
CSE-505: Programming Languages

Lecture 20 — Shared-Memory Parallelism and
Concurrency

Zach Tatlock
2016

Concurrency and Parallelism

I PL support for concurrency/parallelism a huge topic
I Increasingly important (not traditionally in PL courses)
I Lots of active research as well as decades-old work

I We’ll just do explicit threads plus:
I Shared memory (locks and transactions)
I Futures
I Synchronous message passing (Concurrent ML)

I We’ll skip
I Process calculi (foundational message-passing)
I Asynchronous methods, join calculus, ...
I Data-parallel languages (e.g., NESL or ZPL)
I ...

I Mostly in ML syntax (inference rules where convenient)
I Even though current Caml implementation has threads but not

parallelism

Zach Tatlock CSE-505 2016, Lecture 20 2

Concurrency vs. Parallelism

(Terminology not universal, but distinction paramount):

Concurrency is about correctly and efficiently managing access to
shared resources

I Examples: operating system, shared hashtable, version control
I Key challenge is responsiveness to external events that may

arrive asynchronously and/or simultaneously
I Often provide responsiveness via threads
I Often focus on synchronization

Parallelism is about using extra computational resources to do
more useful work per unit time

I Examples: scientific computing, most graphics, a lot of servers
I Key challenge is Amdahl’s Law (no sequential bottlenecks)
I Often provide parallelism via threads on different processors

and/or to mask I/O latency

Zach Tatlock CSE-505 2016, Lecture 20 3

Threads

High-level: “Communicating sequential processes”

Low-level: “Multiple stacks plus communication”

From Caml’s thread.mli:

type t (*thread handle; remember we’re in module Thread*)

val create : (’a->’b) -> ’a -> t (* run new thread *)

val self : unit -> t (* what thread is executing this? *)

The code for a thread is in a closure (with hidden fields) and
Thread.create actually spawns the thread

Most languages make the same distinction, e.g., Java:

I Create a Thread object (data in fields) with a run method

I Call its start method to actually spawn the thread

Zach Tatlock CSE-505 2016, Lecture 20 4



Why use threads?

One OR more of:

1. Performance (multiprocessor or mask I/O latency)

2. Isolation (separate errors or responsiveness)

3. Natural code structure (1 stack awkward)

It’s not just performance

On the other hand, it seems fundamentally harder (for
programmers, language implementors, language designers,
semanticists) to have multiple threads of execution

Zach Tatlock CSE-505 2016, Lecture 20 5

One possible formalism (omitting thread-ids)

I Program state is one heap and multiple expressions

I Any ei might “take the next step” and potentially spawn a
thread

I A value in the “thread-pool” is removable

I Nondeterministic with interleaving granularity determined by
rules

Some example rules for H; e→ H ′; e′; o (where o ::= · | e):

H; !l→ H;H(l); ·
H; e1 → H ′; e′1; o

H; e1 e2 → H ′; e′1 e2; o

H; spawn(v1, v2)→ H; 0; (v1 v2)

Zach Tatlock CSE-505 2016, Lecture 20 6

Formalism continued

The H; e→ H ′; e′; o judgment is just a helper-judgment for
H; T → H ′; T ′ where T ::= · | e; T

H; e→ H ′; e′; ·
H; e1; . . . ; e; . . . ; en → H ′; e1; . . . ; e′; . . . ; en

H; e→ H ′; e′; e′′

H ′; e1; . . . ; e; . . . ; en → H ′; e1; . . . ; e′; . . . ; en; e′′

H; e1; . . . ; ei−1; v; ei+1; . . . ; en → H; e1; . . . ; ei−1; ei+1; . . . ; en

Program termination: H; ·

Zach Tatlock CSE-505 2016, Lecture 20 7

Equivalence just changed

Expressions equivalent in a single-threaded world are not
necessarily equivalent in a multithreaded context!

Example in Caml:

let x, y = ref 0, ref 0 in

create (fun () -> if (!y)=1 then x:=(!x)+1) ();

create (fun () -> if (!x)=1 then y:=(!y)+1) () (* 1 *)

Can we replace line (1) with:

create (fun () -> y:=(!y)+1; if (!x)<>1 then y:=(!y)-1) ()

For more compiler gotchas, see “Threads cannot be implemented
as a library” by Hans-J. Boehm in PLDI2005

I Example: C bit-fields or other adjacent fields

Zach Tatlock CSE-505 2016, Lecture 20 8



Communication

If threads do nothing other threads need to “see,” we are done

I Best to do as little communication as possible

I E.g., do not mutate shared data unnecessarily, or hide
mutation behind easier-to-use interfaces

One way to communicate: Shared memory

I One thread writes to a ref, another reads it

I Sounds nasty with pre-emptive scheduling
I Hence synchronization mechanisms

I Taught in O/S for historical reasons!
I Fundamentally about restricting interleavings

Zach Tatlock CSE-505 2016, Lecture 20 9

Join

“Fork-join” parallelism a simple approach good for “farm out
subcomputations then merge results”

(* suspend caller until/unless arg terminates *)

val join : t -> unit

Common pattern:

val fork_join : (’a -> ’b array) -> (* divider *)

(’b -> ’c) -> (* conqueror *)

(’c array -> ’d) -> (* merger *)

’a -> (* data *)

’d

Apply the second argument to each element of the ’b array in
parallel, then use third argument after they are done.

See lec20code.ml for implementation and related patterns
(untested)

Zach Tatlock CSE-505 2016, Lecture 20 10

Futures

A different model for explicit parallelism without explicit shared
memory or message sends

I Easy to implement on top of either, but most models are
easily inter-implementable

I See ML file for implementation over shared memory

type ’a promise;

val future : (unit -> ’a) -> ’a promise (*do in parallel*)

val force : ’a promise -> ’a (*may block*)

Essentially fork/join with a value returned?

I Returning a value more functional

I Less structured than “cobegin s1; s2; ... sn” form of fork/join

Zach Tatlock CSE-505 2016, Lecture 20 11

Locks (a.k.a. mutexes)

(* mutex.mli *)

type t (* a mutex *)

val create : unit -> t

val lock : t -> unit (* may block *)

val unlock : t -> unit

Caml locks do not have two common features:

I Reentrancy (changes semantics of lock and unlock)

I Banning nonholder release (changes semantics of unlock)

Also want condition variables (condition.mli), not discussed here

Zach Tatlock CSE-505 2016, Lecture 20 12



Using locks

Among infinite correct idioms using locks (and more incorrect
ones), the most common:

I Determine what data must be “kept in sync”

I Always acquire a lock before accessing that data and release it
afterwards

I Have a partial order on all locks and if a thread holds m1 it
can acquire m2 only if m1 < m2

See canonical “bank account” example in lec20code.ml

Coarser locking (more data with same lock) trades off parallelism
with synchronization

I Under-synchronizing the hallmark of concurrency incorrectness

I Over-synchronizing the hallmark of concurrency inefficiency

Zach Tatlock CSE-505 2016, Lecture 20 13

Getting it wrong

Races can result from too little synchronization
I Data races: simultaneous read-write or write-write of same

memory location
I Lots of PL work in last 15 years on types and tools to

prevent/detect
I Provided language has some guarantees, may not be a bug

I Canonical example: parallel search and “done” bits
I But few language have such guarantees (!)

I Higher-level races: much tougher to prevent in the language
I Amount of correct nondeterminism inherently app-specific

Deadlock can result from too much synchronization

I Cycle of threads waiting for someone else to do something

I Easy to detect dynamically with locks, but then what?

Zach Tatlock CSE-505 2016, Lecture 20 14

The Evolution Problem

Write a new function that needs to update o1 and o2 together.

I What locks should you acquire? In what order?

I There may be no answer that avoids races and deadlocks
without breaking old code. (Need a stricter partial order.)

See xfer code in lec20code.ml

Real example from Java:

synchronized append(StringBuffer sb) {

int len = sb.length(); //synchronized

if(this.count+len > this.value.length) this.expand(...);

sb.getChars(0,len,this.value,this.count); //synchronized

...

}

Undocumented in 1.4; in 1.5 caller synchronizes on sb if necessary
Zach Tatlock CSE-505 2016, Lecture 20 15

Atomic Blocks (Software Transactions)

Java-like: atomic { s }

Caml-like: atomic : (unit -> ’a) -> ’a

Execute the body/thunk as though no interleaving from other
threads

I Allow parallelism unless there are actual run-time memory
conflicts (detect and abort/retry)

I Convenience of coarse-grained locking with parallelism of
fine-grained locking (or better)

I But language implementation has to do more to detect
conflicts (much like garbage collection is convenient but has
costs)

Most research on implementation (preserve parallelism unless there
are conflicts), but this is not an implementation course

Zach Tatlock CSE-505 2016, Lecture 20 16



Transactions make things easier

Problems like append and xfer become trivial

So does mixing coarse-grained and fine-grained operations (e.g.,
hashtable lookup and hashtable resize)

Transactions are great, but not a panacea:

I Application-level races can remain

I Application-level deadlock can remain

I Implementations generally try-and-abort, which is hard for
“launch missiles” (e.g., I/O)

I Many software implementations provide a weaker and
under-specified semantics if there are data races with
non-transactions

I Memory-consistency model questions remain and may be
worse than with locks...

Zach Tatlock CSE-505 2016, Lecture 20 17

Memory models

A memory-consistency model (or just memory model) for a
concurrent shared-memory language specifies “which write a read
can see”

The gold standard is sequential consistency (Lamport): “the
results of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the
operations of each individual processor appear in this sequence in
the order specified by its program”

Under sequential consistency, this assert cannot fail, despite data
races:

let x, y = ref 0, ref 0

let _ = create (fun () -> x := 1; y := 1) ()

let _ = create (fun () -> let r = !y in let s = !x in

assert(s>=r) ()

Zach Tatlock CSE-505 2016, Lecture 20 18

Relaxed memory models

Modern imperative and OO languages do not promise sequential
consistency (if they say anything at all)

I The hardware makes it prohibitively expensive

I Renders unsound almost every compiler optimization
Example: common-subexpression elimination

Initially a==0 and b==0

Thread 1 Thread 2

x=a+b; b=1;

y=a; a=1;

z=a+b;

assert(z>=y);

Zach Tatlock CSE-505 2016, Lecture 20 19

Relaxed 6= Nothing

But (especially in a safe language) have to promise something

I When is code “correctly synchronized”?
I What can a compiler do in the presence of races?

I Cannot seg-fault Java or compromise the SecurityManager
I Can a race between x:=1 and !x cause the latter to produce a

value “out of thin air”? (Java: no)

The definitions are very complicated and programmers can usually
ignore them, but do not assume sequential consistency

See also Java’s volatiles and C++’s atomics

Zach Tatlock CSE-505 2016, Lecture 20 20



In real languages

I Java: If every sequentially consistent execution of program P
is data-race free, then every execution of program P is
equivalent to some sequentially consistent execution

I Not the definition, a theorem about the definition
I Actual definition very complicated, balancing needs of code

writers, compiler optimizers, and hardware
I Complicated by constructors and final fields
I Not defined in terms of “list of acceptable optimizations”

I C++: Roughly, any data race is as undefined as an
array-bounds error. No such thing as a benign data race and
no guarantees if you have one. (In practice, programmers will
still assume things, like they do with casts.)

I But same theorem as Java: “DRF⇒ SC”

I Most languages: Eerily silent
I Arguably the greatest current failure of programming languages

Zach Tatlock CSE-505 2016, Lecture 20 21

Mostly functional wins again

If most of your data is immutable and most code is known to
access only immutable data, then most code can be optimized
without any concern for the memory model

So can afford to be very conservative for the rest

Example: A Caml program that uses mutable memory only for
shared-memory communication

Non-example: Java, which uses mutable memory for almost
everything

I Compilers try to figure out what is thread-local (again avoids
memory-model issues), but it’s not easy

Zach Tatlock CSE-505 2016, Lecture 20 22

Ordering and atomic

Initially x==0 and y==0

Thread 1 Thread 2

x=1; r=y;

y=1; s=x;

Can s be less than r?

Yes

Zach Tatlock CSE-505 2016, Lecture 20 23

Ordering and atomic

Initially x==0 and y==0

Thread 1 Thread 2

x=1; r=y;

sync(lk){} sync(lk){}

y=1; s=x;

Can s be less than r?

In Java, no

I Notion of “happens-before” ordering between release and
acquire of the same lock

Zach Tatlock CSE-505 2016, Lecture 20 24



Ordering and atomic

Initially x==0 and y==0

Thread 1 Thread 2

x=1; r=y;

atomic{} atomic{}

y=1; s=x;

Can s be less than r?

Nobody really knows, but often yes (!) in prototype
implementations

Zach Tatlock CSE-505 2016, Lecture 20 25


