Where we are

- CSE-505: Programming Languages
- Lecture 3 Operational Semantics

Zach Tatlock 2015

- ► Done: OCaml tutorial, "IMP" syntax, structural induction
- ▶ Now: Operational semantics for our little "IMP" language
 - Most of what you need for Homework 1
 - (But Problem 4 requires proofs over semantics)

Review

IMP's abstract syntax is defined inductively:

s ::= skip | x := e | s; s | if e s s | while e s e ::= c | x | e + e | e * e $(c \in \{\dots, -2, -1, 0, 1, 2, \dots\})$ $(x \in \{x_1, x_2, \dots, y_1, y_2, \dots, z_1, z_2, \dots, N\})$

We haven't yet said what programs *mean*! (Syntax is boring)

Encode our "social understanding" about variables and control flow

Zach Tatlock

CSE-505 2015, Lecture 3

Outline

- Semantics for expressions
 - 1. Informal idea; the need for heaps
 - 2. Definition of heaps
 - 3. The evaluation *judgment* (a relation form)
 - 4. The evaluation inference rules (the relation definition)
 - 5. Using inference rules
 - Derivation trees as interpreters
 - Or as *proofs* about expressions
 - 6. Metatheory: Proofs about the semantics
- Then semantics for statements
 - **۱**...

Informal idea

Given e, what c does e evaluate to?

1+2 x+2

Informal idea

Given e, what c does e evaluate to?

1 + 2

x + 2

It depends on the values of variables (of course)

Use a heap H for a total function from variables to constants

 \blacktriangleright Could use partial functions, but then \exists H and e for which there is no c

We'll define a *relation* over triples of $oldsymbol{H}$, $oldsymbol{e}$, and $oldsymbol{c}$

- Will turn out to be *function* if we view H and e as inputs and c as output
- With our metalanguage, easier to define a relation and then prove it is a function (if, in fact, it is)

CSE-505 2015, Lecture 3

Zach Tatlock

CSE-505 2015, Lecture 3

Zach Tatlock

Heaps

 $H ::= \cdot \mid H, x \mapsto c$

A lookup-function for heaps:

$$H(x) = \left\{ egin{array}{ccc} c & ext{if} & H = H', x \mapsto c \ H'(x) & ext{if} & H = H', y \mapsto c' ext{ and } y
eq x \ 0 & ext{if} & H = \cdot \end{array}
ight.$$

Last case avoids "errors" (makes function total)

"What heap to use" will arise in the semantics of statements

► For expression evaluation, "we are given an H"

The judgment

We will write:

 $H ; e \Downarrow c$

to mean, "e evaluates to c under heap H"

It is just a relation on triples of the form (H, e, c)

We just made up metasyntax H ; $e \Downarrow c$ to follow PL convention and to distinguish it from other relations

We can write: $., x \mapsto 3$; $x + y \downarrow 3$, which will turn out to be *true* (this triple will be in the relation we define)

Or: $., x \mapsto 3$; $x + y \downarrow 6$, which will turn out to be *false* (this triple will not be in the relation we define)

Inference rules

CONST	VAR
$\overline{H \ ; \ c \Downarrow c}$	$\overline{H \ ; x \Downarrow H(x)}$
$\frac{\overset{\text{ADD}}{H};e_1 \Downarrow c_1 H;e_2 \Downarrow c_2}{H;e_1+e_2 \Downarrow c_1+c_2}$	$rac{M \mathrm{ULT}}{H \ ; e_1 \Downarrow c_1 } rac{H \ ; e_2 \Downarrow c_2}{H \ ; e_1 st e_2 \Downarrow c_1 st c_2}$
T 1 1	

Top: *hypotheses* Bottom: *conclusion* (read first)

By definition, if all hypotheses hold, then the conclusion holds

Each rule is a *schema* you "instantiate consistently"

- So rules "work" "for all" H, c, e_1 , etc.
- But "each" e_1 has to be the "same" expression

Instantiating rules

Example instantiation:

$$\frac{\cdot, \mathtt{y} \mapsto 4 ; 3 + \mathtt{y} \Downarrow 7 \quad \cdot, \mathtt{y} \mapsto 4 ; 5 \Downarrow 5}{\cdot, \mathtt{y} \mapsto 4 ; (3 + \mathtt{y}) + 5 \Downarrow 12}$$

Instantiates:

 $\overset{\text{ADD}}{H}; e_1 \Downarrow c_1 \qquad H; e_2 \Downarrow c_2$

$$H ; e_1 + e_2 \Downarrow c_1 + c_2$$

with $H = \cdot, y \mapsto 4$ $e_1 = (3 + y)$ $c_1 = 7$ $e_2 = 5$ $c_2 = 5$

CSE-505 2015, Lecture 3

9

Derivations

Zach Tatlock

A *(complete) derivation* is a tree of instantiations with *axioms* at the leaves

CSE-505 2015, Lecture 3

Example:

$$\begin{array}{c} \hline \hline \cdot, \textbf{y} \mapsto 4 \textbf{; } \textbf{3} \Downarrow \textbf{3} & \hline \cdot, \textbf{y} \mapsto 4 \textbf{; } \textbf{y} \Downarrow 4 \\ \hline \cdot, \textbf{y} \mapsto 4 \textbf{; } \textbf{3} + \textbf{y} \Downarrow \textbf{7} & \hline \cdot, \textbf{y} \mapsto 4 \textbf{; } \textbf{5} \Downarrow \textbf{5} \\ \hline \cdot, \textbf{y} \mapsto 4 \textbf{; } (\textbf{3} + \textbf{y}) + \textbf{5} \Downarrow \textbf{12} \end{array}$$

By definition, H ; $e \Downarrow c$ if there exists a derivation with H ; $e \Downarrow c$ at the root

Back to relations

Zach Tatlock

So what relation do our inference rules define?

- Start with empty relation (no triples) R_0
- Let R_i be R_{i-1} union all H; $e \Downarrow c$ such that we can instantiate some inference rule to have conclusion H; $e \Downarrow c$ and all hypotheses in R_{i-1}
 - \blacktriangleright So R_i is all triples at the bottom of height- j complete derivations for $j \leq i$
- R_∞ is the relation we defined
 - All triples at the bottom of complete derivations

For the math folks: \mathbf{R}_∞ is the smallest relation closed under the inference rules

What are these things?

We can view the inference rules as defining an *interpreter*

- Complete derivation shows recursive calls to the "evaluate expression" function
 - Recursive calls from conclusion to hypotheses
 - Syntax-directed means the interpreter need not "search"
- See OCaml code in Homework 1

Or we can view the inference rules as defining a proof system

- Complete derivation proves facts from other facts starting with axioms
 - ► Facts established from hypotheses to conclusions

Some theorems

- Progress: For all H and e, there exists a c such that H ; $e \Downarrow c$
- \blacktriangleright Determinacy: For all H and e, there is at most one c such that H ; $e\Downarrow c$
- We rigged it that way...

what would division, undefined-variables, or gettime() do?

Proofs are by induction on the the structure (i.e., height) of the expression \boldsymbol{e}

CSE-505 2015, Lecture 3

Zach Tatlock

CSE-505 2015, Lecture 3

On to statements

A statement does not produce a constant

On to statements

12 Zach Tatlock

A statement does not produce a constant

It produces a new, possibly-different heap.

If it terminates

On to statements

A statement does not produce a constant

It produces a new, possibly-different heap.

If it terminates

We could define H_1 ; $s \Downarrow H_2$

- \blacktriangleright Would be a partial function from H_1 and s to H_2
- Works fine; could be a homework problem

On to statements

A statement does not produce a constant

It produces a new, possibly-different heap.

If it terminates

We could define H_1 ; $s \Downarrow H_2$

- \blacktriangleright Would be a partial function from H_1 and s to H_2
- ► Works fine; could be a homework problem

Instead we'll define a "small-step" semantics and then "iterate" to "run the program"

 $H_1 ; s_1 \rightarrow H_2 ; s_2$

Zach Tatlock	CSE-505 2015, Lecture 3	14	Zach Tatlock	CSE-505 2015, Lecture 3	14
Statement semantic	CS	Statement semantics cont'd			
$H_1 \ ; s_1 ightarrow H_2 \ ; s_1$	2	What about while $e \ s$ (do s and loop if $e > 0$)?			
ASSI	GN $H \ ; e \Downarrow c$				

$$\begin{array}{l} \overset{\text{SEQ1}}{\hline H \text{ ; skip; } s \to H \text{ ; s}} & \overset{\text{SEQ2}}{\hline H \text{ ; } s_1 \to H' \text{ ; } s_1'} \\ \overset{\text{IF1}}{\hline H \text{ ; } e \Downarrow c \quad c > 0} \\ \overset{\text{IF2}}{\hline H \text{ ; } if \ e \ s_1 \ s_2 \to H \text{ ; } s_1} & \overset{\text{IF2}}{\hline H \text{ ; } e \Downarrow c \quad c \leq 0} \\ \end{array}$$

 $H ; x := e \rightarrow H, x \mapsto c ;$ skip

Statement semantics cont'd

What about while $e \ s$ (do s and loop if e > 0)?

WHILE

H ; while $e \ s \to H$; if $e \ (s;$ while $e \ s)$ skip

Many other equivalent definitions possible

Program semantics

Defined H ; s
ightarrow H' ; s', but what does "s" mean/do?

Our machine iterates: $H_1;s_1 \rightarrow H_2;s_2 \rightarrow H_3;s_3 \dots$, with each step justified by a complete derivation using our single-step statement semantics

Let H_1 ; $s_1 \rightarrow^n H_2$; s_2 mean "becomes after n steps"

Let H_1 ; $s_1 \rightarrow^* H_2$; s_2 mean "becomes after 0 or more steps"

Pick a special "answer" variable ans

The program s produces c if \cdot ; $s \rightarrow^* H$; skip and $H(ext{ans}) = c$

Does every s produce a c?

Zach Tatlock

CSE-505 2015, Lecture 3

Zach Tatlock

CSE-505 2015, Lecture 3

Example program execution

x := 3; (y := 1; while x (y := y * x; x := x-1))

Let's write some of the state sequence. You can justify each step with a full derivation. Let s = (y := y * x; x := x-1).

Example program execution

x := 3; (y := 1; while x (y := y * x; x := x-1))

Let's write some of the state sequence. You can justify each step with a full derivation. Let s = (y := y * x; x := x-1).

 \cdot ; x := 3; y := 1; while x s

Example program execution

x := 3; (y := 1; while x (y := y * x; x := x-1))

Let's write some of the state sequence. You can justify each step with a full derivation. Let s = (y := y * x; x := x-1).

 \cdot ; x := 3; y := 1; while x s

 \rightarrow $\cdot, x \mapsto 3;$ skip; y := 1; while x s

Example program execution

x := 3; (y := 1; while x (y := y * x; x := x-1))

Let's write some of the state sequence. You can justify each step with a full derivation. Let s = (y := y * x; x := x-1).

 \cdot ; x := 3; y := 1; while x s

 \rightarrow $\cdot, x \mapsto 3;$ skip; y := 1; while x s

 \rightarrow $\cdot, x \mapsto 3; y := 1;$ while x s

Zach Tatlock	CSE-505 2015, Lecture 3	18	Zach Tatlock	CSE-505 2015, Lecture 3	18
Ехоронія, призника	a avecution		Емараріа, риски тиска	avaautian	

Example program execution

x := 3; (y := 1; while x (y := y * x; x := x-1))

Let's write some of the state sequence. You can justify each step with a full derivation. Let s = (y := y * x; x := x-1).

 \cdot ; x := 3; y := 1; while x s

$$ightarrow \ \cdot, \mathtt{x} \mapsto \mathbf{3};$$
 skip; $\mathtt{y} := 1;$ while $\mathtt{x} \ s$

$$\rightarrow$$
 $\cdot, x \mapsto 3; y := 1;$ while $x s$

 \rightarrow^2 $\cdot, x \mapsto 3, y \mapsto 1;$ while x s

Example program execution

$$x := 3; (y := 1; while x (y := y * x; x := x-1))$$

Let's write some of the state sequence. You can justify each step with a full derivation. Let s = (y := y * x; x := x-1).

$$\begin{array}{l} \cdot; \mathbf{x} := 3; \mathbf{y} := 1; \text{ while } \mathbf{x} \ s \\ \rightarrow \quad \cdot, \mathbf{x} \mapsto 3; \text{ skip}; \mathbf{y} := 1; \text{ while } \mathbf{x} \ s \\ \rightarrow \quad \cdot, \mathbf{x} \mapsto 3; \mathbf{y} := 1; \text{ while } \mathbf{x} \ s \\ \rightarrow^2 \quad \cdot, \mathbf{x} \mapsto 3, \mathbf{y} \mapsto 1; \text{ while } \mathbf{x} \ s \\ \rightarrow \quad \cdot, \mathbf{x} \mapsto 3, \mathbf{y} \mapsto 1; \text{ if } \mathbf{x} \ (s; \text{ while } \mathbf{x} \ s) \text{ skip} \end{array}$$

Zach Tatlock

Example program execution

x := 3; (y := 1; while x (y := y * x; x := x-1))

Let's write some of the state sequence. You can justify each step with a full derivation. Let s = (y := y * x; x := x-1).

- \cdot ; x := 3; y := 1; while x s
- \rightarrow $\cdot, x \mapsto 3;$ skip; y := 1; while x s
- \rightarrow $\cdot, \mathbf{x} \mapsto \mathbf{3}; \mathbf{y} := \mathbf{1};$ while $\mathbf{x} s$
- \rightarrow^2 $\cdot, x \mapsto 3, y \mapsto 1;$ while x s
- \rightarrow $\cdot, x \mapsto 3, y \mapsto 1;$ if x (s; while x s) skip
- \rightarrow $\cdot, x \mapsto 3, y \mapsto 1; y := y * x; x := x 1;$ while x s

Zach Tatlock	CSE-505 2015, Lecture 3	18	Zach Tatlock	CSE-505 2015, Lecture 3
Continued			Continued	
\rightarrow^2	$\cdot, \mathrm{x} \mapsto 3, \mathrm{y} \mapsto 1, \mathrm{y} \mapsto 3; \mathrm{x} := \mathrm{x}{-1};$ while $\mathrm{x}~s$		$ ightarrow^2$.	$\mathbf{x},\mathbf{x}\mapsto3,\mathbf{y}\mapsto1,\mathbf{y}\mapsto3;\mathbf{x}:=\mathbf{x-1};$ while x s
$ ightarrow^2$	$\cdot, \mathtt{x} \mapsto 3, \mathtt{y} \mapsto 1, \mathtt{y} \mapsto 3, \mathtt{x} \mapsto 2;$ while $\mathtt{x} \; s$		$ ightarrow^2$.	${f y},{f x}\mapsto {f 3},{f y}\mapsto {f 1},{f y}\mapsto {f 3},{f x}\mapsto {f 2};$ while ${f x}$ s
			ightarrow .	$\ldots, ext{y} \mapsto 3, ext{x} \mapsto 2;$ if $ ext{x} \ (s;$ while $ ext{x} \ s)$ skip

Continued...

$$ightarrow^2$$
 $\cdot, \mathrm{x} \mapsto 3, \mathrm{y} \mapsto 1, \mathrm{y} \mapsto 3; \mathrm{x} := \mathrm{x} - 1;$ while $\mathrm{x} \ s$

Continued...

$$\begin{array}{l} \rightarrow^2 \quad \cdot, \mathbf{x} \mapsto \mathbf{3}, \mathbf{y} \mapsto \mathbf{1}, \mathbf{y} \mapsto \mathbf{3}; \, \mathbf{x} := \mathbf{x} - \mathbf{1}; \, \text{while } \mathbf{x} \, s \\ \rightarrow^2 \quad \cdot, \mathbf{x} \mapsto \mathbf{3}, \mathbf{y} \mapsto \mathbf{1}, \mathbf{y} \mapsto \mathbf{3}, \mathbf{x} \mapsto \mathbf{2}; \, \text{while } \mathbf{x} \, s \\ \rightarrow \quad \dots, \mathbf{y} \mapsto \mathbf{3}, \mathbf{x} \mapsto \mathbf{2}; \, \text{if } \mathbf{x} \, (s; \, \text{while } \mathbf{x} \, s) \, \text{skip} \\ \cdots \end{array}$$

Continued...

$$\begin{array}{l} \rightarrow^2 \quad \cdot, \mathbf{x} \mapsto \mathbf{3}, \mathbf{y} \mapsto \mathbf{1}, \mathbf{y} \mapsto \mathbf{3}; \, \mathbf{x} := \mathbf{x} - \mathbf{1}; \, \text{while } \mathbf{x} \, s \\ \rightarrow^2 \quad \cdot, \mathbf{x} \mapsto \mathbf{3}, \mathbf{y} \mapsto \mathbf{1}, \mathbf{y} \mapsto \mathbf{3}, \mathbf{x} \mapsto \mathbf{2}; \, \text{while } \mathbf{x} \, s \\ \rightarrow \quad \dots, \mathbf{y} \mapsto \mathbf{3}, \mathbf{x} \mapsto \mathbf{2}; \, \text{if } \mathbf{x} \, (s; \, \text{while } \mathbf{x} \, s) \, \text{skip} \\ \cdots \\ \rightarrow \quad \dots, \mathbf{y} \mapsto \mathbf{6}, \mathbf{x} \mapsto \mathbf{0}; \, \text{skip} \end{array}$$

Zach TatlockCSE-505 2015, Lecture 319Zach Tatlock

Where we are

Defined $H \ ; e \Downarrow c$ and $H \ ; s \to H' \ ; s'$ and extended the latter to give s a meaning

- The way we did expressions is "large-step operational semantics"
- The way we did statements is "small-step operational semantics"
- So now you have seen both

Definition by interpretation: program means what an interpreter (written in a metalanguage) says it means

Interpreter represents a (very) abstract machine that runs code

CSE-505 2015, Lecture 3

Large-step does not distinguish errors and divergence

- But we defined IMP to have no errors
- And expressions never diverge

Establishing Properties

We can prove a property of a terminating program by "running" it

CSE-505 2015, Lecture 3

Example: Our last program terminates with ${\bf x}$ holding ${\bf 0}$

Establishing Properties

We can prove a property of a terminating program by "running" it

Example: Our last program terminates with \boldsymbol{x} holding $\boldsymbol{0}$

We can prove a program diverges, i.e., for all H and n, \cdot ; $s \rightarrow^{n} H$; skip cannot be derived

Example: while 1 skip

Establishing Properties

We can prove a property of a terminating program by "running" it

Example: Our last program terminates with \mathbf{x} holding $\mathbf{0}$

We can prove a program diverges, i.e., for all H and n, \cdot ; $s \rightarrow^n H$; skip cannot be derived

Example: while 1 skip

By induction on n, but requires a stronger induction hypothesis

Zach Tatlock

CSE-505 2015, Lecture 3

21 Zach Tatlock

CSE-505 2015, Lecture 3

More General Proofs

We can prove properties of executing all programs (satisfying another property)

Example: If H and s have no negative constants and H; $s \rightarrow^* H'$; s', then H' and s' have no negative constants.

Example: If for all H, we know s_1 and s_2 terminate, then for all H, we know H; $(s_1; s_2)$ terminates.