
CSE-505: Programming Languages

Lecture 9 — Simply Typed Lambda Calculus

Zach Tatlock
2015

Types

Major new topic worthy of several lectures: Type systems

I Continue to use (CBV) Lambda Caluclus as our core model

I But will soon enrich with other common primitives

This lecture:

I Motivation for type systems
I What a type system is designed to do and not do

I Definition of stuckness, soundness, completeness, etc.

I The Simply-Typed Lambda Calculus
I A basic and natural type system
I Starting point for more expressiveness later

Next lecture:

I Prove Simply-Typed Lambda Calculus is sound

Zach Tatlock CSE-505 2015, Lecture 9 2

Review: L-R CBV Lambda Calculus

e ::= λx. e | x | e e
v ::= λx. e

Implicit systematic renaming of bound variables
I α-equivalence on expressions (“the same term”)

e→ e′

(λx. e) v → e[v/x]

e1 → e′1
e1 e2 → e′1 e2

e2 → e′2
v e2 → v e′2

e1[e2/x] = e3

x[e/x] = e

y 6= x

y[e/x] = y

e1[e/x] = e′1 e2[e/x] = e′2
(e1 e2)[e/x] = e′1 e

′
2

e1[e/x] = e′1 y 6= x y 6∈ FV (e)

(λy. e1)[e/x] = λy. e′1

Zach Tatlock CSE-505 2015, Lecture 9 3

Introduction to Types

Naive thought: More powerful PLs are always better

I Be Turing Complete (e.g., Lambda Calculus or x86 Assembly)

I Have really flexible features (e.g., lambdas)

I Have conveniences to keep programs short

If this is the only metric, types are a step backward

I Whole point is to allow fewer programs
I A “filter” between abstract syntax and compiler/interpreter

I Fewer programs in language means less for a correct
implementation

I So if types are a great idea, they must help with other
desirable properties for a PL...

Zach Tatlock CSE-505 2015, Lecture 9 4

Why types? (Part 1)

1. Catch “simple” mistakes early, even for untested code
I Example: “if” applied to “mkpair”
I Even if some too-clever programmer meant to do it
I Even though decidable type systems must be conservative

2. (Safety) Prevent getting stuck (e.g., x v)
I Ensure execution never gets to a “meaningless” state
I But “meaningless” depends on the semantics
I Each PL typically makes some things type errors (again being

conservative) and others run-time errors

3. Enforce encapsulation (an abstract type)
I Clients can’t break invariants
I Clients can’t assume an implementation
I Requires safety, meaning no “stuck” states that corrupt

run-time (e.g., C/C++)
I Can enforce encapsulation without static types, but types are a

particularly nice way

Zach Tatlock CSE-505 2015, Lecture 9 5

Why types? (Part 1)

1. Catch “simple” mistakes early, even for untested code
I Example: “if” applied to “mkpair”
I Even if some too-clever programmer meant to do it
I Even though decidable type systems must be conservative

2. (Safety) Prevent getting stuck (e.g., x v)
I Ensure execution never gets to a “meaningless” state
I But “meaningless” depends on the semantics
I Each PL typically makes some things type errors (again being

conservative) and others run-time errors

3. Enforce encapsulation (an abstract type)
I Clients can’t break invariants
I Clients can’t assume an implementation
I Requires safety, meaning no “stuck” states that corrupt

run-time (e.g., C/C++)
I Can enforce encapsulation without static types, but types are a

particularly nice way

Zach Tatlock CSE-505 2015, Lecture 9 5

Why types? (Part 1)

1. Catch “simple” mistakes early, even for untested code
I Example: “if” applied to “mkpair”
I Even if some too-clever programmer meant to do it
I Even though decidable type systems must be conservative

2. (Safety) Prevent getting stuck (e.g., x v)
I Ensure execution never gets to a “meaningless” state
I But “meaningless” depends on the semantics
I Each PL typically makes some things type errors (again being

conservative) and others run-time errors

3. Enforce encapsulation (an abstract type)
I Clients can’t break invariants
I Clients can’t assume an implementation
I Requires safety, meaning no “stuck” states that corrupt

run-time (e.g., C/C++)
I Can enforce encapsulation without static types, but types are a

particularly nice way

Zach Tatlock CSE-505 2015, Lecture 9 5

Why types? (Part 2)

4. Assuming well-typedness allows faster implementations
I Smaller interfaces enable optimizations
I Don’t have to check for impossible states
I Orthogonal to safety (e.g., C/C++)

5. Syntactic overloading
I Have symbol lookup depend on operands’ types
I Only modestly interesting semantically
I Late binding (lookup via run-time types) more interesting

6. Detect other errors via extensions
I Often via a “type-and-effect” system
I Deep similarities in analyses suggest type systems a good way

to think-about/define/prove what you’re checking
I Uncaught exceptions, tainted data, non-termination, IO

performed, data races, dangling pointers, ...

We’ll focus on (1), (2), and (3) and maybe (6)

Zach Tatlock CSE-505 2015, Lecture 9 6

Why types? (Part 2)

4. Assuming well-typedness allows faster implementations
I Smaller interfaces enable optimizations
I Don’t have to check for impossible states
I Orthogonal to safety (e.g., C/C++)

5. Syntactic overloading
I Have symbol lookup depend on operands’ types
I Only modestly interesting semantically
I Late binding (lookup via run-time types) more interesting

6. Detect other errors via extensions
I Often via a “type-and-effect” system
I Deep similarities in analyses suggest type systems a good way

to think-about/define/prove what you’re checking
I Uncaught exceptions, tainted data, non-termination, IO

performed, data races, dangling pointers, ...

We’ll focus on (1), (2), and (3) and maybe (6)

Zach Tatlock CSE-505 2015, Lecture 9 6

Why types? (Part 2)

4. Assuming well-typedness allows faster implementations
I Smaller interfaces enable optimizations
I Don’t have to check for impossible states
I Orthogonal to safety (e.g., C/C++)

5. Syntactic overloading
I Have symbol lookup depend on operands’ types
I Only modestly interesting semantically
I Late binding (lookup via run-time types) more interesting

6. Detect other errors via extensions
I Often via a “type-and-effect” system
I Deep similarities in analyses suggest type systems a good way

to think-about/define/prove what you’re checking
I Uncaught exceptions, tainted data, non-termination, IO

performed, data races, dangling pointers, ...

We’ll focus on (1), (2), and (3) and maybe (6)

Zach Tatlock CSE-505 2015, Lecture 9 6

Why types? (Part 2)

4. Assuming well-typedness allows faster implementations
I Smaller interfaces enable optimizations
I Don’t have to check for impossible states
I Orthogonal to safety (e.g., C/C++)

5. Syntactic overloading
I Have symbol lookup depend on operands’ types
I Only modestly interesting semantically
I Late binding (lookup via run-time types) more interesting

6. Detect other errors via extensions
I Often via a “type-and-effect” system
I Deep similarities in analyses suggest type systems a good way

to think-about/define/prove what you’re checking
I Uncaught exceptions, tainted data, non-termination, IO

performed, data races, dangling pointers, ...

We’ll focus on (1), (2), and (3) and maybe (6)
Zach Tatlock CSE-505 2015, Lecture 9 6

What is a type system?

Er, uh, you know it when you see it. Some clues:
I A decidable (?) judgment for classifying programs

I E.g., e1 + e2 has type int if e1, e2 have type int (else no type)

I A sound (?) abstraction of computation
I E.g., if e1 + e2 has type int, then evaluation produces an int

(with caveats!))

I Fairly syntax directed
I Non-example (?): e terminates within 100 steps

I Particularly fuzzy distinctions with abstract interpretation
I Possible topic for a later lecture
I Often a more natural framework for flow-sensitive properties
I Types often more natural for higher-order programs

This is a CS-centric, PL-centric view. Foundational type theory has
more rigorous answers

I Later lecture: Typed PLs are like proof systems for logics

Zach Tatlock CSE-505 2015, Lecture 9 7

Plan for 3ish weeks

I Simply typed λ calculus

I (Syntactic) Type Soundness (i.e., safety)

I Extensions (pairs, sums, lists, recursion)

Break for the Curry-Howard isomorphism; continuations; midterm

I Subtyping

I Polymorphic types (generics)

I Recursive types

I Abstract types

I Effect systems

Homework: Adding back mutation
Omitted: Type inference

Zach Tatlock CSE-505 2015, Lecture 9 8

Adding constants

Enrich the Lambda Calculus with integer constants:

I Not stricly necessary, but makes types seem more natural

e ::= λx. e | x | e e | c
v ::= λx. e | c

No new operational-semantics rules since constants are values

We could add + and other primitives

I Then we would need new rules (e.g., 3 small-step for +)
I Alternately, parameterize “programs” by primitives:
λplus. λtimes. ... e

I Like Pervasives in OCaml
I A great way to keep language definitions small

Zach Tatlock CSE-505 2015, Lecture 9 9

Stuck

Key issue: can a program “get stuck” (reach a “bad” state)?

I Definition: e is stuck if e is not a value and there is no e′

such that e→ e′

I Definition: e can get stuck if there exists an e′ such that
e→∗ e′ and e′ is stuck

I In a deterministic language, e “gets stuck”

Most people don’t appreciate that stuckness depends on the
operational semantics

I Inherent given the definitions above

Zach Tatlock CSE-505 2015, Lecture 9 10

What’s stuck?

Given our language, what are the set of stuck expressions?

I Note: Explicitly defining the stuck states is unusual

e ::= λx. e | x | e e | c
v ::= λx. e | c

(λx. e) v → e[v/x]

e1 → e′1
e1 e2 → e′1 e2

e2 → e′2
v e2 → v e′2

(Hint: The full set is recursively defined.)

S ::=

x | c v | S e | v S

Note: Can have fewer stuck states if we add more rules

I Example: Javascript

I Example:
c v → v

I In unsafe languages, stuck states can set the computer on fire

Zach Tatlock CSE-505 2015, Lecture 9 11

What’s stuck?

Given our language, what are the set of stuck expressions?

I Note: Explicitly defining the stuck states is unusual

e ::= λx. e | x | e e | c
v ::= λx. e | c

(λx. e) v → e[v/x]

e1 → e′1
e1 e2 → e′1 e2

e2 → e′2
v e2 → v e′2

(Hint: The full set is recursively defined.)

S ::= x | c v | S e | v S

Note: Can have fewer stuck states if we add more rules

I Example: Javascript

I Example:
c v → v

I In unsafe languages, stuck states can set the computer on fire

Zach Tatlock CSE-505 2015, Lecture 9 11

What’s stuck?

Given our language, what are the set of stuck expressions?

I Note: Explicitly defining the stuck states is unusual

e ::= λx. e | x | e e | c
v ::= λx. e | c

(λx. e) v → e[v/x]

e1 → e′1
e1 e2 → e′1 e2

e2 → e′2
v e2 → v e′2

(Hint: The full set is recursively defined.)

S ::= x | c v | S e | v S

Note: Can have fewer stuck states if we add more rules

I Example: Javascript

I Example:
c v → v

I In unsafe languages, stuck states can set the computer on fire

Zach Tatlock CSE-505 2015, Lecture 9 11

Soundness and Completeness

A type system is a judgment for classifying programs
I “accepts” a program if some complete derivation gives it a

type, else “rejects”

A sound type system never accepts a program that can get stuck
I No false negatives

A complete type system never rejects a program that can’t get stuck
I No false positives

It is typically undecidable whether a stuck state can be reachable
I Corollary: If we want an algorithm for deciding if a type

system accepts a program, then the type system cannot be
sound and complete

I We’ll choose soundness, try to reduce false positives in
practice

Note soundness/completeness depends on the type-system
definition (obviously) and the operational semantics (see definition
of stuckness)

Zach Tatlock CSE-505 2015, Lecture 9 12

Wrong Attempt

τ ::= int | fn

` e : τ

` λx. e : fn ` c : int

` e1 : fn ` e2 : int

` e1 e2 : int

1. NO: can get stuck, e.g., (λx. y) 3

2. NO: too restrictive, e.g., (λx. x 3) (λy. y)

3. NO: types not preserved, e.g., (λx. λy. y) 3

Zach Tatlock CSE-505 2015, Lecture 9 13

Wrong Attempt

τ ::= int | fn

` e : τ

` λx. e : fn ` c : int

` e1 : fn ` e2 : int

` e1 e2 : int

1. NO: can get stuck, e.g., (λx. y) 3

2. NO: too restrictive, e.g., (λx. x 3) (λy. y)

3. NO: types not preserved, e.g., (λx. λy. y) 3

Zach Tatlock CSE-505 2015, Lecture 9 13

Getting it right

1. Need to type-check function bodies, which have free variables

2. Need to classify functions using argument and result types

For (1): Γ ::= · | Γ, x : τ and Γ ` e : τ

I Require whole program to type-check under empty context ·

For (2): τ ::= int | τ → τ

I An infinite number of types:
int→ int, (int→ int)→ int, int→ (int→ int), ...

Concrete syntax note: → is right-associative, so
τ1 → τ2 → τ3 is τ1 → (τ2 → τ3)

Zach Tatlock CSE-505 2015, Lecture 9 14

STLC Type System

τ ::= int | τ → τ
Γ ::= · | Γ, x:τ

Γ ` e : τ

Γ ` c : int Γ ` x : Γ(x)

Γ, x : τ1 ` e : τ2

Γ ` λx. e : τ1 → τ2

Γ ` e1 : τ2 → τ1 Γ ` e2 : τ2

Γ ` e1 e2 : τ1

The function-introduction rule is the interesting one...

Zach Tatlock CSE-505 2015, Lecture 9 15

A closer look

Γ, x : τ1 ` e : τ2

Γ ` λx. e : τ1 → τ2

Where did τ1 come from?

I Our rule “inferred” or “guessed” it

I To be syntax directed, change λx. e to λx : τ . e
and use that τ

Can think of “adding x” as shadowing or requiring x 6∈ Dom(Γ)

I Systematic renaming (α-conversion) ensures x 6∈ Dom(Γ) is
not a problem

Zach Tatlock CSE-505 2015, Lecture 9 16

A closer look

Γ, x : τ1 ` e : τ2

Γ ` λx. e : τ1 → τ2

Is our type system too restrictive?

I That’s a matter of opinion

I But it does reject programs that don’t get stuck

Example: (λx. (x (λy. y)) (x 3)) λz. z

I Does not get stuck: Evaluates to 3
I Does not type-check:

I There is no τ1, τ2 such that x : τ1 ` (x (λy. y)) (x 3) : τ2
because you have to pick one type for x

Zach Tatlock CSE-505 2015, Lecture 9 17

Always restrictive

Whether or not a program “gets stuck” is undecidable:

I If e has no constants or free variables, then e (3 4) or e x
gets stuck if and only if e terminates (cf. the halting problem)

Old conclusion: “Strong types for weak minds”

I Need a back door (unchecked casts)

Modern conclusion: Unsafe constructs almost never worth the risk
I Make “false positives” (rejecting safe program) rare enough

I Have compile-time resources for “fancy” type systems

I Make workarounds for false positives convenient enough

Zach Tatlock CSE-505 2015, Lecture 9 18

How does STLC measure up?

So far, STLC is sound:

I As language dictators, we decided c v and undefined variables
were “bad” meaning neither values nor reducible

I Our type system is a conservative checker that an expression
will never get stuck

But STLC is far too restrictive:

I In practice, just too often that it prevents safe and natural
code reuse

I More fundamentally, it’s not even Turing-complete
I Turns out all (well-typed) programs terminate
I A good-to-know and useful property, but inappropriate for a

general-purpose PL
I That’s okay: We will add more constructs and typing rules

Zach Tatlock CSE-505 2015, Lecture 9 19

Type Soundness

We will take a syntactic (operational) approach to
soundness/safety

I The popular way since the early 1990s

Theorem (Type Safety): If · ` e : τ then e diverges or e→n v
for an n and v such that · ` v : τ

I That is, if · ` e : τ , then e cannot get stuck

Proof: Next lecture

Zach Tatlock CSE-505 2015, Lecture 9 20

