Goal

Understand what this interface means and why it matters:

CSE-505: Programming Languages type ’a mylist;
val mt_list : ’a mylist
. . .) _> J 3 _>) 3
Lecture 20 — Parametric Polymorphism val cons a —> "amylist a mylist _
val decons : ’a mylist -> ((’a * ’a mylist) option)
val length : ’a mylist -> int
val map : (’a -> ’b) -> ’a mylist -> ’b mylist
Zach Tatlock
2016 From two perspectives:

1. Library: Implement code to this partial specification

2. Client: Use code written to this partial specification

Zach Tatlock CSE-505 2016, Lecture 20 2
What The Client Likes What the Library Likes

1. Library is reusable. Can make: 1. Reusability — For same reasons client likes it

» Different lists with elements of different types

» New reusable functions outside of library, e.g.: 2. Abstraction of mylist from clients

val twocons : ’a -> ’a —> ’a mylist —> ’a mylist » Clients must “behave the same” for all equivalent
implementations, even if “hidden definition” of ’a mylist

2. Easier, faster, more reliable than subtyping changes

» No downcast to write, run, maybe-fail (cf. Java 1.4 Vector) » Clients typechecked knowing only there exists a type

constructor mylist
» Unlike Java, C4++, R5RS Scheme, no way to downcast a t

3. Library must “behave the same” for all “type instantiations”! _
mylist to, e.g., a pair

» ’a and ’b held abstract from library

» E.g., with built-in lists: If foo has type a 1list -> int, then
foo [1;2;3] and foo [(5,4);(7,2);(9,2)] are totally
equivalent!
(Never true with downcasts)

» In theory, means less (re-)integration testing

» Proof is beyond this course, but not much

Zach Tatlock CSE-505 2016, Lecture 20 3 Zach Tatlock CSE-505 2016, Lecture 20

Start simpler Syntax

The interface has a lot going on:

1. Element types held abstract from library e #= ¢ | @ [Az:iT. e | ee| Aa. e e[r]
T u= int|7T—>7|a|Var
2. List type (constructor) held abstract from client v u= c|AmT.e|Aa.e
r == - |I'x:7
3. Reuse of type variables “makes connections” among A = - [A«
i f abstract t .
expressions of abstract types New things:

4. Lists need some form of recursive type » Terms: Type abstraction and type application

» Types: Type variables and universal types

This lecture considers just (1) and (3) » Type contexts: what type variables are in scope
» First using a formal language with explicit type abstraction

» Then mention differences from ML

Note: Much more interesting than “not getting stuck”

Zach Tatlock CSE-505 2016, Lecture 20 5 Zach Tatlock CSE-505 2016, Lecture 20
Informal semantics Operational semantics
Small-step, CBV, left-to-right operational semantics:
1. Aa. e: A value that, when used, runs e (with some 7 for) » Note: Ac. e is a value
» To type-check e, know « is one type, but not which type e — e
2. e[r]: Evaluate e to some Ac. €’ and then run e’ ’ /
[] Old: €1 — € €2 — €
» With 7 for «¢, but the choice of T is irrelevant at run-time e es — e e v es — e ()\zc"r e) v — e['v/:c]
» 7 used for type-checking and proof of Preservation 1 =2 12 2 2 e
. . o e — e
3. Types can use type variables «, 3, etc., but only if they're in New: —_
scope (just like term variables) e[r] — €'[7] (Aa. e)[r] — e[T/a]
» Type-checking will be A;T'F e : 7 using A to know what
type Yariables are in scope in e _ Plus now have 3 different kinds of substitution, all defined in
» In universal type Va7, can also use o in T straightforward capture-avoiding way:

> e1lez/x] (old)
» e[t/ /a] (new)

» 7[1' /] (new)

Zach Tatlock CSE-505 2016, Lecture 20 7 Zach Tatlock CSE-505 2016, Lecture 20

Example Example
Example (using addition): Example (using addition):
(Aa. AB. Az : a. Af:a — B. f) [int] [int] 3 (Ay :int.y + vy) (Aa. AB. Az : a. Af:ae — B. f) [int] [int] 3 (Ay :int.y + vy)

— (AB. Az :int. Afiint — 3. f x) [int] 3 (A\y :int. y + y)

Zach Tatlock CSE-505 2016, Lecture 20 9 Zach Tatlock CSE-505 2016, Lecture 20
Example Example
Example (using addition): Example (using addition):
(Aa. AB. Az : a. Af:a — B. f x) [int] [int] 3 (Ay :int. y 4+ y) (Aa. AB. Az : a. Af:a — B. f x) [int] [int] 3 (Ay :int. y + y)
— (AB. Az :int. Afiint — 8. f) [int] 3 (Ay :int. y + y) — (AB. Az :int. Afiint — 8. f) [int] 3 (Ay :int. y + y)
— (Az :int. Afiint > int. f) 3 (Ay :int. y + y) — (Az :int. Afiint —>int. f) 3 (Ay :int. y + y)

— (Afiint > int. £3) (Ay:int. y +y)

Zach Tatlock CSE-505 2016, Lecture 20 9 Zach Tatlock CSE-505 2016, Lecture 20

Example Example

Example (using addition): Example (using addition):
(Aa. AB. Az : a. Af:a — B. f x) [int] [int] 3 (Ay : int. y + y) (Aa. AB. Az : a. Af:a — B. f x) [int] [int] 3 (Ay :int. y + vy)
— (AB. Az :int. Afiint > 8. f) [int] 3 (\y :int. y + y) — (AB. Az :int. Af:int — 8. f =) [int] 3 (\y :int. y + y)
— (Az :int. Af:int —>int. f) 3 (Ay :int. y 4+ y) — (Az :int. Afiint —>int. f) 3 (Ay :int. y + y)
— (Afiint > int. f 3) (Ay :int. y + y) — (Afiint > int. f 3) (Ay :int. y + y)
— (Ay:int.y+y) 3 — (Ay:int.y+y) 3

— 343

Zach Tatlock CSE-505 2016, Lecture 20 9 Zach Tatlock CSE-505 2016, Lecture 20
Example Type System, part 1
Example (using addition): Mostly just need to be picky about “no free type variables”
(Ao. AB. Az : . Af:a — B. f) [int] [int] 3 (\y : int. y + y) > Typing judgment has the form A;T' e : T

(whole program «;- e : T)
> Next slide
— (AB. Az :int. Afiint — B. f) [int] 3 (Ay :int. y + y) » Uses helper judgment A + 7
> “all free type variables in 7 are in A"

— (Az :int. Afiint > int. f) 3 (Ay :int. y + y)

AT
9
AF o Al int AT — 1 A FVYa.T

— (Ay:int.y+y) 3
Rules are boring, but trust me, allowing free type variables is a
—~ 3+3 pernicious source of language/compiler bugs

— 6

Zach Tatlock CSE-505 2016, Lecture 20 9 Zach Tatlock CSE-505 2016, Lecture 20

Type System, part 2 Example

Old (with one technical change to prevent free type variables): Example (using addition):

ATFz:I(z) ATk c:int (Aa. AB. Az : a. Af:aa — B. f x) [int] [int] 3 (Ay :int. y + y)

AT zm Fe:m Abm (The typing derivation is rather tall and painful, but just a
AT = Az, e: 11 — T2 syntax-directed derivation by instantiating the typing rules)

AsT'Fer:mo—11 AT Hegx:m
AsT'Hejex:m

New:

A,a;T'He:m A;T'FHe:Van Al 1o

A;T H Aa. e : Va.m AT - e[rs] : Ti[m2/]

Zach Tatlock CSE-505 2016, Lecture 20 11 Zach Tatlock CSE-505 2016, Lecture 20
The Whole Language, Called System F Examples
e = clxz|Ar:iT.e|ee|Aa.e|e[T]
T u= int|T—>7|a|Var An overly simple polymorphic function...
v u= c|Az:T.e| Aa. e
X z I IA""T;T Letid = Aa. Az : . ©
» id has type Va.a — «
e—e e—e e—e > id [int] has type int — int
eex— e e ve—ve elr] — €'[r] > id [int * int] has type (int * int) — (int * int)
(Az:T. €) v — e[v/x] (Aa. e)[1] — e[T/q] » (id [Va.a — @) id has type Va.ao — «
A;THax:T(x) A;T Fc:int In ML you can't do the last one; in System F you can
AT, e AT A,asT'He:m
AT H Ao e: 11— 7 A;THAa.e: Va.m

AsTFey i:mo—11 AjFes: A;TFe:Vam, ATy
A;T'Hepex:m A;T F e[m] : T1[m2/a]

Zach Tatlock CSE-505 2016, Lecture 20 13 Zach Tatlock CSE-505 2016, Lecture 20

More Examples What next?

Let applyl = Aa. AB. Az :a. Af:a—> (6. fx
> applyl has type Va.VB.a — (a — 3) — Having defined System F...
> ;5 g:int — int - (applyl [int][int] 3 g) : int
, (int]fint]) » Metatheory (what properties does it have)
Let apply2 = Aa. Azt a. AB. Af:a—> (6. fx
» apply2 has type Va.ao — (VB.(a — B) — 3)
(impossible in ML) » How/why ML is more restrictive and implicit
> -5 g:int — string, h:int — int -
(let z = apply2 [int] in z (z 3 [int] h) [string] g) :
string

» What (else) is it good for

Let twice = Aa. Az : a. Af :a — a. f (f x).
> twice has type Va.aa — (@ = a) = «

» Cannot be made more polymorphic

Zach Tatlock CSE-505 2016, Lecture 20 15 Zach Tatlock CSE-505 2016, Lecture 20

Metatheory Security from safety?

» Safety: Language is type-safe

> Need a Type Substitution Lemma Example: A process e should not access files it did not open

o . f heck iSsi
» Termination: All programs terminate (fopen can check permissions)

» Surprising — we saw id [7] id .
prising] Require an untrusted process e to type-check as follows:

> Parametricity, a.k.a. theorems for free s+ F e : Va.{fopen : string — «, fread : a — int} — unit

» Example: If ;- Fe: Va.VB.(a *3) — (B * a), then e is
equivalent to Aa. AB. Az:ax * 3. (x.2,x.1).

Every term with this type is the swap function!! This type ensures that a process won't “forge a file handle” and

pass it to fread
Intuition: e has no way to make an « or a 3 and it cannot tell
what a or 3 are or raise an exception or diverge... So fread doesn’t need to check (faster), file handles don't need to

» Erasure: Types do not affect run-time behavior be encrypted (safer), etc.

Note: Mutation “breaks everything”

Zach Tatlock CSE-505 2016, Lecture 20 17 Zach Tatlock CSE-505 2016, Lecture 20

Moral of Example Are types used at run-time?

We said polymorphism was about “many types for same term”,
In simply-typed lambda-calculus, type safety just means not but for clarity and easy checking, we changed:

getting stuck » The syntax via Aa. e and e [7]

. . .. I
With type abstraction, it enables secure interfaces! The operational semantics via type substitution

» The type system via A
Suppose we (the system library) implement file-handles as ints.

Then we instantiate a with int, but untrusted code cannot tell Claim: The operational semantics did not "really” change; types

need not exist at run-time

Memory safety is a necessary but insufficient condition for

i More formally: Erasing all types from System F produces an
language-based enforcement of strong abstractions

equivalent program in the untyped lambda calculus

Strengthened induction hypothesis: If e — ey in System F and
erase(e) — eg in untyped lambda-calculus, then
e2 = erase(ey)

“Erasure and evaluation commute”

Zach Tatlock CSE-505 2016, Lecture 20 19 Zach Tatlock CSE-505 2016, Lecture 20
Erasure Connection to reality
Erasure is easy to define: System F has been one of the most important theoretical PL
models since the 1970s and inspires languages like ML.
erase(c) = ¢
erase(r) = =« But you have seen ML polymorphism and it looks different. In
erase(e1 ez) = erase(e1) erase(ez) fact, it is an implicitly typed restriction of System F.
erase(Ax:T. e) = Ax. erase(e)
erase(Aa. e) = A erase(e) These two qualifications ((1) implicit, (2) restriction) are deeply
erase(e [T]) = erase(e) 0 related.

In pure System F, preserving evaluation order isn't crucial, but it is
with fix, exceptions, mutation, etc.

Zach Tatlock CSE-505 2016, Lecture 20 21 Zach Tatlock CSE-505 2016, Lecture 20

Restrictions Why?

ML-style polymorphism can seem weird after you have seen System

» All types have the form Va1,...,a,.7 where n > 0 and 7 o i)
F. And the restrictions do come up in practice, though tolerable.

has no V. (Prenex-quantification; no first-class

I hism.
polymorphism.) » Type inference for System F (given untyped e, is there a

» Only let (rec) variables (e.g., x in let x = el in e2) can System F term e’ such that erase(e’) = e) is undecidable
have polymorphic types. So n = 0 for function arguments, (1995)
pattern variables, etc. (Let-bound polymorphism)
» So cannot (always) desugar let to A in ML » Type inference for ML with polymorphic recursion is

undecidable (1992)
» In let rec f x = el in e2, the variable £ can have type
Yoy, ..., 0. 71 — T2 only if every use of £ in el » Type inference for ML is decidable and efficient in practice,

instantiates each a; with a;. (No polymorphic recursion) though pathological programs of size O(n) and run-time
O(n) can have types of size O(22")
» Let variables can be polymorphic only if el is a “syntactic

value” » The type inference algorithm is unsound in the presence of
» A variable, constant, function definition, ... ML—ster mutation, but value-restriction restores soundness
» Called the “value restriction” (relaxed partially in OCaml) » Based on unification

Zach Tatlock CSE-505 2016, Lecture 20 23 Zach Tatlock CSE-505 2016, Lecture 20

Recovering lost ground?

Extensions to the ML type system to be closer to System F:

» Usually require some type annotations
> Are judged by:
» Soundness: Do programs still not get stuck?

» Conservatism: Do all (or most) old ML programs still
type-check?

» Power: Does it accept many more useful programs?

» Convenience: Are many new types still inferred?

Zach Tatlock CSE-505 2016, Lecture 20

