CSE-505: Programming Languages

Lecture 9 — Simply Typed Lambda Calculus

Zach Tatlock 2015

Review: L-R CBV Lambda Calculus

 $e ::= \lambda x. e \mid x \mid e e$ $v ::= \lambda x. e$

Implicit systematic renaming of bound variables

• α -equivalence on expressions ("the same term")

$$\begin{array}{c} \hline e \to e' \\ \hline \hline (\lambda x. \ e) \ v \to e[v/x] \end{array} & \begin{array}{c} e_1 \to e'_1 \\ e_1 \ e_2 \to e'_1 \ e_2 \end{array} & \begin{array}{c} e_2 \to e'_2 \\ \hline v \ e_2 \to v \ e'_2 \end{array} \\ \hline \hline e_1[e_2/x] = e_3 \\ \hline \hline x[e/x] = e \end{array} & \begin{array}{c} y \neq x \\ y[e/x] = y \end{array} & \begin{array}{c} e_1[e/x] = e'_1 & e_2[e/x] = e'_2 \\ \hline (e_1 \ e_2)[e/x] = e'_1 \ e'_2 \end{array} \\ \hline \hline e_1[e/x] = e'_1 & y \neq x \quad y \notin FV(e) \\ \hline (\lambda y. \ e_1)[e/x] = \lambda y. \ e'_1 \end{array}$$

Types

Major new topic worthy of several lectures: Type systems

- Continue to use (CBV) Lambda Caluclus as our core model
- But will soon enrich with other common primitives

This lecture:

- Motivation for type systems
- What a type system is designed to do and not do
 - ► Definition of stuckness, soundness, completeness, etc.
- The Simply-Typed Lambda Calculus
 - A basic and natural type system
 - Starting point for more expressiveness later

Next lecture:

Prove Simply-Typed Lambda Calculus is sound

Zach Tatlock

CSE-505 2015, Lecture 9

I

Introduction to Types

Naive thought: More powerful PLs are *always* better

- Be Turing Complete (e.g., Lambda Calculus or x86 Assembly)
- Have really flexible features (e.g., lambdas)
- Have conveniences to keep programs short

If this is the only metric, types are a step backward

- Whole point is to allow fewer programs
- ► A "filter" between abstract syntax and compiler/interpreter
 - Fewer programs in language means less for a correct implementation
- So if types are a great idea, they must help with other desirable properties for a PL...

CSE-505 2015, Lecture 9

Why types? (Part 1)

- 1. Catch "simple" mistakes early, even for untested code
 - ► Example: "if" applied to "mkpair"
 - Even if some too-clever programmer meant to do it
 - Even though decidable type systems must be conservative

Why types? (Part 1)

- 1. Catch "simple" mistakes early, even for untested code
 - Example: "if" applied to "mkpair"
 - Even if some too-clever programmer meant to do it
 - Even though decidable type systems must be conservative

2. (Safety) Prevent getting stuck (e.g., x v)

- Ensure execution never gets to a "meaningless" state
- But "meaningless" depends on the semantics
- Each PL typically makes some things type errors (again being conservative) and others run-time errors

Zach Tatlock

CSE-505 2015, Lecture 9

Zach Tatlock

CSE-505 2015, Lecture 9

Why types? (Part 1)

- 1. Catch "simple" mistakes early, even for untested code
 - ► Example: "if" applied to "mkpair"
 - Even if some too-clever programmer meant to do it
 - Even though decidable type systems must be conservative
- 2. (Safety) Prevent getting stuck (e.g., x v)
 - Ensure execution never gets to a "meaningless" state
 - But "meaningless" depends on the semantics
 - Each PL typically makes some things type errors (again being conservative) and others run-time errors
- 3. Enforce encapsulation (an *abstract type*)
 - Clients can't break invariants
 - Clients can't assume an implementation
 - Requires safety, meaning no "stuck" states that corrupt run-time (e.g., C/C++)
 - Can enforce encapsulation without static types, but types are a particularly nice way

Why types? (Part 2)

- 4. Assuming well-typedness allows faster implementations
 - Smaller interfaces enable optimizations
 - Don't have to check for impossible states
 - Orthogonal to safety (e.g., C/C++)

Why types? (Part 2)

- 4. Assuming well-typedness allows faster implementations
 - Smaller interfaces enable optimizations
 - Don't have to check for impossible states
 - Orthogonal to safety (e.g., C/C++)

5. Syntactic overloading

- Have symbol lookup depend on operands' types
- Only modestly interesting semantically
- Late binding (lookup via run-time types) more interesting

Why types? (Part 2)

- 4. Assuming well-typedness allows faster implementations
 - Smaller interfaces enable optimizations
 - Don't have to check for impossible states
 - ► Orthogonal to safety (e.g., C/C++)

5. Syntactic overloading

- Have symbol lookup depend on operands' types
- Only modestly interesting semantically
- Late binding (lookup via run-time types) more interesting

6. Detect other errors via extensions

- Often via a "type-and-effect" system
- Deep similarities in analyses suggest type systems a good way to think-about/define/prove what you're checking
- Uncaught exceptions, tainted data, non-termination, IO performed, data races, dangling pointers, ...

CSE-505 2015, Lecture 9

Zach Tatlock

CSE-505 2015, Lecture 9

Why types? (Part 2)

- 4. Assuming well-typedness allows faster implementations
 - Smaller interfaces enable optimizations
 - Don't have to check for impossible states
 - Orthogonal to safety (e.g., C/C++)
- 5. Syntactic overloading
 - Have symbol lookup depend on operands' types
 - Only modestly interesting semantically
 - Late binding (lookup via run-time types) more interesting
- 6. Detect other errors via extensions
 - Often via a "type-and-effect" system
 - Deep similarities in analyses suggest type systems a good way to think-about/define/prove what you're checking
 - Uncaught exceptions, tainted data, non-termination, IO performed, data races, dangling pointers, ...

CSE-505 2015, Lecture 9

We'll focus on (1), (2), and (3) and maybe (6)

What is a type system?

Zach Tatlock

Er, uh, you know it when you see it. Some clues:

- A decidable (?) judgment for classifying programs
 - E.g., $e_1 + e_2$ has type int if e_1 , e_2 have type int (else *no type*)
- ► A sound (?) abstraction of computation
 - E.g., if e₁ + e₂ has type int, then evaluation produces an int (with caveats!))
- Fairly syntax directed
 - ► Non-example (?): *e* terminates within 100 steps
- Particularly fuzzy distinctions with abstract interpretation
 - Possible topic for a later lecture
 - Often a more natural framework for *flow-sensitive* properties
 - Types often more natural for higher-order programs

This is a CS-centric, PL-centric view. Foundational type theory has more rigorous answers

► Later lecture: Typed PLs are like proof systems for logics

Plan for 3ish weeks

- Simply typed λ calculus
- (Syntactic) Type Soundness (i.e., safety)
- Extensions (pairs, sums, lists, recursion)

Break for the Curry-Howard isomorphism; continuations; midterm

- Subtyping
- Polymorphic types (generics)
- Recursive types
- Abstract types
- Effect systems

Homework: Adding back mutation Omitted: Type inference

Adding constants

Enrich the Lambda Calculus with integer constants:

Not stricly necessary, but makes types seem more natural

 $e ::= \lambda x. e \mid x \mid e e \mid c$ $v ::= \lambda x. e \mid c$

No new operational-semantics rules since constants are values

We could add + and other *primitives*

- ▶ Then we would need new rules (e.g., 3 small-step for +)
- Alternately, parameterize "programs" by primitives:
 λplus. λtimes. ... e
 - Like Pervasives in OCaml
 - A great way to keep language definitions small

Zach Tatlock

Zach Tatlock

CSE-505 2015, Lecture 9

9

Stuck

Key issue: can a program "get stuck" (reach a "bad" state)?

CSE-505 2015, Lecture 9

- \blacktriangleright Definition: e is stuck if e is not a value and there is no e' such that $e \rightarrow e'$
- ▶ Definition: e can get stuck if there exists an e' such that e →* e' and e' is stuck
 - \blacktriangleright In a deterministic language, e "gets stuck"

Most people don't appreciate that stuckness depends on the operational semantics

Inherent given the definitions above

What's stuck?

Given our language, what are the set of stuck expressions?

• Note: Explicitly defining the stuck states is unusual

 $e ::= \lambda x. e | x | e e | c$ $v ::= \lambda x. e | c$

$$\frac{e_1 \to e_1'}{(\lambda x. e) \ v \to e[v/x]} \quad \frac{e_1 \to e_1'}{e_1 \ e_2 \to e_1' \ e_2} \quad \frac{e_2 \to e_2'}{v \ e_2 \to v \ e_2'}$$

(Hint: The full set is recursively defined.)

S :=

What's stuck?

Given our language, what are the set of stuck expressions?

• Note: Explicitly defining the stuck states is unusual

$$\begin{array}{rcl} e & ::= & \lambda x. \ e \mid x \mid e \ e \mid c \\ v & ::= & \lambda x. \ e \mid c \end{array} \\ \\ \hline \frac{v & ::= & \lambda x. \ e \mid c \end{array} & \frac{e_1 \rightarrow e_1'}{e_1 \ e_2 \rightarrow e_1' \ e_2} & \frac{e_2 \rightarrow e_2'}{v \ e_2 \rightarrow v \ e_2'} \end{array}$$

(Hint: The full set is recursively defined.)

$$S ::= x \mid c \; v \mid S \; e \mid v \; S$$

What's stuck?

Given our language, what are the set of stuck expressions?

Note: Explicitly defining the stuck states is unusual

$$e ::= \lambda x. e \mid x \mid e e \mid c$$
$$v ::= \lambda x. e \mid c$$

$$\frac{e_1 \rightarrow e_1'}{(\lambda x. \ e) \ v \rightarrow e[v/x]} \quad \frac{e_1 \rightarrow e_1'}{e_1 \ e_2 \rightarrow e_1' \ e_2} \quad \frac{e_2 \rightarrow e_2'}{v \ e_2 \rightarrow v \ e_2'}$$

(Hint: The full set is recursively defined.)

$$S ::= x \mid c \mid v \mid S \mid e \mid v \mid S$$

Note: Can have fewer stuck states if we add more rules

- ► Example: Javascript
- Example: $\frac{1}{c \ v \rightarrow v}$
- ▶ In unsafe languages, stuck states can set the computer on fire

Zach Tatlock	CSE-505 2015, Lecture 9	11 Zach Tatlock	CSE-505 2015, Lecture 9	

Soundness and Completeness

Wrong Attempt

A type system is a judgment for classifying programs

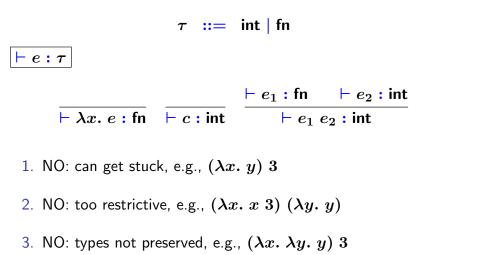
- "accepts" a program if some complete derivation gives it a type, else "rejects"
- A sound type system never accepts a program that can get stuck
 - No false negatives
- A complete type system never rejects a program that can't get stuck
 - No false positives
- It is typically *undecidable* whether a stuck state can be reachable
 - Corollary: If we want an *algorithm* for deciding if a type system accepts a program, then the type system cannot be sound and complete
 - We'll choose soundness, try to reduce false positives in practice

 $\tau ::= int | fn$

$$\frac{}{\vdash \lambda x. \ e: \mathsf{fn}} \quad \frac{\vdash c: \mathsf{int}}{\vdash c: \mathsf{int}} \quad \frac{\vdash e_1 : \mathsf{fn} \quad \vdash e_2 : \mathsf{int}}{\vdash e_1 \ e_2 : \mathsf{int}}$$

Wrong Attempt

Zach Tatlock



Getting it right

- 1. Need to type-check function bodies, which have free variables
- 2. Need to classify functions using argument and result types

For (1): $\Gamma ::= \cdot \mid \Gamma, x : \tau$ and $\Gamma \vdash e : \tau$

Require whole program to type-check under empty context •

For (2): $\tau ::=$ int $\mid \tau \rightarrow \tau$

An infinite number of types: int → int, (int → int) → int, int → (int → int), ...

Concrete syntax note: \rightarrow is right-associative, so $\tau_1 \rightarrow \tau_2 \rightarrow \tau_3$ is $\tau_1 \rightarrow (\tau_2 \rightarrow \tau_3)$

Zach Tatlock	CSE-505 2015, Lecture 9	13 Zach Tatlock CSE-50	5 2015, Lecture 9 14	
STLC Type System		A closer look	A closer look	
	$egin{array}{cccc} au & ::= & ext{int} \mid au ightarrow au \ \Gamma & ::= & \cdot \mid \Gamma, x{:} au \end{array}$		$rac{ au_1dash e: au_2}{e: au_1 o au_2}$	
$\Gamma \vdash e:\tau$		Where did <i>τ</i> ₁ come from? ► Our rule "inferred" or "gu	essed" it	
$\overline{\Gamma}\vdash$	$\overline{c:int}$ $\overline{\Gammadash x:\Gamma(x)}$	 To be syntax directed, change λx. e to λx : τ. e and use that τ 		
$rac{\Gamma,x: au_1dash e: au}{\Gammadash\lambda x.\ e: au_1}$ -		Can think of "adding x " as sha	adowing or requiring $x ot\in \operatorname{\mathbf{Dom}}(\Gamma)$ onversion) ensures $x ot\in \operatorname{\mathbf{Dom}}(\Gamma)$ is	

The *function-introduction* rule is the interesting one...

CSE-505 2015, Lecture 9

A closer look

$$\frac{\Gamma, x: \tau_1 \vdash e: \tau_2}{\Gamma \vdash \lambda x. \; e: \tau_1 \to \tau_2}$$

Is our type system too restrictive?

- That's a matter of opinion
- But it does reject programs that don't get stuck

Example: $(\lambda x. (x (\lambda y. y)) (x 3)) \lambda z. z$

- Does not get stuck: Evaluates to 3
- Does not type-check:
 - There is no τ_1, τ_2 such that $x : \tau_1 \vdash (x \ (\lambda y. \ y)) \ (x \ 3) : \tau_2$ because you have to pick *one* type for x

Always restrictive

Whether or not a program "gets stuck" is undecidable:

 If e has no constants or free variables, then e (3 4) or e x gets stuck if and only if e terminates (cf. the halting problem)

Old conclusion: "Strong types for weak minds"

Need a back door (unchecked casts)

Modern conclusion: Unsafe constructs almost never worth the risk

- Make "false positives" (rejecting safe program) rare enough
 - Have compile-time resources for "fancy" type systems

CSE-505 2015, Lecture 9

Make workarounds for false positives convenient enough

Zach Tatlock

CSE-505 2015, Lecture 9

How does STLC measure up?

So far, STLC is sound:

- As language dictators, we decided c v and undefined variables were "bad" meaning neither values nor reducible
- Our type system is a conservative checker that an expression will never get stuck

But STLC is far too restrictive:

- In practice, just too often that it prevents safe and natural code reuse
- More fundamentally, it's not even Turing-complete
 - Turns out all (well-typed) programs terminate
 - A good-to-know and useful property, but inappropriate for a general-purpose PL
 - That's okay: We will add more constructs and typing rules

Type Soundness

Zach Tatlock

We will take a *syntactic* (operational) approach to soundness/safety

The popular way since the early 1990s

Theorem (Type Safety): If $\cdot \vdash e : \tau$ then e diverges or $e \to^n v$ for an n and v such that $\cdot \vdash v : \tau$

• That is, if $\cdot \vdash e: au$, then e cannot get stuck

Proof: Next lecture

18