Finally, some formal PL content

For our first formal language, let’s leave out functions, objects, records, threads, exceptions, ...

What’s left: integers, mutable variables, control-flow

(Abstract) syntax using a common metalanguage:

“A program is a statement s, which is defined as follows”

\[
\begin{align*}
 s &::= \text{skip} | x := e | s; s | \text{if } e \ s \ s | \text{while } e \ s \\
 e &::= c | x | e + e | e * e \\
 (c &\in \{\ldots, -2, -1, 0, 1, 2, \ldots\}) \\
 (x &\in \{x_1, x_2, \ldots, y_1, y_2, \ldots, z_1, z_2, \ldots, \ldots\})
\end{align*}
\]
Comparison to ML

```
if x skip ; := y 42 := x y
if x skip := y 42 := x y
```

type exp = Const of int | Var of string
| Add of exp * exp | Mult of exp * exp

```
If(Var("x"),Skip,Seq(Assign("y",Const 42),Assign("x",Var "y")))
Seq(If(Var("x"),Skip,Assign("y",Const 42)),Assign("x",Var "y"))
```

Very similar to trees built with ML datatypes
- ML needs “extra nodes” for, e.g., “e can be a c”
- Also pretending ML’s int is an integer

Comparison to strings

We are used to writing programs in concrete syntax, i.e., strings

```
if x skip ; := y 42 := x y
if x skip := y 42 := x y
```

That can be ambiguous: if x skip y := 42 ; x := y

Since writing strings is such a convenient way to represent trees, we allow ourselves parentheses (or defaults) for disambiguation
- Trees are our “truth” with strings as a “convenient notation”
 - if x skip (y := 42 ; x := y) versus (if x skip y := 42) ; x := y

Last word on concrete syntax

Converting a string into a tree is parsing

Creating concrete syntax such that parsing is unambiguous is one challenge of grammar design
- Always trivial if you require enough parentheses or keywords
 - Extreme case: LISP, 1960s; Scheme, 1970s
 - Extreme case: XML, 1990s
- Very well studied in 1970s and 1980s, now typically the least interesting part of a compilers course

For the rest of this course, we start with abstract syntax
- Using strings only as a convenient shorthand and asking if it’s ever unclear what tree we mean

Inductive definition

```
s ::= skip | x := e | s ; s | if e s s | while e s
e ::= c | x | e + e | e ∗ e
```

This grammar is a finite description of an infinite set of trees

The apparent self-reference is not a problem, provided the definition uses well-founded induction
- Just like an always-terminating recursive function uses self-reference but is not a circular definition!

Can give precise meaning to our metanotation & avoid circularity:
- Let $E_0 = \emptyset$
 - For $i > 0$, let E_i be E_{i-1} union “expressions of the form $c, x, e_1 + e_2, \text{ or } e_1 ∗ e_2$ where $e_1, e_2 \in E_{i-1}”$
- Let $E = \bigcup_{i≥0} E_i$

The set E is what we mean by our compact metanotation
Inductive definition

\[
\begin{align*}
 s &::= \text{skip} \mid x := e \mid s; s \mid \text{if } e \text{ s s} \mid \text{while } e \text{ s} \\
 e &::= c \mid x \mid e + e \mid e \ast e
\end{align*}
\]

- Let \(E_0 = \emptyset \).
- For \(i > 0 \), let \(E_i \) be \(E_{i-1} \) union “expressions of the form \(c, x, e_1 + e_2, \) or \(e_1 \ast e_2 \) where \(e_1, e_2 \in E_{i-1} \)”.
- Let \(E = \bigcup_{i \geq 0} E_i \).

The set \(E \) is what we mean by our compact metanotation

To get it: What set is \(E_1 \)? \(E_2 \)?
Could explain statements the same way: What is \(S_1 \)? \(S_2 \)? \(S \)?

Proving Obvious Stuff

All we have is syntax (sets of abstract-syntax trees), but let’s get the idea of proving things carefully...

Theorem 1: There exist expressions with three constants.

Our First Theorem

There exist expressions with three constants.

Pedantic Proof: Consider \(e = 1 + (2 + 3) \). Showing \(e \in E_3 \) suffices because \(E_3 \subseteq E \). Showing \(2 + 3 \in E_2 \) and \(1 \in E_2 \) suffices...

PL-style proof: Consider \(e = 1 + (2 + 3) \) and definition of \(E \).

Theorem 2: All expressions have at least one constant or variable.

Pedantic proof: By induction on \(i \), for all \(e \in E_i \), \(e \) has \(\geq 1 \) constant or variable.
- Base: \(i = 0 \) implies \(E_i = \emptyset \)
- Inductive: \(i > 0 \). Consider arbitrary \(e \in E_i \) by cases:
 - \(e \in E_{i-1} \ldots \)
 - \(e = e \ldots \)
 - \(e = x \ldots \)
 - \(e = e_1 + e_2 \) where \(e_1, e_2 \in E_{i-1} \ldots \)
 - \(e = e_1 \ast e_2 \) where \(e_1, e_2 \in E_{i-1} \ldots \)
A “Better” Proof

All expressions have at least one constant or variable.

PL-style proof: By structural induction on (rules for forming an expression) e. Cases:

- c . . .
- x . . .
- $e_1 + e_2$. . .
- $e_1 * e_2$. . .

Structural induction invokes the induction hypothesis on smaller terms. It is equivalent to the pedantic proof, and more convenient in PL.