Where are we

Done:

- Formal definition of evaluation contexts and first-class continuations
- Continuation-passing style as a programming idiom
- The CPS transform

Now:

- Implement an efficient lambda-calculus interpreter using little more than malloc and a single while-loop
 - Explicit evaluation contexts (i.e., continuations) is essential
 - Key novelty is maintaining the current context incrementally
 - `letcc` and `throw` can be $O(1)$ operations (homework problem)
See the code

See lec14code.ml for four interpreters where each is:

- More efficient than the previous one and relies on less from the meta-language
- Close enough to the previous one that equivalence among them is tractable to prove

The interpreters:

1. Plain-old small-step with substitution
2. Evaluation contexts, re-decomposing at each step
3. Incremental decomposition, made efficient by representing evaluation contexts (i.e., continuations) as a linked list with “shallow end” of the stack at the beginning of the list
4. Replacing substitution with environments

The last interpreter is trivial to port to assembly or C
Example

Small-step (first interpreter):

```
A
   /\  \\
  λa. a /  A
     \ /  |
      A \  A
         / |
        λb. b λc. c λd. d λe. e
```

Decomposition (second interpreter):

```
E = λa. a
   /\  \\
  R /  L
     \ /  |
      A \  |
   /\  \\
  λb. b /  λc. c
     \ /  |
      A \  |
         / |
        λd. d λe. e
```

```
E = λa. a
   /\  \\
  R /  L
     \ /  |
      A \  |
   /\  \\
  λb. b /  λc. c
     \ /  |
      A \  |
         / |
        λd. d λe. e
```

Zach Tatlock
CSE-505 2016, Lecture 14

Example

Decomposition (second interpreter):

\[
E = \lambda a. a
\]

\[
L \quad R
\]

\[
H
\]

\[
A
\]

\[
\lambda d. d \quad \lambda e. e
\]

\[
e = \lambda b. b \quad \lambda c. c
\]

\[
E = \lambda a. a
\]

\[
R
\]

\[
A
\]

\[
\lambda d. d \quad \lambda e. e
\]

Decomposition rewritten with linked list (hole implicit at front):

\[
c = L(A(\lambda d. d, \lambda e. e)) :: R(\lambda a. a) :: []
\]

\[
e = A(\lambda b. b, \lambda c. c)
\]

\[
c = R(\lambda c. c) :: R(\lambda a. a) :: []
\]

\[
e = A(\lambda d. d, \lambda e. e)
\]
Example

Decomposition rewritten with linked list (hole implicit at *front*):

\[c = L(A(\lambda d. d, \lambda e. e)) :: R(\lambda a. a) :: [] \]
\[e = A(\lambda b. b, \lambda c. c) \]

\[c = R(\lambda c. c) :: R(\lambda a. a) :: [] \]
\[e = A(\lambda d. d, \lambda e. e) \]

Some loop iterations of third interpreter:

\[e = A(\lambda b. b, \lambda c. c) \]
\[c = L(A(\lambda d. d, \lambda e. e)) :: R(\lambda a. a) :: [] \]

\[e = \lambda b. b \]
\[c = L(\lambda c. c) :: L(A(\lambda d. d, \lambda e. e)) :: R(\lambda a. a) :: [] \]

\[e = \lambda c. c \]
\[c = R(\lambda b. b) :: L(A(\lambda d. d, \lambda e. e)) :: R(\lambda a. a) :: [] \]

\[e = \lambda c. c \]
\[c = L(A(\lambda d. d, \lambda e. e)) :: R(\lambda a. a) :: [] \]

\[e = A(\lambda d. d, \lambda e. e) \]
\[c = R(\lambda c. c) :: R(\lambda a. a) :: [] \]

Fourth interpreter: replace substitution with environment/closures
The end result

The last interpreter needs just:

- A loop
- Lists for contexts and environments
- Tag tests

Moreover:

- Function calls execute in $O(1)$ time
- Variable look-ups don’t, but that’s fixable
 - (e.g., de Bruijn indices and arrays for environments)
- Other operations, including pairs, conditionals, letcc, and throw also all work in $O(1)$ time
 - Need new kinds of contexts and values
 - Left as a homework exercise as a way to understand the code

Making evaluation contexts explicit data structures was key