
CSE-505: Programming Languages

Lecture 18 — Existential Types

Zach Tatlock
2015

Back to our goal

Understand this interface and its nice properties:

type ’a mylist;

val mt_list : ’a mylist

val cons : ’a -> ’a mylist -> ’a mylist

val decons : ’a mylist -> ((’a * ’a mylist) option)

val length : ’a mylist -> int

val map : (’a -> ’b) -> ’a mylist -> ’b mylist

So far, we can do it if we expose the definition of mylist

mt_list : ∀α.µβ.unit + (α ∗ β)
cons: ∀α.α→ (µβ.unit + (α ∗ β))→ (µβ.unit + (α ∗ β))
...

Zach Tatlock CSE-505 2015, Lecture 18 2

Abstract Types

Define an interface such that well-typed list-clients cannot break
the list-library abstraction

I Hide the concrete definition of type mylist

Why?

I So clients cannot “forge” lists — always created by library

I So clients cannot rely on the concrete implementation, which
lets us change the library in ways that we know will not break
clients

To simplify the discussion very slightly, consider just myintlist

I mylist is a type constructor, a function that given a type
gives a type

Zach Tatlock CSE-505 2015, Lecture 18 3

The Type-Application Approach

We can hide myintlist via type abstraction (like we hid
file-handles):

(Λα. λx:τ1. list client) [τ2] list library

where:

I τ1 is { mt : α,
cons : int→ α→ α,
decons : α→ unit + (int ∗ α),
. . .

}
I τ2 is µβ.unit + (int ∗ β)

I list client projects from record x to get list functions

I list library is the record of list functions

Zach Tatlock CSE-505 2015, Lecture 18 4

Evaluating ADT via Type Application

(Λα. λx:τ1. list client) [τ2] list library

Plus:

I Effective

I Straightforward use of System F

Minus:
I The library does not say myintlist should be abstract

I It relies on clients to abstract it
I Can be “fixed” with a “structure inversion” (passing client to

the library), but cure arguably worse than disease

I Different list-libraries have different types, so can’t choose one
at run-time or put them in a data structure:

I if n>10 then hashset_lib else listset_lib

I Wish: values produced by different libraries must have different
types, but libraries can have the same type

Zach Tatlock CSE-505 2015, Lecture 18 5

The OO Approach

Use recursive types and records:

mt list : µβ. { cons : int→ β,
decons : unit→ (unit + (int ∗ β)),
. . . }

mt list is an object — a record of functions plus private data

The cons field holds a function that returns a new record of
functions

Implementation uses recursion and “hidden fields” in an essential
way

I In ML, free variables are the “hidden fields”
I In OO, private fields or abstract interfaces “hide fields”

(See Caml code for a slightly different example)
Zach Tatlock CSE-505 2015, Lecture 18 6

Evaluating the Closure/OO Approach

Plus:

I It works in popular languages (no explicit type variables)

I Different list-libraries have the same type

Minus:

I Changed the interface (no big deal?)

I Fails on “strong” binary ((n > 1)-ary) operations
I Have to write append in terms of cons and decons
I Can be impossible

(silly example: see type t2 in ML file)

Zach Tatlock CSE-505 2015, Lecture 18 7

The Existential Approach

Achieved our goal two different ways, but each had drawbacks

There is a direct way to model ADTs that captures their essence
quite nicely: types of the form ∃α.τ

Next slide has a formalization, but we’ll mostly focus on

I The intuition

I How to use the idea to encode closures (e.g., for callbacks)

Why don’t many real PLs have existential types?

I Because other approaches kinda work?

I Because modules work well even if “second-class”?

I Because have only been well-understood since the mid-1980s
and “tech transfer” takes forever and a day?

Zach Tatlock CSE-505 2015, Lecture 18 8

Existential Types

e ::= . . . | pack τ, e as ∃α.τ | unpack e as α, x in e
v ::= . . . | pack τ, v as ∃α.τ
τ ::= . . . | ∃α.τ

e→ e′

pack τ1, e as ∃α.τ2 → pack τ1, e
′ as ∃α.τ2

e→ e′

unpack e as α, x in e2 → unpack e′ as α, x in e2

unpack (pack τ1, v as ∃α.τ2) as α, x in e2 → e2[τ1/α][v/x]

∆; Γ ` e : τ ′[τ/α]

∆; Γ ` pack τ, e as ∃α.τ ′ : ∃α.τ ′

∆; Γ ` e1 : ∃α.τ ′ ∆, α; Γ, x:τ ′ ` e2 : τ ∆ ` τ α 6∈ ∆

∆; Γ ` unpack e1 as α, x in e2 : τ

Zach Tatlock CSE-505 2015, Lecture 18 9

List library with ∃
The list library is an existential package:

pack (µα.unit + (int ∗ α)), list library as
∃β. { empty : β,

cons : int→ β → β,
decons : β → unit + (int ∗ β),
. . . }

Another library would “pack” a different type and implementation,
but have the same overall type

Binary operations work fine, e.g., append : β → β → β

Libraries are first-class, but a use of a library must be in a scope
that “remembers which β” describes data from that library

I (If use two libraries in same scope, can’t pass the result of
one’s cons to the other’s decons because the two libraries will
use different type variables)

Zach Tatlock CSE-505 2015, Lecture 18 10

Closures and Existentials

There’s a deep connection between existential types and how
closures are used/compiled

I “Call-backs” are the canonical example

Caml:

I Interface:

val onKeyEvent : (int -> unit) -> unit

I Implementation:

let callBacks : (int -> unit) list ref = ref []

let onKeyEvent f = callBacks := f::(!callBacks)

let keyPress i = List.iter (fun f -> f i) !callBacks

Each registered function can have a different environment (free
variables of different types), yet every function has type int->unit

Zach Tatlock CSE-505 2015, Lecture 18 11

Closures and Existentials

C:
typedef struct {void* env; void (*f)(void*,int);} * cb_t;

I Interface: void onKeyEvent(cb_t);

I Implementation (assuming a list library):

list_t callBacks = NULL;

void onKeyEvent(cb_t cb){callBacks=cons(cb,callBacks);}

void keyPress(int i) {

for(list_t lst=callBacks; lst; lst=lst->tl)

lst->hd->f(lst->hd->env, i);

}

Standard problems using subtyping (t*≤void*) instead of α:

I Client must provide an f that downcasts argument back to t*

I Typechecker lets library pass any void* to f

Zach Tatlock CSE-505 2015, Lecture 18 12

Closures and Existentials

A type-safe variant of C could have ∃α.τ and let programmers
code up closures:
typedef struct {<‘a> ‘a env; void (*f)(‘a,int);} * cb_t;

I Interface: void onKeyEvent(cb_t);

I Implementation (assuming a list library):

list_t<cb_t> callBacks = NULL;

void onKeyEvent(cb_t cb){callBacks=cons(cb,callBacks);}

void keyPress(int i) {

for(list_t<cb_t> lst=callBacks; lst; lst=lst->tl) {

let {<‘a> x, y} = *lst->hd; // pattern-match

y(x,i); // no other argument to y typechecks!

}

}

Not shown: To create a cb_t, the “the types must match up”

Zach Tatlock CSE-505 2015, Lecture 18 13

