Concurrency and Parallelism

» PL support for concurrency/parallelism a huge topic
» Increasingly important (not traditionally in PL courses)
> Lots of active research as well as decades-old work
CSE-505: Programming Languages
» We'll just do explicit threads plus:
» Shared memory (locks and transactions)

Lecture 20 — Shared-Memory Parallelism and » Futures
Concurrency » Synchronous message passing (Concurrent ML)
» We'll skip

» Process calculi (foundational message-passing)
Asynchronous methods, join calculus, ...

Zach Tatlock »
ach Tatloc » Data-parallel languages (e.g., NESL or ZPL)
> .

2015
» Mostly in ML syntax (inference rules where convenient)
» Even though current Caml implementation has threads but not
parallelism
Zach Tatlock CSE-505 2015, Lecture 20 2
Concurrency vs. Parallelism Threads

(Terminology not universal, but distinction paramount): High-level: “Communicating sequential processes”

Concurrency is about correctly and efficiently managing access to Low-level: “Multiple stacks plus communication”

shared resources

» Examples: operating system, shared hashtable, version control From Caml’s thread.mli:

» Key challenge is responsiveness to external events that may

X . type t (*thread handle; remember we’re in module Threadx)
arrive asynchronously and/or simultaneously

)) . val create : (’a->’b) -> ’a -> t (* run new thread)

> Often provide responsiveness via threads val self : unit -> t (* what thread is executing this? *)

» Often focus on synchronization

The code for a thread is in a closure (with hidden fields) and

Parallelism is about using extra computational resources to do Thread.create actually spawns the thread
more useful work per unit time

» Examples: scientific computing, most graphics, a lot of servers Most languages make the same distinction, e.g., Java:
» Key challenge is Amdahl’s Law (no sequential bottlenecks) » Create a Thread object (data in fields) with a run method
» Often provide parallelism via threads on different processors » Call its start method to actually spawn the thread

and/or to mask 1/0 latency

Zach Tatlock CSE-505 2015, Lecture 20 3 Zach Tatlock CSE-505 2015, Lecture 20

Why use threads? One possible formalism (omitting thread-ids)

v

Program state is one heap and multiple expressions
One OR more of:

1. Performance (multiprocessor or mask 1/0O latency)

v

Any e; might “take the next step” and potentially spawn a
thread

2. Isolation (separate errors or responsiveness) A value in the “thread-pool” is removable

v

3. Natural code structure (1 stack awkward)

» Nondeterministic with interleaving granularity determined by

rules

It's not just performance
Some example rules for H;e — H’;e’; 0 (where o0 ::= - | e):
n the other hand, it seems fundamentally harder (for

0 ' . y (H;ex — H';el50
programmers, language implementors, language designers, —

H;!l - H; H(l);- H;ei e2 — H';e] ez;0

semanticists) to have multiple threads of execution

H; spawn(vy,v2) — H;0; (v1 v2)

Zach Tatlock CSE-505 2015, Lecture 20 5 Zach Tatlock CSE-505 2015, Lecture 20
Formalism continued Equivalence just changed
The H;e — H’;€e’; 0 judgment is just a helper-judgment for Expressions equivalent in a single-threaded world are not
H;T — H';T' where T ::= - | ;T necessarily equivalent in a multithreaded context!
’ 4
H;e — H';e’s- Example in Caml:

4 /
Hieq;...5e5...5e, > H'eq5...5€'5...5ep .
let x, y = ref 0, ref 0 in

H;e — H';e'se” create (fun () -> if (!y)=1 then x:=(!x)+1) ();
create (fun () -> if (!'x)=1 then y:=(ly)+1) (O (*x 1 %)

/ U4 / 14
H'ey5...5e5...5en — H'jeq5...5€'5...5€eps5¢€
Can we replace line (1) with:

H;e;...5€;-1505€415...5en — Hje15...5€,-15€;415...5€n create (fun () -> y:=(!y)+1; if (!x)<>1 then y:=('y)-1) O

Program termination: Hj - For more compiler gotchas, see “Threads cannot be implemented
as a library” by Hans-J. Boehm in PLDI2005

» Example: C bit-fields or other adjacent fields

Zach Tatlock CSE-505 2015, Lecture 20 7 Zach Tatlock CSE-505 2015, Lecture 20

Communication Join

If threads do nothing other threads need to “see,” we are done “Fork-join" parallelism a simple approach good for “farm out
» Best to do as little communication as possible subcomputations then merge results”
» E.g., do not mutate shared data unnecessarily, or hide (* suspend caller until/unless arg terminates *)
mutation behind easier-to-use interfaces val join : t -> unit

Common pattern:

One way to communicate: Shared memory
val fork_join : (’a -> ’b array) -> (* divider x)

» One thread writes to a ref, another reads it
_]] Cb > ’¢c) > (* conqueror *)
» Sounds nasty with pre-emptive scheduling (’c array -> ’d) -> (* merger)
» Hence synchronization mechanisms ra => (% data *)
» Taught in O/S for historical reasons! 'q

» Fundamentally about restricting interleavings _
Apply the second argument to each element of the b array in

parallel, then use third argument after they are done.

See 1lec20code.ml for implementation and related patterns
(untested)

Zach Tatlock CSE-505 2015, Lecture 20 Zach Tatlock CSE-505 2015, Lecture 20

Futures Locks (a.k.a. mutexes)

A different model for explicit parallelism without explicit shared

memory or message sends (* mutex.mli *)

type t (* a mutex *)

val create : unit -> t

val lock : t -> unit (* may block *)
val unlock : t -> unit

» Easy to implement on top of either, but most models are
easily inter-implementable

» See ML file for implementation over shared memory

J 3 .
type “a promise;))) Caml locks do not have two common features:
val future : (unit -> ’a) -> ’a promise (*do in parallelx)
.) 1 -)
val force : ’a promise -> ’a (+may block#) » Reentrancy (changes semantics of lock and unlock)
. L 2 . '
Essentially fork/join with a value returned? » Banning nonholder release (changes semantics of unlock)

» Returning a value more functional

> Less structured than “cobegin sl; s2; ... sn” form of fork/join Also want condition variables (condition.mli), not discussed here

Zach Tatlock CSE-505 2015, Lecture 20 Zach Tatlock CSE-505 2015, Lecture 20

Using locks Getting it wrong

Among infinite correct idioms using locks (and more incorrect Races can result from too little synchronization
ones), the most common: » Data races: simultaneous read-write or write-write of same
» Determine what data must be “kept in sync” memory location
. . . » L f PL work in last 1 rs on n |
» Always acquire a lock before accessing that data and release it ots o work in last 15 years on types and tools to
¢ q prevent/detect
arterwards » Provided language has some guarantees, may not be a bug
» Have a partial order on all locks and if a thread holds m it » Canonical example: parallel search and “done” bits
can acquire ma only if m; < ma > But few language have such guarantees (!)

See canonical “bank account” example in lec20code .ml » Higher-level races: much tougher to prevent in the language

» Amount of correct nondeterminism inherently app-specific

Coarser locking (more data with same lock) trades off parallelism

with synchronization Deadlock can result from too much synchronization
» Under-synchronizing the hallmark of concurrency incorrectness » Cycle of threads waiting for someone else to do something
» Over-synchronizing the hallmark of concurrency inefficiency » Easy to detect dynamically with locks, but then what?

Zach Tatlock CSE-505 2015, Lecture 20 13 Zach Tatlock CSE-505 2015, Lecture 20
The Evolution Problem Atomic Blocks (Software Transactions)
Write a new function that needs to update ol and 02 together. Java-like: atomic { s }

» What locks should you acquire? In what order?

: -like: ic : it -> ->
» There may be no answer that avoids races and deadlocks Caml-like: atomic : (unit a) a

without breaking old code. (Need a stricter partial order.
& (P) Execute the body/thunk as though no interleaving from other

. threads
See xfer code in 1lec20code.ml _ .
» Allow parallelism unless there are actual run-time memory

Real example from Java: conflicts (detect and abort/retry)

» Convenience of coarse-grained locking with parallelism of
synchronized append(StringBuffer sb) { fine-grained locking (or better)
int len = sb.length(); //synchronized
if (this.count+len > this.value.length) this.expand(...);
sb.getChars(0,len,this.value,this.count); //synchronized

» But language implementation has to do more to detect
conflicts (much like garbage collection is convenient but has
costs)

}' . Most research on implementation (preserve parallelism unless there
are conflicts), but this is not an implementation course
Undocumented in 1.4; in 1.5 caller synchronizes on sb if necessary

Zach Tatlock CSE-505 2015, Lecture 20 15 Zach Tatlock CSE-505 2015, Lecture 20

Transactions make things easier Memory models

Problems like append and xfer become trivial A memory-consistency model (or just memory model) for a
concurrent shared-memory language specifies “which write a read
So does mixing coarse-grained and fine-grained operations (e.g., can see”

hashtable lookup and hashtable resize)
The gold standard is sequential consistency (Lamport): “the
Transactions are great, but not a panacea: results of any execution is the same as if the operations of all the
» Application-level races can remain processors were executed in some sequential order, and the
operations of each individual processor appear in this sequence in

» Application-level deadlock can remain . .
PP the order specified by its program”

» Implementations generally try-and-abort, which is hard for

launch missiles” (e.g., 1/0) Under sequential consistency, this assert cannot fail, despite data

» Many software implementations provide a weaker and races:
under-specified semantics if there are data races with
non-transactions

let x, y = ref 0, ref O

let _ = create (fun () -> x :=1; y :=1) O

let _ = create (fun () -> let r = !y in let s = !x in
assert(s>=r) ()

» Memory-consistency model questions remain and may be
worse than with locks...

Zach Tatlock CSE-505 2015, Lecture 20 17 Zach Tatlock CSE-505 2015, Lecture 20
Relaxed memory models Relaxed # Nothing
Modern imperative and OO languages do not promise sequential But (especially in a safe language) have to promise something
consistency (if they say anything at all) » When is code “correctly synchronized”?
» The hardware makes it prohibitively expensive » What can a compiler do in the presence of races?
» Renders unsound almost every compiler optimization » Cannot seg-fault Java or compromise the SecurityManager
Example: common-subexpression elimination » Can a race between x:=1 and !x cause the latter to produce a

. value “out of thin air"? (Java: no)
Initially a==0 and b==0 o)
Thread 1 Thread 2 The definitions are very complicated and programmers can usually

ignore them, but do not assume sequential consistency

x=atb; b=1;

y=a; a=1; _)

Z=a+b: See also Java's volatiles and C++'s atomics
b

assert(z>=y) ;

Zach Tatlock CSE-505 2015, Lecture 20 19 Zach Tatlock CSE-505 2015, Lecture 20

In real languages Mostly functional wins again

» Java: If every sequentially consistent execution of program P If most of your data is immutable and most code is known to

is data-race free, then every execution of program P is access only immutable data, then most code can be optimized
equivalent to some sequentially consistent execution without any concern for the memory model

» Not the definition, a theorem about the definition

» Actual definition very complicated, balancing needs of code So can afford to be very conservative for the rest

writers, compiler optimizers, and hardware

» Complicated by constructors and final fields

o L Example: A Caml program that uses mutable memory only for
> Not defined in terms of “list of acceptable optimizations

shared-memory communication

» C++: Roughly, any data race is as undefined as an

array-bounds error. No such thing as a benign data race and Non-example: Java, which uses mutable memory for almost

no guarantees if you have one. (In practice, programmers will everything
still assume things, like they do with casts.) » Compilers try to figure out what is thread-local (again avoids
» But same theorem as Java: “DRF = SC” memory-model issues), but it's not easy

» Most languages: Eerily silent
» Arguably the greatest current failure of programming languages

Zach Tatlock CSE-505 2015, Lecture 20 Zach Tatlock CSE-505 2015, Lecture 20
Ordering and atomic Ordering and atomic
Initially x==0 and y== Initially x==0 and y==
Thread 1 Thread 2 Thread 1 Thread 2
x=1; r=y; x=1; r=y;
sync (1k) {} sync (1k) {}
y:l; S=X; y:l; S=X;
Can s be less than r? Can s be less than r?7
Yes In Java, no

» Notion of “happens-before” ordering between release and
acquire of the same lock

Zach Tatlock CSE-505 2015, Lecture 20 Zach Tatlock CSE-505 2015, Lecture 20

Ordering and atomic

Initially x==0 and y==

Thread 1 Thread 2
x=1; r=y;
atomic{} atomic{}
y=1; S=X;

Can s be less than r?

Nobody really knows, but often yes (!) in prototype
implementations

Zach Tatlock CSE-505 2015, Lecture 20

