This lecture

Carefully consider two proofs using our IMP operational semantics

_ » First emphasizes need to strengthen an induction hypothesis
CSE-505: Programmlng Languages » An art: We will purposely take several wrong turns

» Second shows a property is preserved using induction over:
» Length of execution sequence
» Inner: (Height of) statement-evaluation derivation (tree)
» Inner: (Height of) expression-evaluation derivation (tree)

Lecture 4 — Proofs About Operational Semantics

Zach Tatlock Much of this lecture is in writing the proofs out “live”

2016
On Homework 1, “the big proof” requires most of the second

proof’'s form and strengthening the induction hypothesis

appropriately
Zach Tatlock CSE-505 2016, Lecture 4 2
First proof Second proof
Key points from the proof of the barely-interesting fact that Key points from the proof of the “no negatives” property:

while 1 skip diverges:
» Showing a property is preserved is about invariants, a

» First carefully state theorem in terms that can be proven by fundamental software-development concept
induction
> In this case on m, the number of steps taken » Can define a program property via judgments and prove it

holds after every step
» Must get induction hypothesis “just right”

» Not too weak: proof doesn't go through » “Inverting assumed derivations” gives you necessary facts for
» Not too strong: can’t prove something false smaller expressions/statements (e.g., the while case)
> Inversion is the technique of saying, "By assumption, there is a
» Stronger induction hypothesis means implies the original claim derivation of X. In this case of the proof, such a derivation

must end with rule Y (no other rule matches). Therefore the
hypotheses of that rule must hold here.”
» A common pattern: induction, cases, inversion in each case

» Often obvious

Zach Tatlock CSE-505 2016, Lecture 4 3 Zach Tatlock CSE-505 2016, Lecture 4



Motivation of non-negatives Even more general proofs to come

While “no negatives preserved” boils to down to properties of We defined the semantics

blue-+ and blue-*, writing out the whole proof ensures our

language has no mistakes or bad interactions Given our semantics, we established properties of programs and
» Like a system test for the semantics sets of programs

More interesting is having multiple semantics—for what program
states are they equivalent? (For what notion of equivalence?)

The theorem is false if we have:
» Overly flexible rules, e.g.:
Or having a more abstract semantics (e.g., a type system) and

H;cl asking if it is preserved under evaluation. (If e has type 7 and e

becomes e’, does e’ have type 77)
» An “unsafe” language like C:

But first a one-lecture detour to “denotational”’ semantics
H(zx) = {cos..-s¢cn-1} H;;elc c>n

H ;z[e]:=¢ — H ;&

Zach Tatlock CSE-505 2016, Lecture 4 ) Zach Tatlock CSE-505 2016, Lecture 4



