Dan Grossman; Graduate Programming Languages; Lecture 6 Supplement

In class we sketched several proofs, but proof sketches invariably skip steps and have small errors. Here are the proofs more carefully laid out, as one might do on a homework assignment.

Theorem: H; $e * 2 \Downarrow c$ if and only if H; $e + e \Downarrow c$.

Proof: (Does not use induction)

• First assume H; $e*2 \Downarrow c$ and show H; $e+e \Downarrow c$. Any derivation of H; $e*2 \Downarrow c$ must end with the MULT rule, which means there must exist derivations of H; $e \Downarrow c'$ and H; $2 \Downarrow 2$, and c must be 2c'. That is, there must be a derivation that looks like this:

$$\frac{\vdots}{H; e \Downarrow c'} \quad \overline{H; 2 \Downarrow 2}$$

$$H; e * 2 \Downarrow 2c'$$

So given that there exists a derivation of H; $e \downarrow c'$, we can use ADD to derive:

$$\frac{H ; e \Downarrow c' \qquad H ; e \Downarrow c'}{H : e + e \Downarrow c' + c'}$$

Math provides c'+c'=2c', so the conclusion of this derivation is what we need.

• Now assume H; $e + e \downarrow c$ and show H; $e * 2 \downarrow c$. Any derivation of H; $e + e \downarrow c$ must end with the ADD rule, which means there exists a derivation that looks like this (where $c = c_1 + c_2$):

$$\frac{\vdots}{H; e \Downarrow c_1} \quad \frac{\vdots}{H; e \Downarrow c_2}$$
$$H; e + e \Downarrow c_1 + c_2$$

In fact, we earlier proved determinacy (there is at most one c such that H; $e \downarrow c$), so the derivation must have this form (where $c = c_1 + c_1$):

$$\frac{\vdots}{H; e \Downarrow c_1} \qquad \frac{\vdots}{H; e \Downarrow c_1} \\
\frac{H; e \Downarrow c_1}{H; e + e \Downarrow c_1 + c_1}$$

So given that there exists a derivation of H; $e \downarrow c_1$, we can use MULT to derive:

$$\frac{H ; e \Downarrow c_1}{H ; e * 2 \Downarrow 2c_1}$$

Math provides $c_1+c_1=2c_1$, so the conclusion of this derivation is what we need.

$$C ::= [\cdot] \mid C + e \mid e + C \mid C * e \mid e * C$$

Formal definition of "filling the hole":

$$\begin{array}{rcl} ([\cdot])[e] & = & e \\ (C+e_1)[e] & = & C[e]+e_1 \\ (e_1+C)[e] & = & e_1+C[e] \\ (C*e_1)[e] & = & C[e]*e_1 \\ (e_1*C)[e] & = & e_1*C[e] \end{array}$$

Theorem: $H : C[e * 2] \downarrow c$ if and only if $H : C[e + e] \downarrow c$.

Proof: By induction on (the height of) the structure of C:

- If the height is 0, then C is $[\cdot]$, so C[e*2] = e*2 and C[e+e] = e+e. So the previous theorem is exactly what we need.
- If the height is greater than 0, then C has one of four forms:
 - If C is C' + e' for some C' and e', then C[e*2] is C'[e*2] + e' and C[e+e] is C'[e+e] + e'. Since C' is shorter than C, induction ensures that for any constant c', H; $C'[e*2] \Downarrow c'$ if and only if H; $C'[e+e] \Downarrow c'$.

Assume H; $C'[e*2] + e' \downarrow c$ and show H; $C'[e+e] + e' \downarrow c$: Any derivation of H; $C'[e*2] + e' \downarrow c$ must end with ADD, i.e., it looks like this (where c = c' + c''):

$$\frac{\vdots}{H ; C'[e*2] \Downarrow c'} \quad \frac{\vdots}{H ; e' \Downarrow c''}$$

$$H : C'[e*2] + e' \Downarrow c$$

As argued above, the existence of a derivation of H; $C'[e*2] \Downarrow c'$ ensures the existence of a derivation of H; $C'[e+e] \Downarrow c'$. So using ADD and the existence of a derivation of H; $e' \Downarrow c''$, we can derive:

$$\frac{H \ ; \ C'[e+e] \Downarrow c' \qquad H \ ; \ e' \Downarrow c''}{H \ ; \ C'[e+e] + e' \Downarrow c}$$

Now assume H; $C'[e+e] + e' \Downarrow c$ and show H; $C'[e*2] + e' \Downarrow c$: Any derivation of H; $C'[e+e] + e' \Downarrow c$ must end with ADD, i.e., it looks like this (where c = c' + c''):

$$\frac{\vdots}{H \; ; \; C'[e+e] \; \psi \; c'} \quad \frac{\vdots}{H \; ; \; e' \; \psi \; c''}$$

$$H \; ; \; C'[e+e] + e' \; \psi \; c$$

As argued above, the existence of a derivation of H; $C'[e+e] \Downarrow c'$ ensures the existence of a derivation of H; $C'[e*2] \Downarrow c'$. So using ADD and the existence of a derivation of H; $e' \Downarrow c''$, we can derive:

$$\frac{H \; ; \; C'[e*2] \; \Downarrow \; c' \qquad H \; ; \; e' \; \Downarrow \; c''}{H \; ; \; C'[e*2] + e' \; \Downarrow \; c}$$

- The other 3 cases are similar. (Try them out.)

Theorem: The two semantics below are equivalent, i.e., $H ; e \downarrow c$ if and only if $H; e \rightarrow^* c$.

$$\frac{\text{CONST}}{H \; ; \; c \; \downarrow \; c} \qquad \frac{\text{VAR}}{H \; ; \; k \; \downarrow \; H(x)} \qquad \frac{H \; ; \; e_1 \; \downarrow \; c_1}{H \; ; \; e_1 \; \downarrow \; c_1} \quad H \; ; \; e_2 \; \downarrow \; c_2}{H \; ; \; e_1 \; + \; e_2 \; \downarrow \; c_1 + c_2}$$

$$\frac{\text{SVAR}}{H;\; x \to H(x)} \qquad \frac{\text{SADD}}{H;\; c_1 + c_2 \to c_1 + c_2} \qquad \frac{H;\; e_1 \to e_1'}{H;\; e_1 + e_2 \to e_1' + e_2} \qquad \frac{H;\; e_2 \to e_2'}{H;\; e_1 + e_2 \to e_1 + e_2'}$$

Proof: We prove the two directions separately.

First assume H; $e \downarrow c$; show $\exists n. H$; $e \rightarrow^n c$. By induction on the height h of derivation of H; $e \downarrow c$:

- h = 1: Then the derivation must end with CONST or VAR. For CONST, e is c and trivially H; $e \to 0$ c. For VAR, e is some x where H(x) = c, so using SVAR, H; $e \to 0$ c.
- h > 1: Then the derivation must end with ADD, so e is some $e_1 + e_2$ where $H : e_1 \downarrow c_1$, $H : e_2 \downarrow c_2$, and c is $c_1 + c_2$. By induction $\exists n_1, n_2$. $H : e_1 \rightarrow^{n_1} c_1$ and $H : e_2 \rightarrow^{n_2} c_2$. Therefore, using the lemma below, $H : e_1 + e_2 \rightarrow^{n_1} c_1 + e_2$ and $H : c_1 + e_2 \rightarrow^{n_2} c_1 + c_2$, so ADD lets us derive $H : e_1 + e_2 \rightarrow^{n_1 + n_2 + 1} c$.

Lemma: If H; $e \to^n e'$, then H; $e_1 + e \to^n e_1 + e'$ and H; $e + e_2 \to^n e' + e_2$.

Proof: By induction on n. If n=0, the result is trivial because e=e'. If n>0, then there exists some e'' such that H; $e\to^{n-1}e''$ and H; $e''\to^1e'$. So by induction H; $e_1+e\to^{n-1}e_1+e''$ and H; $e+e_2\to^{n-1}e''+e_2$. Using SRIGHT and SLEFT respectively, H; $e''\to^1e'$ ensures H; $e_1+e''\to^1e_1+e'$ and H; $e''+e_2\to^1e'+e_2$. So with the inductive hypotheses, H; $e_1+e\to^ne_1+e'$ and H; $e+e_2\to^ne'+e_2$.

Now assume $\exists n. H; e \rightarrow^n c$; show $H; e \downarrow c$. By induction on n:

- n = 0: e is c and CONST lets us derive H; $c \downarrow c$.
- n > 0: So $\exists e'$. H; $e \to e'$ and H; $e' \to^{n-1} c$. By induction H; $e' \Downarrow c$. So this lemma suffices: If H; $e \to e'$ and H; $e' \Downarrow c$, then H; $e \Downarrow c$. Prove the lemma by induction on height h of derivation of H; $e \to e'$:
 - h = 1: Then the derivation ends with SVAR or SADD. For SVAR, e is some x and e' = H(x) = c. So with VAR we can derive H; $x \downarrow H(x)$, i.e., H; $e \downarrow c$. For SADD, e is some $c_1 + c_2$ and $e' = c = c_1 + c_2$. So with ADD, we can derive H; $c_1 + c_2 \downarrow c_1 + c_2$, i.e., H; $e \downarrow c$. (Note the h = 1 case may look a little weird because in fact in this case n = 1, i.e., e' must be a constant.)
 - -h > 1: Then the derivation ends with SLEFT or SRIGHT. For SLEFT, the assumed derivations end like this:

$$\frac{H\,;\,e_1\to e_1'}{H;\,e_1+e_2\to e_1'+e_2} \qquad \qquad \frac{H\,\,;\,e_1'\,\,\psi\,\,c_1}{H\,\,;\,e_1'+e_2\,\,\psi\,\,c_1+c_2}$$

Using H; $e_1 \to e_1'$, H; $e_1' \Downarrow c_1$, and the induction hypothesis, H; $e_1 \Downarrow c_1$. Using this fact, H; $e_2 \Downarrow c_2$, and ADD, we can derive H; $e_1 + e_2 \Downarrow c_1 + c_2$.

For SRIGHT, the assumed derivations end like this:

$$\frac{H; e_2 \to e_2'}{H; e_1 + e_2 \to e_1 + e_2'} \qquad \frac{H; e_1 \Downarrow c_1 \quad H; e_2' \Downarrow c_2}{H; e_1 + e_2' \Downarrow c_1 + c_2}$$

Using H; $e_2 \to e_2'$, H; $e_2' \Downarrow c_2$, and the induction hypothesis, H; $e_2 \Downarrow c_2$. Using this fact, H; $e_1 \Downarrow c_1$, and ADD, we can derive H; $e_1 + e_2 \Downarrow c_1 + c_2$.