Where are we

- System F gave us type abstraction
 - code reuse
 - strong abstractions
 - different from real languages (like ML), but the right foundation
- ► This lecture: Recursive Types (different use of type variables)
 - For building unbounded data structures
 - Turing-completeness without a fix primitive
- ▶ Future lecture (?): Existential types (dual to universal types)

CSE-505 2015, Lecture 17

- First-class abstract types
- Closely related to closures and objects
- ► Future lecture (?): Type-and-effect systems

Recursive Types

We could add list types $(list(\tau))$ and primitives ([], ::, match), but we want user-defined recursive types

CSE-505: Programming Languages

Lecture 17 — Recursive Types

Zach Tatlock

2015

Intuition:

type intlist = Empty | Cons int * intlist

Which is roughly:

type intlist = unit + (int * intlist)

- Seems like a named type is unavoidable
 - But that's what we thought with let rec and we used fix
- Analogously to fix $\lambda x. e$, we'll introduce $\mu \alpha. \tau$
 - Each lpha "stands for" entire $\mu lpha . au$

Mighty μ

Zach Tatlock

In au, type variable lpha stands for $\mu lpha . au$, bound by μ

Examples (of many possible encodings):

- int list (finite or infinite): $\mu \alpha$.unit + (int * α)
- int list (infinite "stream"): $\mu \alpha .int * \alpha$
 - Need laziness (thunking) or mutation to build such a thing
 - Under CBV, can build values of type $\mu \alpha.unit
 ightarrow (int * lpha)$
- int list list: $\mu \alpha$.unit + (($\mu \beta$.unit + (int * β)) * α)

Examples where type variables appear multiple times:

- int tree (data at nodes): $\mu \alpha$.unit + (int * $\alpha * \alpha$)
- int tree (data at leaves): $\mu \alpha . int + (\alpha * \alpha)$

Using μ types

How do we build and use int lists $(\mu \alpha.unit + (int * \alpha))$?

We would like:

Using μ types

How do we build and use int lists $(\mu \alpha . unit + (int * \alpha))$?

We would like:

empty list = A(())
 Has type: μα.unit + (int * α)

Zach Tatlock

CSE-505 2015, Lecture 17

Using μ types

How do we build and use int lists $(\mu \alpha . unit + (int * \alpha))$?

We would like:

- empty list = A(())
 Has type: μα.unit + (int * α)
- cons = λx :int. λy :($\mu \alpha$.unit + (int * α)). B((x, y)) Has type:

```
\mathsf{int} \to (\mu\alpha.\mathsf{unit} + (\mathsf{int}*\alpha)) \to (\mu\alpha.\mathsf{unit} + (\mathsf{int}*\alpha))
```

Using μ types

Zach Tatlock

How do we build and use int lists $(\mu \alpha . unit + (int * \alpha))$?

CSE-505 2015, Lecture 17

We would like:

- empty list = A(())Has type: $\mu \alpha$.unit + (int * α)
- ► cons = λx :int. λy :($\mu \alpha$.unit + (int * α)). B((x, y)) Has type: int $\rightarrow (\mu \alpha$.unit + (int * α)) $\rightarrow (\mu \alpha$.unit + (int * α))
- ▶ head = $\lambda x:(\mu \alpha.unit + (int * \alpha)).$ match x with A₋. A(()) | By. B(y.1) Has type: $(\mu \alpha.unit + (int * \alpha)) \rightarrow (unit + int)$

Using μ types

How do we build and use int lists $(\mu \alpha.unit + (int * \alpha))$?

We would like:

empty list = A(()) Has type: µα.unit + (int * α)
cons = λx:int. λy:(µα.unit + (int * α)). B((x, y)) Has type: int → (µα.unit + (int * α)) → (µα.unit + (int * α))
head = λx:(µα.unit + (int * α)). match x with A₋. A(()) | By. B(y.1) Has type: (µα.unit + (int * α)) → (unit + int)
tail = λx:(µα.unit + (int * α)). match x with A₋. A(()) | By. B(y.2) Has type: (µα.unit + (int * α)) → (unit + µα.unit + (int * α))

Using μ types

How do we build and use int lists $(\mu \alpha . unit + (int * \alpha))$?

We would like:

> empty list = A(())
Has type: $\mu\alpha.unit + (int * \alpha)$ > cons = $\lambda x:int. \lambda y:(\mu\alpha.unit + (int * \alpha)). B((x, y))$ Has type:
int $\rightarrow (\mu\alpha.unit + (int * \alpha)) \rightarrow (\mu\alpha.unit + (int * \alpha))$ > head = $\lambda x:(\mu\alpha.unit + (int * \alpha)). match x with A_{-}. A(()) | By. B(y.1)$ Has type: $(\mu\alpha.unit + (int * \alpha)) \rightarrow (unit + int)$ > tail = $\lambda x:(\mu\alpha.unit + (int * \alpha)). match x with A_{-}. A(()) | By. B(y.2)$ Has type: $(\mu\alpha.unit + (int * \alpha)) \rightarrow (unit + \mu\alpha.unit + (int * \alpha))$

But our typing rules allow none of this (yet)

			<i>51</i> 0	(5)	
Zach Tatlock	CSE-505 2015, Lecture 17	5	Zach Tatlock	CSE-505 2015, Lecture 17	

Using μ types (continued)

For empty list = A(()), one typing rule applies:

$$rac{\Delta; \Gamma dash e: au_1 \qquad \Delta dash au_2}{\Delta; \Gamma dash \mathsf{A}(e): au_1 + au_2}$$

So we could show $\Delta; \Gamma \vdash \mathsf{A}(()) : \mathsf{unit} + (\mathsf{int} * (\mu \alpha.\mathsf{unit} + (\mathsf{int} * \alpha)))$ (since $FTV(\mathsf{int} * \mu \alpha.\mathsf{unit} + (\mathsf{int} * \alpha)) = \emptyset \subseteq \Delta$)

Using μ types (continued)

For empty list = A(()), one typing rule applies:

$$rac{\Delta;\Gammadasherma:e: au_1}{\Delta;\Gammadasherma:A(e): au_1+ au_2}$$

So we could show $\Delta; \Gamma \vdash \mathsf{A}(()) : \mathsf{unit} + (\mathsf{int} * (\mu \alpha.\mathsf{unit} + (\mathsf{int} * \alpha)))$ (since $FTV(\mathsf{int} * \mu \alpha.\mathsf{unit} + (\mathsf{int} * \alpha)) = \emptyset \subseteq \Delta$)

But we want $\mu \alpha$.unit + (int * α)

Using μ types (continued)

For empty list = A(()), one typing rule applies:

$$\frac{\Delta; \Gamma \vdash e : \tau_1 \quad \Delta \vdash \tau_2}{\Delta; \Gamma \vdash \mathsf{A}(e) : \tau_1 + \tau_2}$$

So we could show $\Delta; \Gamma \vdash \mathsf{A}(()) : \mathsf{unit} + (\mathsf{int} * (\mu \alpha.\mathsf{unit} + (\mathsf{int} * \alpha)))$ (since $FTV(\mathsf{int} * \mu \alpha.\mathsf{unit} + (\mathsf{int} * \alpha)) = \emptyset \subseteq \Delta$)

But we want $\mu \alpha$.unit + (int * α)

Notice: unit + (int * ($\mu\alpha$.unit + (int * α))) is (unit + (int * α))[($\mu\alpha$.unit + (int * α))/ α]

Using μ types (continued)

For empty list = A(()), one typing rule applies:

$$\frac{\Delta; \Gamma \vdash e: \tau_1 \quad \Delta \vdash \tau_2}{\Delta; \Gamma \vdash \mathsf{A}(e): \tau_1 + \tau_2}$$

So we could show $\Delta; \Gamma \vdash \mathsf{A}(()) : \mathsf{unit} + (\mathsf{int} * (\mu \alpha.\mathsf{unit} + (\mathsf{int} * \alpha)))$ (since $FTV(\mathsf{int} * \mu \alpha.\mathsf{unit} + (\mathsf{int} * \alpha)) = \emptyset \subseteq \Delta$)

But we want $\mu \alpha$.unit + (int * α)

Notice: unit + (int * ($\mu\alpha$.unit + (int * α))) is (unit + (int * α))[($\mu\alpha$.unit + (int * α))/ α]

The key: Subsumption — recursive types are equal to their "unrolling"

Zach Tatlock

CSE-505 2015, Lecture 17

Return of subtyping

Can use *subsumption* and these subtyping rules:

ROLL

UNROLL

 $\overline{ au[(\mulpha. au)/lpha]} \leq \mu lpha. au \qquad \overline{\mu lpha. au} \leq au[(\mu lpha. au)/lpha]$

Subtyping can "roll" or "unroll" a recursive type

Can now give empty-list, cons, and head the types we want: Constructors use roll, destructors use unroll

Notice how little we did: One new form of type $(\mu lpha. au)$ and two new subtyping rules

(Skipping: Depth subtyping on recursive types is very interesting)

Metatheory

Zach Tatlock

Despite additions being minimal, must reconsider how recursive types change STLC and System F:

CSE-505 2015, Lecture 17

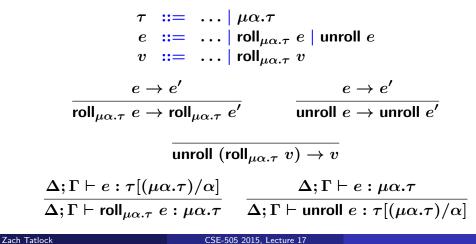
- Erasure (no run-time effect): unchanged
- ► Termination: changed!
 - $\blacktriangleright \ (\lambda x: \mu \alpha. \alpha \to \alpha. \ x \ x) (\lambda x: \mu \alpha. \alpha \to \alpha. \ x \ x)$
 - In fact, we're now Turing-complete without fix (actually, can type-check every closed λ term)
- Safety: still safe, but Canonical Forms harder
- Inference: Shockingly efficient for "STLC plus µ" (A great contribution of PL theory with applications in OO and XML-processing languages)

Syntax-directed μ types

Recursive types via subsumption "seems magical"

Instead, we can make programmers tell the type-checker where/how to roll and unroll

"lso-recursive" types: remove subtyping and add expressions:



Syntax-directed, continued

Type-checking is syntax-directed / No subtyping necessary

Canonical Forms, Preservation, and Progress are simpler

This is an example of a key trade-off in language design:

- Implicit typing can be impossible, difficult, or confusing
- Explicit coercions can be annoying and clutter language with no-ops
- Most languages do some of each

Anything is decidable if you make the code producer give the implementation enough "hints" about the "proof"

CSE-505 2015, Lecture 17

ML datatypes revealed

How is $\mu \alpha . \tau$ related to type t = Foo of int | Bar of int * t

Constructor use is a "sum-injection" followed by an implicit roll

- So Foo e is really $roll_t Foo(e)$
- That is, Foo e has type t (the rolled type)

A pattern-match has an *implicit unroll*

• So match e with... is really match unroll e with...

This "trick" works because different recursive types use different tags – so the type-checker knows *which* type to roll to

11

Zach Tatlock