpoint snoc (A : Type)	
(l : list A) (x : A) : list A := match l with	
\| nil ${ }^{\text {a }}$ cons x nil	
\| cons y ys => cons y (snoc ys x) end.	
Theorem snoc_app_singleton :	
forall A (l : list A) (x : A), snoc $1 \mathrm{x}=\mathrm{app} \mathrm{l}$ (cons x nil).	
Proof.	
intros.	
induction 1.	
+ simpl. reflexivity.	
+ simpl. rewrite IHl. reflexivity. Qed.	
```Theorem app_snoc_l : forall A (l1 : list A) (l2 : list A) (x : A),```	
Proof.	
intros.	
induction 11.	
+ simpl. reflexivity.	
+ simpl. rewrite IHl1. reflexivity. Qed.	
Theorem app_snoc_r :	
forall A (l1 : list A) (12 : list A) (x : A), app 11 (snoc 12 x) $=\operatorname{snoc}(\operatorname{app} 11$ l2) x .	
Proof.	
intros.	
induction ll.	
+ simpl. reflexivity.	
+ simpl. rewrite IHll. reflexivity.Qed.	
(** Another simple but inefficient way to reverse a list *)	
Fixpoint rev_snoc (A : Type) (l : list A) : list A :=	
```match l with \| nil => nil```	
```\| cons x xs => snoc (rev_snoc xs) x end.```	
Lemma fast_rev_aux_ok_snoc:	
forall A (l1 12 : list A),	
fast_rev_aux 11 12 = app (rev_snoc 11) 12. Proof.	
intros A 11.	
induction 11.	
+ intros. simpl. reflexivity.	
+ intros. simpl.	
rewrite IHll. rewrite app_snoc_l.	
Qed.	
Lemma fast_rev_ok_snoc:	
forall A (l : list A),	
fast_rev l = rev_snoc l.	
Proof.	
intros. unfold fast rev.	

Oct 04, 16 21:55 Morelntro_annotated.v
 rewrite fast_rev rewrite app_nil.

reflexivity.

ged.

(**
We'll finish off with some example lemmas about [rev] and [length].

Note how often the same proof pattern keeps emerging!
*)
Lemma length_app:
forall A (11 12 : list A),
length (app l1 12) = plus (length l1) (length 12).
Proof.
intros.
induction 11.

+ simpl. reflexivity.
+ simpl. rewrite IHll. reflexivity.
Qed.
Lemma plus_1_S:
forall n,
plus $\mathrm{n} 1=\mathrm{S} \mathrm{n}$.
Proof.
intros.
induction n.
+ simpl. reflexivity.
Qed
Lemma rev_length
forall A (1: list A),
length (rev l) = length 1 .
Proof.
inductio
induction 1.
+ simpl. reflexivity.
+ simpl. rewrite length_app.
rewrite IHl. reflexivity
Qed.
Lemma rev_app:
forall A (11 12: list A),
rev (app l1 l2) = app (rev l2) (rev l1).
Proof.
induction 11.
induction 11.
+ simpl. rewrite app_nil. reflexivity.
reflexivity.
Qed.
Lemma rev_involutive:
forall A (1: list A),
rev (rev 1) = 1 .
Proof.
intros.
induction 1
+ simpl. reflexivity.
+ simpl. rewrite rev_app
Qed.

