CSE-505: Programming Languages

Lecture 11 — STLC Extensions and Related Topics

Zach Tatlock
2016
Review

\[e ::= \lambda x. e \mid x \mid e \ e \mid c \quad \tau ::= \text{int} \mid \tau \rightarrow \tau \]
\[v ::= \lambda x. e \mid c \quad \Gamma ::= \cdot \mid \Gamma, \ x : \tau \]

\[
\frac{e \rightarrow e'}{\lambda x. e \ v \rightarrow e[v/x]} \quad \frac{e_1 \ e_2 \rightarrow e' \ e_2}{e_1 \ \ e_2 \rightarrow e' \ e_2} \quad \frac{v \ e_2 \rightarrow v \ e'_2}{v \ e_2 \rightarrow v \ e'_2}
\]

\[e[e'/x] \]: capture-avoiding substitution of \(e' \) for free \(x \) in \(e \)

\[
\frac{\Gamma \vdash c : \text{int}}{\Gamma \vdash c : \text{int}} \quad \frac{\Gamma \vdash x : \Gamma(x)}{\Gamma \vdash x : \Gamma(x)} \quad \frac{\Gamma, x : \tau_1 \vdash e : \tau_2}{\Gamma, x : \tau_1 \vdash e : \tau_2} \quad \frac{\Gamma \vdash \lambda x. \ e : \tau_1 \rightarrow \tau_2}{\Gamma \vdash \lambda x. \ e : \tau_1 \rightarrow \tau_2} \quad \frac{\Gamma \vdash e_1 : \tau_2 \rightarrow \tau_1}{\Gamma \vdash e_1 : \tau_2 \rightarrow \tau_1} \quad \frac{\Gamma \vdash e_2 : \tau_2}{\Gamma \vdash e_2 : \tau_2} \quad \frac{\Gamma \vdash e_1 \ e_2 : \tau_1}{\Gamma \vdash e_1 \ e_2 : \tau_1}
\]

Preservation: If \(\cdot \vdash e : \tau \) and \(e \rightarrow e' \), then \(\cdot \vdash e' : \tau \).
Progress: If \(\cdot \vdash e : \tau \), then \(e \) is a value or \(\exists \ e' \) such that \(e \rightarrow e' \).
Adding Stuff

Time to use STLC as a foundation for understanding other common language constructs

We will add things via a **principled methodology** thanks to a **proper education**

- Extend the syntax
- Extend the operational semantics
 - Derived forms (syntactic sugar), or
 - Direct semantics
- Extend the type system
- Extend soundness proof (new stuck states, proof cases)

In fact, extensions that add new types have even more structure
Let bindings (CBV)

\[e ::= \cdots \mid \text{let } x = e_1 \text{ in } e_2 \]

\[
\begin{align*}
 e_1 & \to e'_1 \\
 \text{let } x = e_1 \text{ in } e_2 & \to \text{let } x = e'_1 \text{ in } e_2 \\
 \text{let } x = v \text{ in } e & \to e[v/x]
\end{align*}
\]

\[
\frac{
 \Gamma \vdash e_1 : \tau' \\
 \Gamma, x : \tau' \vdash e_2 : \tau
}{
 \Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : \tau}
\]

(Also need to extend definition of substitution...)

Progress: If \(e \) is a let, 1 of the 2 new rules apply (using induction)

Preservation: Uses Substitution Lemma

Substitution Lemma: Uses Weakening and Exchange
Derived forms

let seems just like \(\lambda \), so can make it a derived form

- let \(x = e_1 \textbf{ in } e_2 \) “a macro” / “desugars to” \((\lambda x. e_2) e_1\)
- A “derived form”

(Harder if \(\lambda \) needs explicit type)

Or just define the semantics to replace let with \(\lambda \):

\[
\text{let } x = e_1 \textbf{ in } e_2 \rightarrow (\lambda x. e_2) e_1
\]

These 3 semantics are \textit{different} in the state-sequence sense
\((e_1 \rightarrow e_2 \rightarrow \ldots \rightarrow e_n)\)

- But (totally) \textit{equivalent} and you could prove it (not hard)

Note: ML type-checks let and \(\lambda \) differently (later topic)

Note: Don’t desugar early if it hurts error messages!
Booleans and Conditionals

\[e ::= \cdots \mid \text{true} \mid \text{false} \mid \text{if } e_1 \ e_2 \ e_3 \]

\[v ::= \cdots \mid \text{true} \mid \text{false} \]

\[\tau ::= \cdots \mid \text{bool} \]

\[e_1 \rightarrow e_1' \]

\[\text{if } e_1 \ e_2 \ e_3 \rightarrow \text{if } e_1' \ e_2 \ e_3 \]

\[\text{if true } e_2 \ e_3 \rightarrow e_2 \]

\[\text{if false } e_2 \ e_3 \rightarrow e_3 \]

\[\Gamma \vdash e_1 : \text{bool} \hspace{1cm} \Gamma \vdash e_2 : \tau \hspace{1cm} \Gamma \vdash e_3 : \tau \]

\[\Gamma \vdash \text{if } e_1 \ e_2 \ e_3 : \tau \]

\[\Gamma \vdash \text{true} : \text{bool} \hspace{1cm} \Gamma \vdash \text{false} : \text{bool} \]

Also extend definition of substitution (will stop writing that)...

Notes: CBN, new Canonical Forms case, all lemma cases easy
Pairs (CBV, left-right)

\[
\begin{align*}
e & ::= \cdots \mid (e, e) \mid e.1 \mid e.2 \\
v & ::= \cdots \mid (v, v) \\
\tau & ::= \cdots \mid \tau \ast \tau
\end{align*}
\]

\[
\begin{align*}
e_1 & \rightarrow e_1' \\
(e_1, e_2) & \rightarrow (e_1', e_2)
\end{align*}
\]

\[
\begin{align*}
e & \rightarrow e' \\
e.1 & \rightarrow e'.1 \\
(v_1, e_2) & \rightarrow (v_1, e_2')
\end{align*}
\]

\[
\begin{align*}
e & \rightarrow e' \\
e.2 & \rightarrow e'.2 \\
(v_1, v_2).1 & \rightarrow v_1 \\
(v_1, v_2).2 & \rightarrow v_2
\end{align*}
\]

Small-step can be a pain

- Large-step needs only 3 rules
- Will learn more concise notation later (evaluation contexts)
Pairs continued

\[
\frac{\Gamma \vdash e_1 : \tau_1 \quad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash (e_1, e_2) : \tau_1 \ast \tau_2}
\]

\[
\frac{\Gamma \vdash e : \tau_1 \ast \tau_2}{\Gamma \vdash e.1 : \tau_1}
\]
\[
\frac{\Gamma \vdash e : \tau_1 \ast \tau_2}{\Gamma \vdash e.2 : \tau_2}
\]

Canonical Forms: If \(\cdot \vdash v : \tau_1 \ast \tau_2 \), then \(v \) has the form \((v_1, v_2)\)

Progress: New cases using Canonical Forms are \(v.1 \) and \(v.2 \)

Preservation: For primitive reductions, inversion gives the result directly
Records

Records are like \(n \)-ary tuples except with \textit{named fields}

- Field names are \textit{not} variables; they do \textit{not} \(\alpha \)-convert

\[
\begin{align*}
e & ::= \cdots \mid \{l_1 = e_1; \ldots; l_n = e_n\} \mid e.l \\
v & ::= \cdots \mid \{l_1 = v_1; \ldots; l_n = v_n\} \\
\tau & ::= \cdots \mid \{l_1 : \tau_1; \ldots; l_n : \tau_n\}
\end{align*}
\]

\[
\frac{e_i \rightarrow e_i'}{\{l_1 = v_1, \ldots, l_{i-1} = v_{i-1}, l_i = e_i, \ldots, l_n = e_n\} \rightarrow \{l_1 = v_1, \ldots, l_{i-1} = v_{i-1}, l_i = e_i', \ldots, l_n = e_n\}}
\]

\[
\frac{e \rightarrow e'}{e.l \rightarrow e'.l}
\]

\[
\begin{align*}
1 \leq i \leq n \\
\{l_1 = v_1, \ldots, l_n = v_n\}.l_i \rightarrow v_i
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash e_1 : \tau_1 & \quad \ldots \quad \Gamma \vdash e_n : \tau_n & \text{labels distinct} \\
\Gamma \vdash \{l_1 = e_1, \ldots, l_n = e_n\} : \{l_1 : \tau_1, \ldots, l_n : \tau_n\}
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash e : \{l_1 : \tau_1, \ldots, l_n : \tau_n\} & \quad 1 \leq i \leq n \\
\Gamma \vdash e.l_i : \tau_i
\end{align*}
\]
Records continued

Should we be allowed to reorder fields?

- \[\{ l_1 = 42; l_2 = \text{true} \} : \{ l_2 : \text{bool}; l_1 : \text{int} \} \] ??
- Really a question about, “when are two types equal?”

Nothing wrong with this from a type-safety perspective, yet many languages disallow it

- Reasons: Implementation efficiency, type inference

Return to this topic when we study *subtyping*
Sums

What about ML-style datatypes:

\[
\text{type } t = \text{A} \mid \text{B of int} \mid \text{C of int }\ast t
\]

1. Tagged variants (i.e., discriminated unions)

2. Recursive types

3. Type constructors (e.g., type 'a mylist = ...)

4. Named types

For now, just model (1) with (anonymous) sum types

- (2) is in a later lecture, (3) is straightforward, and (4) we’ll discuss informally
Sums syntax and overview

\[e ::= \cdots | A(e) | B(e) | \text{match } e \text{ with } A x. \ e | B x. \ e \]
\[v ::= \cdots | A(v) | B(v) \]
\[\tau ::= \cdots | \tau_1 + \tau_2 \]

- Only two constructors: \(A \) and \(B \)
- All values of any sum type built from these constructors
- So \(A(e) \) can have any sum type allowed by \(e \)'s type
- No need to declare sum types in advance
- Like functions, will “guess the type” in our rules
Sums operational semantics

\[
\text{match } A(v) \text{ with } Ax. \ e_1 \mid By. \ e_2 \rightarrow e_1[v/x]
\]

\[
\text{match } B(v) \text{ with } Ax. \ e_1 \mid By. \ e_2 \rightarrow e_2[v/y]
\]

\[
\begin{align*}
\frac{e \rightarrow e'}{A(e) \rightarrow A(e')} & \quad \frac{e \rightarrow e'}{B(e) \rightarrow B(e')}
\end{align*}
\]

\[
\frac{e \rightarrow e'}{\text{match } e \text{ with } Ax. \ e_1 \mid By. \ e_2 \rightarrow \text{match } e' \text{ with } Ax. \ e_1 \mid By. \ e_2}
\]

match has binding occurrences, just like pattern-matching

(Definition of substitution must avoid capture, just like functions)
What is going on

Feel free to think about *tagged values* in your head:

- A tagged value is a pair of:
 - A tag A or B (or 0 or 1 if you prefer)
 - The (underlying) value

- A match:
 - Checks the tag
 - Binds the variable to the (underlying) value

This much is just like OCaml and related to homework 2
Sums Typing Rules

Inference version (not trivial to infer; can require annotations)

\[
\begin{align*}
\Gamma \vdash e : \tau_1 & \quad \Gamma \vdash e : \tau_2 \\
\Gamma \vdash A(e) : \tau_1 + \tau_2 & \quad \Gamma \vdash B(e) : \tau_1 + \tau_2 \\
\Gamma \vdash e : \tau_1 + \tau_2 & \quad \Gamma, x:\tau_1 \vdash e_1 : \tau \\
\Gamma, y:\tau_2 \vdash e_2 : \tau & \quad \Gamma \vdash \text{match } e \text{ with } Ax. e_1 \mid By. e_2 : \tau
\end{align*}
\]

Key ideas:
- For constructor-uses, “other side can be anything”
- For \textbf{match}, both sides need same type
 - Don’t know which branch will be taken, just like an \textbf{if}.
 - In fact, can drop explicit booleans and encode with sums:
 E.g., \texttt{bool} = \texttt{int} + \texttt{int}, \texttt{true} = A(0), \texttt{false} = B(0)
Sums Type Safety

Canonical Forms: If $\cdot \vdash v : \tau_1 + \tau_2$, then there exists a v_1 such that either v is $A(v_1)$ and $\cdot \vdash v_1 : \tau_1$ or v is $B(v_1)$ and $\cdot \vdash v_1 : \tau_2$

- Progress for \texttt{match} v with $Ax.\ e_1 \mid By.\ e_2$ follows, as usual, from Canonical Forms

- Preservation for \texttt{match} v with $Ax.\ e_1 \mid By.\ e_2$ follows from the type of the underlying value and the Substitution Lemma

- The Substitution Lemma has new “hard” cases because we have new binding occurrences

- But that’s all there is to it (plus lots of induction)
What are sums for?

- Pairs, structs, records, aggregates are fundamental data-builders

- Sums are just as fundamental: “this or that not both”

- You have seen how OCaml does sums (datatypes)

- Worth showing how C and Java do the same thing
 - A primitive in one language is an idiom in another
Sums in C

type t = A of t1 | B of t2 | C of t3
match e with A x -> ...

One way in C:

struct t {
 enum {A, B, C} tag;
 union {t1 a; t2 b; t3 c;} data;
};
... switch(e->tag){ case A: t1 x=e->data.a; ...

- No static checking that tag is obeyed
- As fat as the fattest variant (avoidable with casts)
 - Mutation costs us again!
Sums in Java

type t = A of t1 | B of t2 | C of t3
match e with A x -> ...

One way in Java (t4 is the match-expression’s type):

abstract class t {abstract t4 m();}
class A extends t { t1 x; t4 m(){...}}
class B extends t { t2 x; t4 m(){...}}
class C extends t { t3 x; t4 m(){...}}
... e.m() ...

- A new method in t and subclasses for each match expression
- Supports extensibility via new variants (subclasses) instead of extensibility via new operations (match expressions)
Pairs vs. Sums

You need both in your language

- With only pairs, you clumsily use dummy values, waste space, and rely on unchecked tagging conventions
- Example: replace `int + (int → int)` with `int * (int * (int → int))`

Pairs and sums are “logical duals” (more on that later)

- To make a \(\tau_1 \ast \tau_2 \) you need a \(\tau_1 \) and a \(\tau_2 \)
- To make a \(\tau_1 + \tau_2 \) you need a \(\tau_1 \) or a \(\tau_2 \)
- Given a \(\tau_1 \ast \tau_2 \), you can get a \(\tau_1 \) or a \(\tau_2 \) (or both; your “choice”)
- Given a \(\tau_1 + \tau_2 \), you must be prepared for either a \(\tau_1 \) or \(\tau_2 \) (the value’s “choice”)

Zach Tatlock

CSE-505 2016, Lecture 11
Base Types and Primitives, in general

What about floats, strings, ...?
Could add them all or do something more general...

Parameterize our language/semantics by a collection of base types
\((b_1, \ldots, b_n)\) and primitives \((p_1 : \tau_1, \ldots, p_n : \tau_n)\). Examples:

- \texttt{concat} : \texttt{string} \rightarrow \texttt{string} \rightarrow \texttt{string}
- \texttt{tolInt} : \texttt{float} \rightarrow \texttt{int}
- “hello” : \texttt{string}

For each primitive, \textit{assume} if applied to values of the right types it produces a value of the right type

Together the types and assumed steps tell us how to type-check and evaluate \(p_i \ v_1 \ldots v_n\) where \(p_i\) is a primitive

We can prove soundness \textit{once and for all} given the assumptions
Recursion

We won’t prove it, but every extension so far preserves termination.

A Turing-complete language needs some sort of loop, but our lambda-calculus encoding won’t type-check, nor will any encoding of equal expressive power.

▶ So instead add an explicit construct for recursion.

▶ You might be thinking **let rec** \(f \ x = e \), but we will do something more concise and general but less intuitive.
Recursion

We won’t prove it, but every extension so far preserves termination.

A Turing-complete language needs some sort of loop, but our lambda-calculus encoding won’t type-check, nor will any encoding of equal expressive power.

So instead add an explicit construct for recursion.

You might be thinking \texttt{let rec } f $x = e$, but we will do something more concise and general but less intuitive.

\[e ::= \cdots \mid \text{fix } e \]

\[e \rightarrow e' \]

\[\text{fix } e \rightarrow \text{fix } e' \]

\[\text{fix } \lambda x. e \rightarrow e[\text{fix } \lambda x. e/x] \]

No new values and no new types.
Using fix

To use fix like let rec, just pass it a two-argument function where the first argument is for recursion

- Not shown: fix and tuples can also encode mutual recursion

Example:

\[(\text{fix } \lambda f. \lambda n. \text{if } (n<1) 1 (n \ast (f(n - 1)))) 5\]
Using fix

To use **fix** like **let rec**, just pass it a two-argument function where the first argument is for recursion

- Not shown: **fix** and tuples can also encode mutual recursion

Example:

\[
\begin{align*}
(fix \lambda f. \lambda n. \text{if } (n<1) 1 (n * (f(n - 1))))(5) \\
\rightarrow \\
(\lambda n. \text{if } (n<1) 1 (n * ((fix \lambda f. \lambda n. \text{if } (n<1) 1 (n * (f(n - 1))))(n - 1))))(5)
\end{align*}
\]
Using fix

To use fix like let rec, just pass it a two-argument function where the first argument is for recursion

- Not shown: fix and tuples can also encode mutual recursion

Example:

(fix \lambda f. \lambda n. \text{if } (n<1) \ 1 \ (n \ast (f(n - 1)))) \ 5

\rightarrow

(\lambda n. \text{if } (n<1) \ 1 \ (n \ast ((\text{fix } \lambda f. \lambda n. \text{if } (n<1) \ 1 \ (n \ast (f(n - 1))))(n - 1)))) \ 5

\rightarrow

\text{if } (5<1) \ 1 \ (5 \ast ((\text{fix } \lambda f. \lambda n. \text{if } (n<1) \ 1 \ (n \ast (f(n - 1))))(5 - 1))}
Using fix

To use fix like let rec, just pass it a two-argument function where the first argument is for recursion

- Not shown: fix and tuples can also encode mutual recursion

Example:

\[
(\text{fix } \lambda f. \lambda n. \text{if } (n<1) 1 (n * (f(n - 1)))) 5
\]

\[
\rightarrow
\]

\[
(\lambda n. \text{if } (n<1) 1 (n * ((\text{fix } \lambda f. \lambda n. \text{if } (n<1) 1 (n * (f(n - 1))))(n - 1)))) 5
\]

\[
\rightarrow
\]

\[
\text{if } (5<1) 1 (5 * ((\text{fix } \lambda f. \lambda n. \text{if } (n<1) 1 (n * (f(n - 1))))(5 - 1))
\]

\[
2
\]

\[
5 * ((\text{fix } \lambda f. \lambda n. \text{if } (n<1) 1 (n * (f(n - 1))))(5 - 1))
\]
Using fix

To use fix like let rec, just pass it a two-argument function where
the first argument is for recursion

- Not shown: fix and tuples can also encode mutual recursion

Example:

\[
(\text{fix } \lambda f. \lambda n. \text{ if } (n < 1) 1 (n * (f(n - 1)))) 5
\]

\[
\rightarrow
(\lambda n. \text{ if } (n < 1) 1 (n * ((\text{fix } \lambda f. \lambda n. \text{ if } (n < 1) 1 (n * (f(n - 1))))(n - 1)))) 5
\]

\[
\rightarrow
\text{if } (5 < 1) 1 (5 * ((\text{fix } \lambda f. \lambda n. \text{ if } (n < 1) 1 (n * (f(n - 1))))(5 - 1))
\]

\[
\rightarrow^2
5 * ((\text{fix } \lambda f. \lambda n. \text{ if } (n < 1) 1 (n * (f(n - 1))))(5 - 1))
\]

\[
\rightarrow^2
5 * ((\lambda n. \text{ if } (n < 1) 1 (n * ((\text{fix } \lambda f. \lambda n. \text{ if } (n < 1) 1 (n * (f(n - 1))))(n - 1)))) 4)
\]

\[
\rightarrow
...
Why called fix?

In math, a fix-point of a function g is an x such that $g(x) = x$

- This makes sense only if g has type $\tau \rightarrow \tau$ for some τ
- A particular g could have have 0, 1, 39, or infinity fix-points
- Examples for functions of type $\text{int} \rightarrow \text{int}$:
 - $\lambda x. x + 1$ has no fix-points
 - $\lambda x. x \times 0$ has one fix-point
 - $\lambda x. \text{absolute_value}(x)$ has an infinite number of fix-points
 - $\lambda x. \text{if (} x < 10 \text{ && } x > 0\text{)} x 0$ has 10 fix-points
Higher types

At higher types like $(\text{int} \rightarrow \text{int}) \rightarrow (\text{int} \rightarrow \text{int})$, the notion of fix-point is exactly the same (but harder to think about)

- For what inputs f of type $\text{int} \rightarrow \text{int}$ is $g(f) = f$

Examples:

- $\lambda f. \lambda x. (f \ x) + 1$ has no fix-points

- $\lambda f. \lambda x. (f \ x) \ast 0$ (or just $\lambda f. \lambda x. 0$) has 1 fix-point
 - The function that always returns 0
 - In math, there is exactly one such function (cf. equivalence)

- $\lambda f. \lambda x. \text{absolute_value}(f \ x)$ has an infinite number of fix-points: Any function that never returns a negative result
Back to factorial

Now, what are the fix-points of
\(\lambda f. \lambda x. \text{if } (x < 1) 1 (x \times (f(x - 1))) \)?

It turns out there is exactly one (in math): the factorial function!

And \(\text{fix } \lambda f. \lambda x. \text{if } (x < 1) 1 (x \times (f(x - 1))) \) behaves just like the factorial function

- That is, it behaves just like the fix-point of
 \(\lambda f. \lambda x. \text{if } (x < 1) 1 (x \times (f(x - 1))) \)
- In general, \(\text{fix} \) takes a function-taking-function and returns its fix-point

(This isn't necessarily important, but it explains the terminology and shows that programming is deeply connected to mathematics)
Typing fix

$$
\Gamma \vdash e : \tau \rightarrow \tau \\
\Gamma \vdash \text{fix} \ e : \tau
$$

Math explanation: If e is a function from τ to τ, then $\text{fix} \ e$, the fixed-point of e, is some τ with the fixed-point property

- So it’s something with type τ

Operational explanation: $\text{fix} \ \lambda x. \ e'$ becomes $e'[\text{fix} \ \lambda x. \ e'/x]$

- The substitution means x and $\text{fix} \ \lambda x. \ e'$ need the same type
- The result means e' and $\text{fix} \ \lambda x. \ e'$ need the same type

Note: The τ in the typing rule is usually insantiated with a function type

- e.g., $\tau_1 \rightarrow \tau_2$, so e has type $(\tau_1 \rightarrow \tau_2) \rightarrow (\tau_1 \rightarrow \tau_2)$

Note: Proving soundness is straightforward!
General approach

We added let, booleans, pairs, records, sums, and fix

- **let** was syntactic sugar
- **fix** made us Turing-complete by “baking in” self-application
- The others *added types*

Whenever we add a new form of type τ there are:

- Introduction forms (ways to make values of type τ)
- Elimination forms (ways to use values of type τ)

What are these forms for functions? Pairs? Sums?

When you add a new type, think “what are the intro and elim forms”?
Anonymity

We added many forms of types, all *unnamed* a.k.a. *structural*. Many real PLs have (all or mostly) *named* types:
- Java, C, C++: all record types (or similar) have names
 - Omitting them just means compiler makes up a name
- OCaml sum types and record types have names

A never-ending debate:
- Structural types allow more code reuse: good
- Named types allow less code reuse: good
- Structural types allow generic type-based code: good
- Named types let type-based code distinguish names: good

The theory is often easier and simpler with structural types
Termination

Surprising fact: If \(\cdot \vdash e : \tau \) in STLC with all our additions except \texttt{fix}, then there exists a \(v \) such that \(e \rightarrow^* v \)

- That is, all programs terminate

So termination is trivially decidable (the constant “yes” function), so our language is not Turing-complete

The proof requires more advanced techniques than we have learned so far because the size of expressions and typing derivations does not decrease with each program step

- Could present it in about an hour if desired

Non-proof:

- Recursion in \(\lambda \) calculus requires some sort of self-application

- Easy fact: For all \(\Gamma, x, \) and \(\tau \), we cannot derive \(\Gamma \vdash x \; x : \tau \)