
CSE-505: Programming Languages

Lecture 27 — Higher-Order Polymorphism

Matthew Fluet
2015

Looking back, looking forward

Have defined System F.

I Metatheory (what properties does it have)

I What (else) is it good for

I How/why ML is more restrictive and implicit

I Recursive types (also use type variables, but differently)

I Existential types (dual to universal types)

Next:

I Type operators and type-level “computations”

Matthew Fluet CSE-505 2015, Lecture 27 2

System F with Recursive and Existential Types
e ::= c | x | λx:τ. e | e e |

Λα. e | e [τ] |
pack∃α. τ (τ, e) | unpack e as (α, x) in e |
rollµα. τ (e) | unroll(e)

v ::= c | λx:τ. e | Λα. e | pack∃α. τ (τ, v) | rollµα. τ (v)

e→cbv e
′

(λx: τ. eb) va →cbv eb[va/x]

ef →cbv e
′
f

ef ea →cbv e
′
f ea

ea →cbv e
′
a

vf ea →cbv vf e
′
a

(Λα. eb) [τa]→cbv eb[τa/α]

ef →cbv e
′
f

ef [τa]→cbv e
′
f [τa]

ea →cbv e
′
a

pack∃α. τ (τw, ea)→cbv pack∃α. τ (τw, e
′
a)

ea →cbv e
′
a

unpack ea as (α, x) in eb →cbv unpack e
′
a as (α, x) in eb

unpack pack∃α. τ (τw, va) as (α, x) in eb →cbv eb[τw/α][va/x]

ea →cbv e
′
a

unroll(ea)→cbv unroll(e
′
a) unroll(rollµα. τ (va))→cbv va

Matthew Fluet CSE-505 2015, Lecture 27 3

System F with Recursive and Existential Types
τ ::= int | τ → τ | α | ∀α. τ | ∃α. τ | µα. τ
∆ ::= · | ∆, α
Γ ::= · | Γ, x:τ

∆; Γ ` e : τ

∆; Γ ` c : int

Γ(x) = τ

∆; Γ ` x : τ

∆ ` τa ∆; Γ, x : τa ` eb : τr

∆; Γ ` λx:τa. eb : τa → τr

∆; Γ ` ef : τa → τr ∆; Γ ` ea : τa

∆; Γ ` ef ea : τr

∆, α; Γ ` eb : τr

∆; Γ ` Λα. eb : ∀α. τr

∆; Γ ` ef : ∀α. τr ∆ ` τa
∆; Γ ` ef [τa] : τr[τa/α]

∆; Γ ` ea : τ [τw/α]

∆; Γ ` pack∃α. τ (τw, ea) : ∃α. τ
∆; Γ ` ea : ∃α. τ ∆, α; Γ, x:τ ` eb : τr ∆ ` τr

∆; Γ ` unpack ea as (α, x) in eb : τr

∆; Γ ` ea : τ [(µα. τ)/α]

∆; Γ ` rollµα. τ (ea) : µα. τ

∆; Γ ` ea : µα. τ

∆; Γ ` unroll(ea) : τ [(µα. τ)/α]

Matthew Fluet CSE-505 2015, Lecture 27 4

Goal

Understand what this interface means and why it matters:

type 'a list

val empty : 'a list

val cons : 'a -> 'a list -> 'a list

val unlist : 'a list -> ('a * 'a list) option

val size : 'a list -> int

val map : ('a -> 'b) -> 'a list -> 'b list

Story so far:

I Recursive types to define list data structure

I Universal types to keep element type abstract in library

I Existential types to keep list type abstract in client

But, “cheated” when abstracting the list type in client:
considered just intlist.

Matthew Fluet CSE-505 2015, Lecture 27 5

(Integer) List Library with ∃
List library is an existential package:

pack(µξ. unit + (int ∗ ξ), list library)
as ∃L. {empty : L;

cons : int→ L→ L;
unlist : L→ unit + (int ∗ L);
map : (int→ int)→ L→ L;
. . .}

The witness type is integer lists: µξ. unit + (int ∗ ξ).

The existential type variable L represents integer lists.

List operations are monomorphic in element type (int).

The map function only allows mapping integer lists to integer lists.

Matthew Fluet CSE-505 2015, Lecture 27 6

(Polymorphic?) List Library with ∀/∃
List library is a type abstraction that yields an existential package:

Λα. pack(µξ. unit + (α ∗ ξ), list library)
as ∃L. {empty : L;

cons : α→ L→ L;
unlist : L→ unit + (α ∗ L);
map : (α→ α)→ L→ L;
. . .}

The witness type is α lists: µξ. unit + (α ∗ ξ).

The existential type variable L represents α lists.

List operations are monomorphic in element type (α).

The map function only allows mapping α lists to α lists.

Matthew Fluet CSE-505 2015, Lecture 27 7

Type Abbreviations and Type Operators

Reasonable enough to provide list type as a (parametric) type abbreviation:

L α = µξ. unit + (α ∗ ξ)

I replace occurrences of L τ in programs
with (µξ. unit + (α ∗ ξ))[τ/α]

Gives an informal notion of functions at the type-level.

But, doesn’t help with with list library,
because this exposes the definition of list type.

I How “modular” and “safe” are libraries built from cpp macros?

Matthew Fluet CSE-505 2015, Lecture 27 8

Type Abbreviations and Type Operators

Instead, provide list type as a type operator:

I a function from types to types

L = λα. µξ. unit + (α ∗ ξ)

Gives a formal notion of functions at the type-level.

I abstraction and application at the type-level

I equivalence of type-level expressions

I well-formedness of type-level expressions

List library will be an existential package that hides a type operator,
(rather than a type).

Matthew Fluet CSE-505 2015, Lecture 27 9

Type-level Expressions

Abstraction and application at the type level
makes it possible to write the same type with different syntax.

Id = λα. α

int→ bool int→ Id bool Id int→ bool Id int→ Id bool

Id (int→ bool) Id (Id (int→ bool)) . . .

Matthew Fluet CSE-505 2015, Lecture 27 10

Type-level Expressions

Abstraction and application at the type level
makes it possible to write the same type with different syntax.

Id = λα. α

int→ bool int→ Id bool Id int→ bool Id int→ Id bool

Id (int→ bool) Id (Id (int→ bool)) . . .

Require a precise definition of when two types are the same:

τ ≡ τ ′

. . .
(λα. τb) τa ≡ τb[α/τa]

. . .

Matthew Fluet CSE-505 2015, Lecture 27 10

Type-level Expressions

Abstraction and application at the type level
makes it possible to write the same type with different syntax.

Id = λα. α

int→ bool int→ Id bool Id int→ bool Id int→ Id bool

Id (int→ bool) Id (Id (int→ bool)) . . .

Require a typing rule to exploit types that are the same:

∆; Γ ` e : τ

. . .
∆; Γ ` e : τ τ ≡ τ ′

∆; Γ ` e : τ ′
. . .

Matthew Fluet CSE-505 2015, Lecture 27 10

Type-level Expressions

Abstraction and application at the type level
makes it possible to write the same type with different syntax.

Id = λα. α

int→ bool int→ Id bool Id int→ bool Id int→ Id bool

Id (int→ bool) Id (Id (int→ bool)) . . .

Admits “wrong/bad/meaningless” types:

. . . bool int (Id bool) int bool (Id int) . . .

Matthew Fluet CSE-505 2015, Lecture 27 10

Type-level Expressions

Abstraction and application at the type level
makes it possible to write the same type with different syntax.

Id = λα. α

int→ bool int→ Id bool Id int→ bool Id int→ Id bool

Id (int→ bool) Id (Id (int→ bool)) . . .

Require a “type system” for types:

∆ ` τ :: κ

. . .
∆ ` τf :: κa ⇒ κr ∆ ` τa :: κa

∆ ` τf τa :: κr
. . .

Matthew Fluet CSE-505 2015, Lecture 27 10

Terms, Types, and Kinds, Oh My

Matthew Fluet CSE-505 2015, Lecture 27 11

Terms, Types, and Kinds, Oh My

Terms:
e ::= c | x | λx:τ . e | e e | Λα::κ. e | e [τ]
v ::= c | λx:τ . e | Λα::κ. e

I atomic values (e.g., c) and operations (e.g., e+ e)

I compound values (e.g., (v,v)) and operations (e.g., e.1)

I value abstraction and application

I type abstraction and application

I classified by types (but not all terms have a type)

Matthew Fluet CSE-505 2015, Lecture 27 11

Terms, Types, and Kinds, Oh My

Terms:
e ::= c | x | λx:τ . e | e e | Λα::κ. e | e [τ]
v ::= c | λx:τ . e | Λα::κ. e

I atomic values (e.g., c) and operations (e.g., e+ e)

I compound values (e.g., (v,v)) and operations (e.g., e.1)

I value abstraction and application

I type abstraction and application

I classified by types (but not all terms have a type)

Types: τ ::= int | τ → τ | α | ∀α::κ. τ | λα::κ. τ | τ τ
I atomic types (e.g., int) classify the terms that evaluate to atomic values

I compound types (e.g., τ ∗ τ) classify the terms that evaluate to compound values

I function types τ → τ classify the terms that evaluate to value abstractions

I universal types ∀α. τ classify the terms that evaluate to type abstractions

I type abstraction and application

I type abstractions do not classify terms,
but can be applied to type arguments
to form types that do classify terms

I classified by kinds (but not all types have a kind)

Matthew Fluet CSE-505 2015, Lecture 27 11

Terms, Types, and Kinds, Oh My

Types: τ ::= int | τ → τ | α | ∀α::κ. τ | λα::κ. τ | τ τ
I atomic types (e.g., int) classify the terms that evaluate to atomic values

I compound types (e.g., τ ∗ τ) classify the terms that evaluate to compound values

I function types τ → τ classify the terms that evaluate to value abstractions

I universal types ∀α. τ classify the terms that evaluate to type abstractions

I type abstraction and application

I type abstractions do not classify terms,
but can be applied to type arguments
to form types that do classify terms

I classified by kinds (but not all types have a kind)

Matthew Fluet CSE-505 2015, Lecture 27 11

Terms, Types, and Kinds, Oh My

Types: τ ::= int | τ → τ | α | ∀α::κ. τ | λα::κ. τ | τ τ
I atomic types (e.g., int) classify the terms that evaluate to atomic values

I compound types (e.g., τ ∗ τ) classify the terms that evaluate to compound values

I function types τ → τ classify the terms that evaluate to value abstractions

I universal types ∀α. τ classify the terms that evaluate to type abstractions

I type abstraction and application

I type abstractions do not classify terms,
but can be applied to type arguments
to form types that do classify terms

I classified by kinds (but not all types have a kind)

Kinds κ ::= ? | κ⇒ κ

I kind of proper types ? classify
the types (that are the same as the types) that classify terms

I arrow kinds κ⇒ κ classify
the types (that are the same as the types) that are type abstractions

Matthew Fluet CSE-505 2015, Lecture 27 11

Kind Examples

I ?
I the kind of proper types
I Bool, Bool→ Bool, . . .

I ?⇒ ?
I the kind of (unary) type operators
I List, Maybe, . . .

I ?⇒ ?⇒ ?
I the kind of (binary) type operators
I Either, Map, . . .

I (?⇒ ?)⇒ ?
I the kind of higher-order type operators

taking unary type operators to proper types
I ???, . . .

I (?⇒ ?)⇒ ?⇒ ?
I the kind of higher-order type operators

taking unary type operators to unary type operators
I MaybeT, ListT, . . .

Matthew Fluet CSE-505 2015, Lecture 27 12

Kind Examples

I ?
I the kind of proper types
I Bool, Bool→ Bool, . . .

I ?⇒ ?
I the kind of (unary) type operators
I List, Maybe, . . .

I ?⇒ ?⇒ ?
I the kind of (binary) type operators
I Either, Map, . . .

I (?⇒ ?)⇒ ?
I the kind of higher-order type operators

taking unary type operators to proper types
I ???, . . .

I (?⇒ ?)⇒ ?⇒ ?
I the kind of higher-order type operators

taking unary type operators to unary type operators
I MaybeT, ListT, . . .

Matthew Fluet CSE-505 2015, Lecture 27 12

Kind Examples

I ?
I the kind of proper types
I Bool, Bool→ Bool, . . .

I ?⇒ ?
I the kind of (unary) type operators
I List, Maybe, . . .

I ?⇒ ?⇒ ?
I the kind of (binary) type operators
I Either, Map, . . .

I (?⇒ ?)⇒ ?
I the kind of higher-order type operators

taking unary type operators to proper types
I ???, . . .

I (?⇒ ?)⇒ ?⇒ ?
I the kind of higher-order type operators

taking unary type operators to unary type operators
I MaybeT, ListT, . . .

Matthew Fluet CSE-505 2015, Lecture 27 12

Kind Examples

I ?
I the kind of proper types
I Bool, Bool→ Bool, Maybe Bool, Maybe Bool→ Maybe Bool, . . .

I ?⇒ ?
I the kind of (unary) type operators
I List, Maybe, . . .

I ?⇒ ?⇒ ?
I the kind of (binary) type operators
I Either, Map, . . .

I (?⇒ ?)⇒ ?
I the kind of higher-order type operators

taking unary type operators to proper types
I ???, . . .

I (?⇒ ?)⇒ ?⇒ ?
I the kind of higher-order type operators

taking unary type operators to unary type operators
I MaybeT, ListT, . . .

Matthew Fluet CSE-505 2015, Lecture 27 12

Kind Examples

I ?
I the kind of proper types
I Bool, Bool→ Bool, Maybe Bool, Maybe Bool→ Maybe Bool, . . .

I ?⇒ ?
I the kind of (unary) type operators
I List, Maybe, . . .

I ?⇒ ?⇒ ?
I the kind of (binary) type operators
I Either, Map, . . .

I (?⇒ ?)⇒ ?
I the kind of higher-order type operators

taking unary type operators to proper types
I ???, . . .

I (?⇒ ?)⇒ ?⇒ ?
I the kind of higher-order type operators

taking unary type operators to unary type operators
I MaybeT, ListT, . . .

Matthew Fluet CSE-505 2015, Lecture 27 12

Kind Examples

I ?
I the kind of proper types
I Bool, Bool→ Bool, Maybe Bool, Maybe Bool→ Maybe Bool, . . .

I ?⇒ ?
I the kind of (unary) type operators
I List, Maybe, Map Int, Either (List Bool), . . .

I ?⇒ ?⇒ ?
I the kind of (binary) type operators
I Either, Map, . . .

I (?⇒ ?)⇒ ?
I the kind of higher-order type operators

taking unary type operators to proper types
I ???, . . .

I (?⇒ ?)⇒ ?⇒ ?
I the kind of higher-order type operators

taking unary type operators to unary type operators
I MaybeT, ListT, . . .

Matthew Fluet CSE-505 2015, Lecture 27 12

Kind Examples

I ?
I the kind of proper types
I Bool, Bool→ Bool, Maybe Bool, Maybe Bool→ Maybe Bool, . . .

I ?⇒ ?
I the kind of (unary) type operators
I List, Maybe, Map Int, Either (List Bool), . . .

I ?⇒ ?⇒ ?
I the kind of (binary) type operators
I Either, Map, . . .

I (?⇒ ?)⇒ ?
I the kind of higher-order type operators

taking unary type operators to proper types
I ???, . . .

I (?⇒ ?)⇒ ?⇒ ?
I the kind of higher-order type operators

taking unary type operators to unary type operators
I MaybeT, ListT, . . .

Matthew Fluet CSE-505 2015, Lecture 27 12

Kind Examples

I ?
I the kind of proper types
I Bool, Bool→ Bool, Maybe Bool, Maybe Bool→ Maybe Bool, . . .

I ?⇒ ?
I the kind of (unary) type operators
I List, Maybe, Map Int, Either (List Bool), . . .

I ?⇒ ?⇒ ?
I the kind of (binary) type operators
I Either, Map, . . .

I (?⇒ ?)⇒ ?
I the kind of higher-order type operators

taking unary type operators to proper types
I ???, . . .

I (?⇒ ?)⇒ ?⇒ ?
I the kind of higher-order type operators

taking unary type operators to unary type operators
I MaybeT, ListT, . . .

Matthew Fluet CSE-505 2015, Lecture 27 12

Kind Examples

I ?
I the kind of proper types
I Bool, Bool→ Bool, Maybe Bool, Maybe Bool→ Maybe Bool, . . .

I ?⇒ ?
I the kind of (unary) type operators
I List, Maybe, Map Int, Either (List Bool), ListT Maybe, . . .

I ?⇒ ?⇒ ?
I the kind of (binary) type operators
I Either, Map, . . .

I (?⇒ ?)⇒ ?
I the kind of higher-order type operators

taking unary type operators to proper types
I ???, . . .

I (?⇒ ?)⇒ ?⇒ ?
I the kind of higher-order type operators

taking unary type operators to unary type operators
I MaybeT, ListT, . . .

Matthew Fluet CSE-505 2015, Lecture 27 12

System Fω: Syntax

e ::= c | x | λx:τ . e | e e | Λα::κ. e | e [τ]
v ::= c | λx:τ . e | Λα::κ. e
Γ ::= · | Γ, x:τ
τ ::= int | τ → τ | α | ∀α::κ. τ | λα::κ. τ | τ τ
∆ ::= · | ∆, α::κ
κ ::= ? | κ⇒ κ

New things:

I Types: type abstraction and type application
I Kinds: the “types” of types

I ?: kind of proper types
I κa ⇒ κr: kind of type operators

Matthew Fluet CSE-505 2015, Lecture 27 13

System Fω: Operational Semantics

Small-step, call-by-value (CBV), left-to-right operational semantics:

e→cbv e
′

(λx: τ . eb) va →cbv eb[va/x]

ef →cbv e
′
f

ef ea →cbv e
′
f ea

ea →cbv e
′
a

vf ea →cbv vf e
′
a (Λα::κa. eb) [τa]→cbv eb[τa/α]

ef →cbv e
′
f

ef [τa]→cbv e
′
f [τa]

I Unchanged! All of the new action is at the type-level.

Matthew Fluet CSE-505 2015, Lecture 27 14

System Fω: Type System, part 1

In the context ∆ the type τ has kind κ:

∆ ` τ :: κ

∆ ` int :: ?

∆ ` τa :: ? ∆ ` τr :: ?

∆ ` τa → τr :: ?

∆(α) = κ

∆ ` α :: κ

∆, α :: κa ` τr :: ?

∆ ` ∀α::κa. τr :: ?

∆, α :: κa ` τb :: κr

∆ ` λα::κa. τb :: κa ⇒ κr

∆ ` τf :: κa ⇒ κr ∆ ` τa :: κa

∆ ` τf τa :: κr

Should look familiar:

the typing rules of the Simply-Typed Lambda Calculus “one level up”

Matthew Fluet CSE-505 2015, Lecture 27 15

System Fω: Type System, part 1

In the context ∆ the type τ has kind κ:

∆ ` τ :: κ

∆ ` int :: ?

∆ ` τa :: ? ∆ ` τr :: ?

∆ ` τa → τr :: ?

∆(α) = κ

∆ ` α :: κ

∆, α :: κa ` τr :: ?

∆ ` ∀α::κa. τr :: ?

∆, α :: κa ` τb :: κr

∆ ` λα::κa. τb :: κa ⇒ κr

∆ ` τf :: κa ⇒ κr ∆ ` τa :: κa

∆ ` τf τa :: κr

Should look familiar:
the typing rules of the Simply-Typed Lambda Calculus “one level up”

Matthew Fluet CSE-505 2015, Lecture 27 15

System Fω: Type System, part 2

Definitional Equivalence of τ and τ ′:

τ ≡ τ ′

τ ≡ τ
τ2 ≡ τ1
τ1 ≡ τ2

τ1 ≡ τ2 τ2 ≡ τ3
τ1 ≡ τ3

τa1 ≡ τa2 τr1 ≡ τr2
τa1 → τr1 ≡ τa2 → τr2

τr1 ≡ τr2
∀α::κa. τr1 ≡ ∀α::κa. τr2

τb1 ≡ τb2
λα::κa. τb1 ≡ λα::κa. τb2

τf1 ≡ τf2 τa1 ≡ τa2
τf1 τa1 ≡ τf2 τa2

(λα::κa. τb) τa ≡ τb[α/τa]

Should look familiar:

the full reduction rules of the Lambda Calculus “one level up”

Matthew Fluet CSE-505 2015, Lecture 27 16

System Fω: Type System, part 2

Definitional Equivalence of τ and τ ′:

τ ≡ τ ′

τ ≡ τ
τ2 ≡ τ1
τ1 ≡ τ2

τ1 ≡ τ2 τ2 ≡ τ3
τ1 ≡ τ3

τa1 ≡ τa2 τr1 ≡ τr2
τa1 → τr1 ≡ τa2 → τr2

τr1 ≡ τr2
∀α::κa. τr1 ≡ ∀α::κa. τr2

τb1 ≡ τb2
λα::κa. τb1 ≡ λα::κa. τb2

τf1 ≡ τf2 τa1 ≡ τa2
τf1 τa1 ≡ τf2 τa2

(λα::κa. τb) τa ≡ τb[α/τa]

Should look familiar:
the full reduction rules of the Lambda Calculus “one level up”

Matthew Fluet CSE-505 2015, Lecture 27 16

System Fω: Type System, part 3

In the contexts ∆ and Γ the expression e has type τ :

∆; Γ ` e : τ

∆; Γ ` c : int

Γ(x) = τ

∆; Γ ` x : τ

∆ ` τa :: ? ∆; Γ, x : τa ` eb : τr

∆; Γ ` λx:τa. eb : τa → τr

∆; Γ ` ef : τa → τr ∆; Γ ` ea : τa

∆; Γ ` ef ea : τr

∆, α :: κa; Γ ` eb : τr

∆; Γ ` Λα. eb : ∀α::κa. τr

∆; Γ ` ef : ∀α::κa. τr ∆ ` τa :: κa

∆; Γ ` ef [τa] : τr[τa/α]

∆; Γ ` e : τ τ ≡ τ ′ ∆ ` τ ′ :: ?

∆; Γ ` e : τ ′

Syntax and type system easily extended with recursive and existential
types.

Matthew Fluet CSE-505 2015, Lecture 27 17

System Fω: Type System, part 3

In the contexts ∆ and Γ the expression e has type τ :

∆; Γ ` e : τ

∆; Γ ` c : int

Γ(x) = τ

∆; Γ ` x : τ

∆ ` τa :: ? ∆; Γ, x : τa ` eb : τr

∆; Γ ` λx:τa. eb : τa → τr

∆; Γ ` ef : τa → τr ∆; Γ ` ea : τa

∆; Γ ` ef ea : τr

∆, α :: κa; Γ ` eb : τr

∆; Γ ` Λα. eb : ∀α::κa. τr

∆; Γ ` ef : ∀α::κa. τr ∆ ` τa :: κa

∆; Γ ` ef [τa] : τr[τa/α]

∆; Γ ` e : τ τ ≡ τ ′ ∆ ` τ ′ :: ?

∆; Γ ` e : τ ′

Syntax and type system easily extended with recursive and existential
types.

Matthew Fluet CSE-505 2015, Lecture 27 17

Polymorphic List Library with higher-order ∃
List library is an existential package:

pack(λα::?. µξ::?. unit + (α ∗ ξ), list library)
as ∃L::?⇒ ?. {empty : ∀α::?. L α;

cons : ∀α::?. α→ L α→ L α;
unlist : ∀α::?. L α→ unit + (α ∗ L α);
map : ∀α::?. ∀β::?. (α→ β)→ L α→ L β;
. . .}

The witness type operator is poly.lists: λα::?. µξ::?. unit + (α ∗ ξ).

The existential type operator variable L represents poly. lists.

List operations are polymorphic in element type.

The map function only allows mapping α lists to β lists.

Matthew Fluet CSE-505 2015, Lecture 27 18

Other Kinds of Kinds

Kinding systems for checking and tracking properties of type expressions:
I Record kinds

I records at the type-level; define systems of mutually recursive types

I Polymorphic kinds
I kind abstraction and application in types; System F “one level up”

I Dependent kinds
I dependent types “one level up”

I Row kinds
I describe “pieces” of record types for record polymorphism

I Power kinds
I alternative presentation of subtyping

I Singleton kinds
I formalize module systems with type sharing

Matthew Fluet CSE-505 2015, Lecture 27 19

Metatheory

System Fω is type safe.

Matthew Fluet CSE-505 2015, Lecture 27 20

Metatheory

System Fω is type safe.

I Preservation:
Induction on typing derivation, using substitution lemmas:
I Term Substitution:

if ∆1,∆2; Γ1, x : τx,Γ2 ` e1 : τ and ∆1; Γ1 ` e2 : τx,
then ∆1,∆2; Γ1,Γ2 ` e1[e2/x] : τ .

I Type Substitution:
if ∆1, α::κα,∆2 ` τ1 :: κ and ∆1 ` τ2 :: κα,
then ∆1,∆2 ` τ1[τ2/α] :: κ.

I Type Substitution:
if τ1 ≡ τ2, then τ1[τ/α] ≡ τ2[τ/α].

I Type Substitution:
if ∆1, α::κα,∆2; Γ1,Γ2 ` e1 : τ and ∆1 ` τ2 :: κα,
then ∆1,∆2; Γ1,Γ2[τ2/α] ` e1[τ2/α] : τ .

I All straightforward inductions, using various weakening and exchange lemmas.

Matthew Fluet CSE-505 2015, Lecture 27 20

Metatheory

System Fω is type safe.

I Progress:
Induction on typing derivation, using canonical form lemmas:
I If ·; · ` v : int, then v = c.
I If ·; · ` v : τa → τr, then v = λx:τa. eb.
I If ·; · ` v : ∀α::κa. τr, then v = Λα::κa. eb.

I Complicated by typing derivations that end with:

∆; Γ ` e : τ τ ≡ τ ′ ∆ ` τ ′ :: ?

∆; Γ ` e : τ ′

(just like with subtyping and subsumption).

Matthew Fluet CSE-505 2015, Lecture 27 20

Definitional Equivalence and Parallel Reduction

Parallel Reduction of τ to τ ′:

τ V τ ′

τ V τ

τa1 V τa2 τr1 V τr2

τa1 → τr1 V τa2 → τr2

τr1 V τr2

∀α::κa. τr1 V ∀α::κa. τr2

τb1 V τb2

λα::κa. τb1 V λα::κa. τb2

τf1 V τf2 τa1 V τa2

τf1 τa1 V τf2 τa2

τb V τ ′b τa V τ ′a

(λα::κa. τb) τa V τ ′b[α/τ
′
a]

A more “computational” relation.

Matthew Fluet CSE-505 2015, Lecture 27 21

Definitional Equivalence and Parallel Reduction

Key properties:

I Transitive and symmetric closure of parallel reduction
and type equivalence coincide:
I τ WV∗ τ ′ iff τ ≡ τ ′

I Parallel reduction has the Church-Rosser property:
I If τ V∗ τ1 and τ V∗ τ2,

then there exists τ ′ such that τ1 V∗ τ ′ and τ2 V∗ τ ′

I Equivalent types share a common reduct:
I If τ1 ≡ τ2, then there exists τ ′ such that τ1 V∗ τ ′ and τ2 V∗ τ ′

I Reduction preserves shapes:
I If int V∗ τ ′, then τ ′ = int
I If τa → τr V∗ τ ′, then τ ′ = τ ′a → τ ′r and τa V∗ τ ′a and τr V∗ τ ′r
I If ∀α::κa. τr V∗ τ ′, then τ ′ = ∀α::κa. τ

′
r and τr V∗ τ ′r

Matthew Fluet CSE-505 2015, Lecture 27 22

Definitional Equivalence and Parallel Reduction

Key properties:

I Transitive and symmetric closure of parallel reduction
and type equivalence coincide:
I τ WV∗ τ ′ iff τ ≡ τ ′

I Parallel reduction has the Church-Rosser property:
I If τ V∗ τ1 and τ V∗ τ2,

then there exists τ ′ such that τ1 V∗ τ ′ and τ2 V∗ τ ′

I Equivalent types share a common reduct:
I If τ1 ≡ τ2, then there exists τ ′ such that τ1 V∗ τ ′ and τ2 V∗ τ ′

I Reduction preserves shapes:
I If int V∗ τ ′, then τ ′ = int
I If τa → τr V∗ τ ′, then τ ′ = τ ′a → τ ′r and τa V∗ τ ′a and τr V∗ τ ′r
I If ∀α::κa. τr V∗ τ ′, then τ ′ = ∀α::κa. τ

′
r and τr V∗ τ ′r

Matthew Fluet CSE-505 2015, Lecture 27 22

Definitional Equivalence and Parallel Reduction

Key properties:

I Transitive and symmetric closure of parallel reduction
and type equivalence coincide:
I τ WV∗ τ ′ iff τ ≡ τ ′

I Parallel reduction has the Church-Rosser property:
I If τ V∗ τ1 and τ V∗ τ2,

then there exists τ ′ such that τ1 V∗ τ ′ and τ2 V∗ τ ′

I Equivalent types share a common reduct:
I If τ1 ≡ τ2, then there exists τ ′ such that τ1 V∗ τ ′ and τ2 V∗ τ ′

I Reduction preserves shapes:
I If int V∗ τ ′, then τ ′ = int
I If τa → τr V∗ τ ′, then τ ′ = τ ′a → τ ′r and τa V∗ τ ′a and τr V∗ τ ′r
I If ∀α::κa. τr V∗ τ ′, then τ ′ = ∀α::κa. τ

′
r and τr V∗ τ ′r

Matthew Fluet CSE-505 2015, Lecture 27 22

Definitional Equivalence and Parallel Reduction

Key properties:

I Transitive and symmetric closure of parallel reduction
and type equivalence coincide:
I τ WV∗ τ ′ iff τ ≡ τ ′

I Parallel reduction has the Church-Rosser property:
I If τ V∗ τ1 and τ V∗ τ2,

then there exists τ ′ such that τ1 V∗ τ ′ and τ2 V∗ τ ′

I Equivalent types share a common reduct:
I If τ1 ≡ τ2, then there exists τ ′ such that τ1 V∗ τ ′ and τ2 V∗ τ ′

I Reduction preserves shapes:
I If int V∗ τ ′, then τ ′ = int
I If τa → τr V∗ τ ′, then τ ′ = τ ′a → τ ′r and τa V∗ τ ′a and τr V∗ τ ′r
I If ∀α::κa. τr V∗ τ ′, then τ ′ = ∀α::κa. τ

′
r and τr V∗ τ ′r

Matthew Fluet CSE-505 2015, Lecture 27 22

Definitional Equivalence and Parallel Reduction

Key properties:

I Transitive and symmetric closure of parallel reduction
and type equivalence coincide:
I τ WV∗ τ ′ iff τ ≡ τ ′

I Parallel reduction has the Church-Rosser property:
I If τ V∗ τ1 and τ V∗ τ2,

then there exists τ ′ such that τ1 V∗ τ ′ and τ2 V∗ τ ′

I Equivalent types share a common reduct:
I If τ1 ≡ τ2, then there exists τ ′ such that τ1 V∗ τ ′ and τ2 V∗ τ ′

I Reduction preserves shapes:
I If int V∗ τ ′, then τ ′ = int
I If τa → τr V∗ τ ′, then τ ′ = τ ′a → τ ′r and τa V∗ τ ′a and τr V∗ τ ′r
I If ∀α::κa. τr V∗ τ ′, then τ ′ = ∀α::κa. τ

′
r and τr V∗ τ ′r

Matthew Fluet CSE-505 2015, Lecture 27 22

Canonical Forms

If ·; · ` v : τa → τr, then v = λx:τa. eb.
Proof:
By cases on the form of v:

Matthew Fluet CSE-505 2015, Lecture 27 23

Canonical Forms

If ·; · ` v : τa → τr, then v = λx:τa. eb.
Proof:
By cases on the form of v:
I v = λx:τa. eb.

We have that v = λx:τa. eb.

Matthew Fluet CSE-505 2015, Lecture 27 23

Canonical Forms

If ·; · ` v : τa → τr, then v = λx:τa. eb.
Proof:
By cases on the form of v:
I v = c.

Derivation of ·; · ` v : τa → τr must be of the form:
.
.
.

·; · ` c : int int ≡ τ1
·; · ` c : τ1

.

.

.
·; · ` c : τn−1 τn−1 ≡ τn

·; · ` c : τn τn ≡ τa → τr

·; · ` c : τa → τr

Therefore, we can construct the derivation int ≡ τa → τr.
We can find a common reduct: int V∗ τ † and τa → τr V∗ τ †.
Reduction preserves shape: int V∗ τ † implies τ † = int.
Reduction preserves shape: τa → τr V∗ τ † implies τ † = τ ′a → τ ′r.
But, τ † = int and τ † = τ ′a → τ ′r is a contradiction.

Matthew Fluet CSE-505 2015, Lecture 27 23

Canonical Forms

If ·; · ` v : τa → τr, then v = λx:τa. eb.
Proof:
By cases on the form of v:
I v = Λα::κa. eb.

Derivation of ·; · ` v : τa → τr must be of the form:
.
.
.

·; · ` Λα::κa. eb : ∀α::κa. τz ∀α::κa. τz ≡ τ1
·; · ` Λα::κa. eb : τ1

.

.

.
·; · ` Λα::κa. eb : τn−1 τn−1 ≡ τn

·; · ` Λα::κa. eb : τn τn ≡ τa → τr

·; · ` Λα::κa. eb : τa → τr

Therefore, we can construct the derivation ∀α::κa. τz ≡ τa → τr.
We can find a common reduct: ∀α::κa. τz V∗ τ † and τa → τr V∗ τ †.
Reduction preserves shape: ∀α::κa. τz V∗ τ † implies τ † = ∀α::κa. τ

′
z.

Reduction preserves shape: τa → τr V∗ τ † implies τ † = τ ′a → τ ′r.
But, τ † = ∀α::κa. τ

′
z and τ † = τ ′a → τ ′r is a contradiction.

Matthew Fluet CSE-505 2015, Lecture 27 23

Metatheory

System Fω is type safe.

Where was the ∆ ` τ :: κ judgement used in the proof?

In Type Substitution lemmas, but only in an inessential way.

After weeks of thinking about type systems, kinding seems natural;
but kinding is not required for type safety!

Matthew Fluet CSE-505 2015, Lecture 27 24

Metatheory

System Fω is type safe.

Where was the ∆ ` τ :: κ judgement used in the proof?
In Type Substitution lemmas, but only in an inessential way.

After weeks of thinking about type systems, kinding seems natural;
but kinding is not required for type safety!

Matthew Fluet CSE-505 2015, Lecture 27 24

Metatheory

System Fω is type safe.

Where was the ∆ ` τ :: κ judgement used in the proof?
In Type Substitution lemmas, but only in an inessential way.

After weeks of thinking about type systems, kinding seems natural;
but kinding is not required for type safety!

Matthew Fluet CSE-505 2015, Lecture 27 24

System Fω without Kinds / System F with Type-Level Abstraction and Application

e ::= c | x | λx:τ . e | e e | Λα. e | e [τ]
v ::= c | λx:τ . e | Λα. e
τ ::= int | τ → τ | α | ∀α. τ | λα. τ | τ τ

Γ ::= · | Γ, x:τ
∆ ::= · | ∆, α

Matthew Fluet CSE-505 2015, Lecture 27 25

System Fω without Kinds / System F with Type-Level Abstraction and Application

e ::= c | x | λx:τ . e | e e | Λα. e | e [τ]
v ::= c | λx:τ . e | Λα. e
τ ::= int | τ → τ | α | ∀α. τ | λα. τ | τ τ

Γ ::= · | Γ, x:τ
∆ ::= · | ∆, α

e→cbv e
′

(λx: τ . eb) va →cbv eb[va/x]

ef →cbv e
′
f

ef ea →cbv e
′
f ea

ea →cbv e
′
a

vf ea →cbv vf e
′
a

(Λα. eb) [τa]→cbv eb[τa/α]

ef →cbv e
′
f

ef [τa]→cbv e
′
f [τa]

Matthew Fluet CSE-505 2015, Lecture 27 25

System Fω without Kinds / System F with Type-Level Abstraction and Application

e ::= c | x | λx:τ . e | e e | Λα. e | e [τ]
v ::= c | λx:τ . e | Λα. e
τ ::= int | τ → τ | α | ∀α. τ | λα. τ | τ τ

Γ ::= · | Γ, x:τ
∆ ::= · | ∆, α

∆ ` τ :: X

∆ ` int :: X

∆ ` τa :: X ∆ ` τr :: X

∆ ` τa → τr :: X

α ∈ ∆

∆ ` α :: X

∆, α ` τr :: X

∆ ` ∀α. τr :: X

∆, α ` τb :: X

∆ ` λα. τb :: X

∆ ` τf :: X ∆ ` τa :: X

∆ ` τf τa :: X

Check that free type variables of τ are in ∆, but nothing else.

Matthew Fluet CSE-505 2015, Lecture 27 25

System Fω without Kinds / System F with Type-Level Abstraction and Application

e ::= c | x | λx:τ . e | e e | Λα. e | e [τ]
v ::= c | λx:τ . e | Λα. e
τ ::= int | τ → τ | α | ∀α. τ | λα. τ | τ τ

Γ ::= · | Γ, x:τ
∆ ::= · | ∆, α

τ ≡ τ ′

τ ≡ τ
τ2 ≡ τ1

τ1 ≡ τ2

τ1 ≡ τ2 τ2 ≡ τ3

τ1 ≡ τ3

τa1 ≡ τa2 τr1 ≡ τr2
τa1 → τr1 ≡ τa2 → τr2

τr1 ≡ τr2
∀α. τr1 ≡ ∀α. τr2

τb1 ≡ τb2
λα. τb1 ≡ λα. τb2

τf1 ≡ τf2 τa1 ≡ τa2

τf1 τa1 ≡ τf2 τa2

(λα. τb) τa ≡ τb[α/τa]

Matthew Fluet CSE-505 2015, Lecture 27 25

System Fω without Kinds / System F with Type-Level Abstraction and Application

e ::= c | x | λx:τ . e | e e | Λα. e | e [τ]
v ::= c | λx:τ . e | Λα. e
τ ::= int | τ → τ | α | ∀α. τ | λα. τ | τ τ

Γ ::= · | Γ, x:τ
∆ ::= · | ∆, α

∆; Γ ` e : τ

∆; Γ ` c : int

Γ(x) = τ

∆; Γ ` x : τ

∆ ` τa :: X ∆; Γ, x : τa ` eb : τr

∆; Γ ` λx:τa. eb : τa → τr

∆; Γ ` ef : τa → τr ∆; Γ ` ea : τa

∆; Γ ` ef ea : τr

∆, α; Γ ` eb : τr

∆; Γ ` Λα. eb : ∀α. τr
∆; Γ ` ef : ∀α. τr ∆ ` τa :: X

∆; Γ ` ef [τa] : τr[τa/α]

∆; Γ ` e : τ τ ≡ τ ′

∆; Γ ` e : τ ′

Matthew Fluet CSE-505 2015, Lecture 27 25

System Fω without Kinds / System F with Type-Level Abstraction and Application

This language is type safe.

Matthew Fluet CSE-505 2015, Lecture 27 26

System Fω without Kinds / System F with Type-Level Abstraction and Application

This language is type safe.

I Preservation:
Induction on typing derivation, using substitution lemmas:
I Term Substitution:

if ∆1,∆2; Γ1, x : τx,Γ2 ` e1 : τ and ∆1; Γ1 ` e2 : τx,
then ∆1,∆2; Γ1,Γ2 ` e1[e2/x] : τ .

I Type Substitution:
if ∆1, α,∆2 ` τ1 :: X and ∆1 ` τ2 :: X,
then ∆1,∆2 ` τ1[τ2/α] :: X.

I Type Substitution:
if τ1 ≡ τ2, then τ1[τ/α] ≡ τ2[τ/α].

I Type Substitution:
if ∆1, α,∆2; Γ1,Γ2 ` e1 : τ and ∆1 ` τ2 :: X,
then ∆1,∆2; Γ1,Γ2[τ2/α] ` e1[τ2/α] : τ .

I All straightforward inductions, using various weakening and exchange lemmas.

Matthew Fluet CSE-505 2015, Lecture 27 26

System Fω without Kinds / System F with Type-Level Abstraction and Application

This language is type safe.

I Progress:
Induction on typing derivation, using canonical form lemmas:
I If ·; · ` v : int, then v = c.
I If ·; · ` v : τa → τr, then v = λx:τa. eb.
I If ·; · ` v : ∀α. τr, then v = Λα. eb.

I Using parallel reduction relation.

Matthew Fluet CSE-505 2015, Lecture 27 26

Why Kinds?

Why aren’t kinds required for type safety?

Recall statement of type safety:

If ·; · ` e : τ , then e does not get stuck.

Matthew Fluet CSE-505 2015, Lecture 27 27

Why Kinds?

Why aren’t kinds required for type safety?

Recall statement of type safety:

If ·; · ` e : τ , then e does not get stuck.

Matthew Fluet CSE-505 2015, Lecture 27 27

Why Kinds?

Why aren’t kinds required for type safety?

Recall statement of type safety:

If ·; · ` e : τ , then e does not get stuck.

The typing derivation ·; · ` e : τ
includes definitional-equivalence sub-derivations τ ≡ τ ′,
which are explicit evidence that τ and τ ′ are the same.

I E.g., to show that the “natural” type of the function expression
in an application is equivalent to an arrow type:

...

∆; Γ ` ef : τf

...

τf ≡ τa → τr

∆; Γ ` ef : τa → τr

...

∆; Γ ` ea : τa

∆; Γ ` ef ea : τr

Matthew Fluet CSE-505 2015, Lecture 27 27

Why Kinds?

Why aren’t kinds required for type safety?

Recall statement of type safety:

If ·; · ` e : τ , then e does not get stuck.

The typing derivation ·; · ` e : τ
includes definitional-equivalence sub-derivations τ ≡ τ ′,
which are explicit evidence that τ and τ ′ are the same.

Definitional equivalence (τ ≡ τ ′) and parallel reduction (τ V τ ′)
do not require well-kinded types
(although they preserve the kinds of well-kinded types).

I E.g., (λα. α→ α) (int int) ≡ (int int)→ (int int)

Matthew Fluet CSE-505 2015, Lecture 27 27

Why Kinds?

Why aren’t kinds required for type safety?

Recall statement of type safety:

If ·; · ` e : τ , then e does not get stuck.

The typing derivation ·; · ` e : τ
includes definitional-equivalence sub-derivations τ ≡ τ ′,
which are explicit evidence that τ and τ ′ are the same.

Definitional equivalence (τ ≡ τ ′) and parallel reduction (τ V τ ′)
do not require well-kinded types
(although they preserve the kinds of well-kinded types).

Type (and kind) erasure means that “wrong/bad/meaningless” types
do not affect run-time behavior.

I Ill-kinded types can’t make well-typed terms get stuck.

Matthew Fluet CSE-505 2015, Lecture 27 27

Why Kinds?

Kinds aren’t for type safety:

I Because a typing derivation (even with ill-kinded types),
carries enough evidence to guarantee that expressions don’t get stuck.

Kinds are for type checking:

I Because programmers write programs, not typing derivations.
I Because type checkers are algorithms.

Recall the statement of type checking:

Given ∆, Γ, and e, does there exist τ such that ∆; Γ ` e : τ .

Two issues:

I
∆; Γ ` e : τ τ ≡ τ ′ ∆ ` τ ′ :: ?

∆; Γ ` e : τ ′
is a non-syntax-directed rule

I τ ≡ τ ′ is a non-syntax-directed relation

One non-issue:

I ∆ ` τ :: κ is a syntax-directed relation (STLC “one level up”)

Matthew Fluet CSE-505 2015, Lecture 27 28

Why Kinds?

Kinds aren’t for type safety:

I Because a typing derivation (even with ill-kinded types),
carries enough evidence to guarantee that expressions don’t get stuck.

Kinds are for type checking:

I Because programmers write programs, not typing derivations.
I Because type checkers are algorithms.

Recall the statement of type checking:

Given ∆, Γ, and e, does there exist τ such that ∆; Γ ` e : τ .

Two issues:

I
∆; Γ ` e : τ τ ≡ τ ′ ∆ ` τ ′ :: ?

∆; Γ ` e : τ ′
is a non-syntax-directed rule

I τ ≡ τ ′ is a non-syntax-directed relation

One non-issue:

I ∆ ` τ :: κ is a syntax-directed relation (STLC “one level up”)

Matthew Fluet CSE-505 2015, Lecture 27 28

Why Kinds?

Kinds are for type checking:

I Because programmers write programs, not typing derivations.

I Because type checkers are algorithms.

Recall the statement of type checking:

Given ∆, Γ, and e, does there exist τ such that ∆; Γ ` e : τ .

Two issues:

I
∆; Γ ` e : τ τ ≡ τ ′ ∆ ` τ ′ :: ?

∆; Γ ` e : τ ′
is a non-syntax-directed rule

I τ ≡ τ ′ is a non-syntax-directed relation

One non-issue:

I ∆ ` τ :: κ is a syntax-directed relation (STLC “one level up”)

Matthew Fluet CSE-505 2015, Lecture 27 28

Why Kinds?

Kinds are for type checking:

I Because programmers write programs, not typing derivations.

I Because type checkers are algorithms.

Recall the statement of type checking:

Given ∆, Γ, and e, does there exist τ such that ∆; Γ ` e : τ .

Two issues:

I
∆; Γ ` e : τ τ ≡ τ ′ ∆ ` τ ′ :: ?

∆; Γ ` e : τ ′
is a non-syntax-directed rule

I τ ≡ τ ′ is a non-syntax-directed relation

One non-issue:

I ∆ ` τ :: κ is a syntax-directed relation (STLC “one level up”)

Matthew Fluet CSE-505 2015, Lecture 27 28

Why Kinds?

Kinds are for type checking:

I Because programmers write programs, not typing derivations.

I Because type checkers are algorithms.

Recall the statement of type checking:

Given ∆, Γ, and e, does there exist τ such that ∆; Γ ` e : τ .

Two issues:

I
∆; Γ ` e : τ τ ≡ τ ′ ∆ ` τ ′ :: ?

∆; Γ ` e : τ ′
is a non-syntax-directed rule

I τ ≡ τ ′ is a non-syntax-directed relation

One non-issue:

I ∆ ` τ :: κ is a syntax-directed relation (STLC “one level up”)

Matthew Fluet CSE-505 2015, Lecture 27 28

Type Checking for System Fω

Remove non-syntax-directed rules and relations:

∆; Γ ` e : τ

∆; Γ ` c : int

Γ(x) = τ

∆; Γ ` x : τ

∆ ` τa :: ? ∆; Γ, x : τa ` eb : τr

∆; Γ ` λx:τa. eb : τa → τr

∆, α::κa; Γ ` eb : τr

∆; Γ ` Λα. eb : ∀α::κa. τr

∆; Γ ` ef : τf τf V⇓ τ ′f τ ′f = τ ′fa → τ ′fr
∆; Γ ` ea : τa τa V⇓ τ ′a τ ′fa = τ ′a

∆; Γ ` ef ea : τ ′fr

∆; Γ ` ef : τf τf V⇓ τ ′f τ ′f = ∀α::κfa. τfr
∆ ` τa :: κa κfa = κa

∆; Γ ` ef [τa] : τfr[τa/α]

Matthew Fluet CSE-505 2015, Lecture 27 29

Type Checking for System Fω

Kinds are for type checking.

Given ∆, Γ, and e, does there exist τ such that ∆; Γ ` e : τ .

Metatheory for kind system:

I Well-kinded types don’t get stuck.
I If ∆ ` τ :: κ and τ V∗ τ ′,

then either τ ′ is in (weak-head) normal form (i.e., a type-level “value”)
or τ ′ V τ ′′.

I But, irrelevant for type checking of expressions.

I Well-kinded types terminate.
I If ∆ ` τ :: κ, then there exists τ ′ such that τ V⇓ τ ′.
I Proof is similar to that of termination of STLC.

Type checking for System Fω is decidable.

Matthew Fluet CSE-505 2015, Lecture 27 30

Type Checking for System Fω

Kinds are for type checking.

Given ∆, Γ, and e, does there exist τ such that ∆; Γ ` e : τ .

Metatheory for kind system:
I Well-kinded types don’t get stuck.

I If ∆ ` τ :: κ and τ V∗ τ ′,
then either τ ′ is in (weak-head) normal form (i.e., a type-level “value”)
or τ ′ V τ ′′.

I Proofs by Progress and Preservation on kinding and parallel reduction derivations.

I But, irrelevant for type checking of expressions.

I Well-kinded types terminate.
I If ∆ ` τ :: κ, then there exists τ ′ such that τ V⇓ τ ′.
I Proof is similar to that of termination of STLC.

Type checking for System Fω is decidable.

Matthew Fluet CSE-505 2015, Lecture 27 30

Type Checking for System Fω

Kinds are for type checking.

Given ∆, Γ, and e, does there exist τ such that ∆; Γ ` e : τ .

Metatheory for kind system:
I Well-kinded types don’t get stuck.

I If ∆ ` τ :: κ and τ V∗ τ ′,
then either τ ′ is in (weak-head) normal form (i.e., a type-level “value”)
or τ ′ V τ ′′.

I Proofs by Progress and Preservation on kinding and parallel reduction derivations.

I But, irrelevant for type checking of expressions.
If τf V∗ τ ′f “gets stuck” at a type τ ′f that is not an arrow type,
then the application typing rule does not apply
and a typing derivation does not exist.

I Well-kinded types terminate.
I If ∆ ` τ :: κ, then there exists τ ′ such that τ V⇓ τ ′.
I Proof is similar to that of termination of STLC.

Type checking for System Fω is decidable.

Matthew Fluet CSE-505 2015, Lecture 27 30

Type Checking for System Fω

Kinds are for type checking.

Given ∆, Γ, and e, does there exist τ such that ∆; Γ ` e : τ .

Metatheory for kind system:
I Well-kinded types don’t get stuck.

I If ∆ ` τ :: κ and τ V∗ τ ′,
then either τ ′ is in (weak-head) normal form (i.e., a type-level “value”)
or τ ′ V τ ′′.

I But, irrelevant for type checking of expressions.

I Well-kinded types terminate.
I If ∆ ` τ :: κ, then there exists τ ′ such that τ V⇓ τ ′.
I Proof is similar to that of termination of STLC.

Type checking for System Fω is decidable.

Matthew Fluet CSE-505 2015, Lecture 27 30

Type Checking for System Fω

Kinds are for type checking.

Given ∆, Γ, and e, does there exist τ such that ∆; Γ ` e : τ .

Metatheory for kind system:
I Well-kinded types don’t get stuck.

I If ∆ ` τ :: κ and τ V∗ τ ′,
then either τ ′ is in (weak-head) normal form (i.e., a type-level “value”)
or τ ′ V τ ′′.

I But, irrelevant for type checking of expressions.

I Well-kinded types terminate.
I If ∆ ` τ :: κ, then there exists τ ′ such that τ V⇓ τ ′.
I Proof is similar to that of termination of STLC.

Type checking for System Fω is decidable.

Matthew Fluet CSE-505 2015, Lecture 27 30

Type Checking for System Fω

Kinds are for type checking.

Given ∆, Γ, and e, does there exist τ such that ∆; Γ ` e : τ .

Metatheory for kind system:
I Well-kinded types don’t get stuck.

I If ∆ ` τ :: κ and τ V∗ τ ′,
then either τ ′ is in (weak-head) normal form (i.e., a type-level “value”)
or τ ′ V τ ′′.

I But, irrelevant for type checking of expressions.

I Well-kinded types terminate.
I If ∆ ` τ :: κ, then there exists τ ′ such that τ V⇓ τ ′.
I Proof is similar to that of termination of STLC.

Type checking for System Fω is decidable.

Matthew Fluet CSE-505 2015, Lecture 27 30

Going Further

This is just the tip of an iceberg.
I Pure type systems

I Why stop at three levels of expressions (terms, types, and kinds)?
I Allow abstraction and application at the level of kinds,

and introduce sorts to classify kinds.
I Why stop at four levels of expressions?
I . . .
I “For programming languages, however, three levels have proved sufficient.”

Matthew Fluet CSE-505 2015, Lecture 27 31

