CSE 505, Fall 2009, Midterm Examination 5 November 2009

Please do not turn the page until everyone is ready.

Rules:

- The exam is closed-book, closed-note, except for one side of one 8.5x11in piece of paper.
- Please stop promptly at 11:50.
- You can rip apart the pages, but please write your name on each page.
- There are **100 points** total, distributed **unevenly** among **5** questions (which have multiple parts).

Advice:

- Read questions carefully. Understand a question before you start writing.
- Write down thoughts and intermediate steps so you can get partial credit.
- The questions are not necessarily in order of difficulty. **Skip around.** In particular, make sure you get to all the problems.
- If you have questions, ask.
- Relax. You are here to learn.

Name:

For your reference:

$$\begin{array}{rll} s & ::= & \mathsf{skip} \mid x := e \mid s; s \mid \mathsf{if} \ e \ s \ s \mid \mathsf{while} \ e \ s \\ e & ::= & c \mid x \mid e + e \mid e \ast e \\ (c & \in & \{ \dots, -2, -1, 0, 1, 2, \dots \}) \\ (x & \in & \{ \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{z}_1, \mathbf{z}_2, \dots, \dots \}) \end{array}$$

$$H \ ; \ e \ \Downarrow \ c$$

 $\begin{array}{cccc} \begin{array}{c} \text{CONST} & \text{VAR} & \begin{array}{c} \begin{array}{c} \text{ADD} \\ H \ ; \ c \ \psi \ c \end{array} & \begin{array}{c} H \ ; \ e_1 \ \psi \ c_1 & H \ ; \ e_2 \ \psi \ c_2 \end{array} & \begin{array}{c} \begin{array}{c} \text{MULT} \\ H \ ; \ e_1 \ \psi \ c_1 & H \ ; \ e_2 \ \psi \ c_2 \end{array} & \begin{array}{c} \begin{array}{c} \text{MULT} \\ H \ ; \ e_1 \ \psi \ c_1 & H \ ; \ e_2 \ \psi \ c_2 \end{array} & \begin{array}{c} \begin{array}{c} \text{MULT} \\ H \ ; \ e_1 \ \psi \ c_1 & H \ ; \ e_2 \ \psi \ c_2 \end{array} & \begin{array}{c} \begin{array}{c} \begin{array}{c} \text{MULT} \\ H \ ; \ e_1 \ \psi \ c_1 & H \ ; \ e_2 \ \psi \ c_2 \end{array} & \begin{array}{c} \begin{array}{c} \text{MULT} \\ H \ ; \ e_1 \ \psi \ c_1 & H \ ; \ e_2 \ \psi \ c_2 \end{array} & \begin{array}{c} \begin{array}{c} \begin{array}{c} \text{MULT} \\ H \ ; \ e_1 \ \psi \ c_1 & H \ ; \ e_2 \ \psi \ c_2 \end{array} & \begin{array}{c} \begin{array}{c} \begin{array}{c} \text{MULT} \\ H \ ; \ e_1 \ \psi \ c_1 & H \ ; \ e_2 \ \psi \ c_2 \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \begin{array}{c} \begin{array}{c} \text{MULT} \\ H \ ; \ e_1 \ \psi \ c_1 \ & H \ ; \ e_2 \ \psi \ c_2 \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \begin{array}{c} \begin{array}{c} \text{MULT} \\ H \ ; \ e_1 \ \psi \ c_1 \ & H \ ; \ e_2 \ \psi \ c_2 \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \begin{array}{c} \begin{array}{c} \mbox{MULT} \\ H \ ; \ e_1 \ & e_2 \ \psi \ c_1 \ & e_2 \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \mbox{Mult} \end{array} & \begin{array}{c} \begin{array}{c} \mbox{Mult} H \ ; \ e_2 \ \psi \ c_2 \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \mbox{Mult} \end{array} & \begin{array}{c} \mbox{Mult} H \ ; \ e_1 \ & e_2 \ \psi \ c_2 \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \mbox{Mult} H \ ; \ e_1 \ & e_2 \ & \psi \ c_2 \end{array} & \begin{array}{c} \mbox{Mult} \end{array} & \begin{array}{c} \mbox{Mult} H \ ; \ e_1 \ & e_2 \ & \psi \ c_2 \end{array} & \begin{array}{c} \mbox{Mult} \end{array} & \begin{array}{c} \mbox{Mult} H \ ; \ e_1 \ & e_2 \ & \psi \ c_2 \end{array} & \begin{array}{c} \mbox{Mult} H \ ; \ e_1 \ & e_2 \ & e_2 \end{array} & \begin{array}{c} \mbox{Mult} H \ ; \ e_1 \ & e_2 \ & e_2 \ & e_2 \end{array} & \begin{array}{c} \mbox{Mult} H \ ; \ & e_1 \ & e_2 \$

 $e \rightarrow e'$

$$\frac{e_1 \to e'_1}{(\lambda x. \ e) \ v \to e[v/x]} \qquad \qquad \frac{e_1 \to e'_1}{e_1 \ e_2 \to e'_1 \ e_2} \qquad \qquad \frac{e_2 \to e'_2}{v \ e_2 \to v \ e'_2}$$

e[e'/x] = e''

$$\frac{y \neq x}{x[e/x] = e} \qquad \qquad \frac{y \neq x}{y[e/x] = y} \qquad \qquad \overline{c[e/x] = c}$$

$$\frac{e_1[e/x] = e_1' \quad y \neq x \quad y \notin FV(e)}{(\lambda y. \ e_1)[e/x] = \lambda y. \ e_1'} \qquad \qquad \frac{e_1[e/x] = e_1' \quad e_2[e/x] = e_2'}{(e_1 \ e_2)[e/x] = e_1' \ e_2'}$$

 $\Gamma \vdash e : \tau$

$$\frac{\Gamma \vdash c:\mathsf{int}}{\Gamma \vdash x:\Gamma(x)} \qquad \frac{\Gamma, x:\tau_1 \vdash e:\tau_2}{\Gamma \vdash \lambda x. \; e:\tau_1 \to \tau_2} \qquad \frac{\Gamma \vdash e_1:\tau_2 \to \tau_1 \qquad \Gamma \vdash e_2:\tau_2}{\Gamma \vdash e_1 \; e_2:\tau_1}$$

- Preservation: If $\cdot \vdash e : \tau$ and $e \to e'$, then $\cdot \vdash e' : \tau$.
- Progress: If $\cdot \vdash e : \tau$, then e is a value or there exists an e' such that $e \to e'$.
- Substitution: If $\Gamma, x: \tau' \vdash e : \tau$ and $\Gamma \vdash e' : \tau'$, then $\Gamma \vdash e[e'/x] : \tau$.

Name:

1. In this problem, we change IMP by adding one more *constant*, \Box :

 $c \in \{\ldots, -2, -1, 0, 1, 2, \ldots\} \cup \{\Box\}$

Because \Box is a constant, it can also be an expression, the result of evaluating an expression, or the contents of a heap variable. However, \Box is *not* a legal argument to any "math" operators like "(blue) plus" except "=" and " \neq ".

Informally, if an expression has any subexpression that evaluates to \Box , then the expression evaluates to \Box .

- (a) (7 points) Add four inference rules to the H; $e \Downarrow c$ judgment to account for \Box .
- (b) (17 points) Considering all the inference rules now in the language, prove that if e contains a \Box and H; $e \Downarrow c$, then c is \Box . Hint: Use induction. The new rules from part (a) are *not* the difficult cases.
- (c) (6 points) Our IMP statement semantics can now get stuck. In English, explain exactly how this could occur. Propose a small change to the statement semantics to avoid this. Give any new inference rule(s) and explain in English how you changed the meaning of the language.

Solution:

(a)

(b) Proof by induction on the derivation of H; $e \Downarrow c$ proceeding by the rules instantiated at the bottom of the derivation:

CONST Then e = c, so if e contains \Box , then e and c are \Box .

- VAR Holds vacuously because e is some x and therefore does not contain \Box .
- ADD Because the result is $c_1 + c_2$, neither c_1 nor c_2 is \Box . Therefore, since H; $e_1 \Downarrow c_1$ and H; $e_2 \Downarrow c_2$, by induction neither e_1 nor e_2 contains \Box . So $e_1 + e_2$ does not contain \Box and the theorem holds vacuously.
- MULT Because the result is $c_1 * c_2$, neither c_1 nor c_2 is \Box . Therefore, since H; $e_1 \Downarrow c_1$ and H; $e_2 \Downarrow c_2$, by induction neither e_1 nor e_2 contains \Box . So $e_1 * e_2$ does not contain \Box and the theorem holds vacuously.
 - sq1 Holds trivially because c is \Box .
 - sq2 Holds trivially because c is \Box .
 - sq3 Holds trivially because c is \Box .
 - sq4 Holds trivially because c is \Box .

Note: The proof can also be done by structural induction on e, but then you need to argue for each form of e what rules could apply.

(c) A statement can get stuck if the expression in an if-statement evaluates to \Box because it is neither the case that $\Box > 0$ nor $\Box \le 0$. There are of course many ways to fix this. We could add the rule below, which has the effect of treating \Box as false, just like a non-positive number.

$$\frac{{}^{\mathrm{IF}3}}{H \; ; \; e \; \Downarrow \; \Box} \frac{H \; ; \; e \; \Downarrow \; \Box}{H \; ; \; \mathrm{if} \; e \; s_1 \; s_2 \; \rightarrow \; H \; ; \; s_2}$$

Name:_____

(This page intentionally blank)

Name:_

2. In this problem, we use the following *large-step* semantics for IMP statements: The judgment is H; $s \downarrow H'$ meaning s under heap H produces heap H'. The inference rules are:

$$\begin{array}{c} \overset{\mathrm{SKIP}}{H} & \overset{\mathrm{ASSIGN}}{H; \mathsf{skip} \Downarrow H} & \overset{\mathrm{ASSIGN}}{H; c \Downarrow c} & \overset{\mathrm{SEQ}}{H; s_1 \Downarrow H_1 & H_1; s_2 \Downarrow H_2} \\ & \overset{\mathrm{IF1}}{H; \mathsf{skip} \Downarrow H} & \overset{\mathrm{IF2}}{H; s_1 \Downarrow H_1 & c > 0} & \overset{\mathrm{IF2}}{H; (s_1; s_2) \Downarrow H_2} \\ & \overset{\mathrm{IF1}}{H; \mathsf{if} \ e \ s_1 \ s_2 \Downarrow H_1} & \overset{\mathrm{IF2}}{H; \mathsf{if} \ e \ s_1 \ s_2 \Downarrow H_2} & \overset{\mathrm{C} \leq 0}{H; \mathsf{if} \ e \ s_1 \ s_2 \Downarrow H_2} \\ & \overset{\mathrm{WHILE}}{H; \mathsf{if} \ e \ (s; \mathsf{while} \ e \ s) \ \mathsf{skip} \Downarrow H' \\ & \overset{\mathrm{WHILE}}{H; \mathsf{while} \ e \ s \Downarrow H'} \end{array}$$

The sequence operator is associative. That is, s_1 ; $(s_2; s_3)$ and $(s_1; s_2)$; s_3 are equivalent.

- (a) (5 points) State this associativity fact formally as a theorem in terms of the large-step semantics for statements.
- (b) (16 points) Prove the theorem you stated in part (a). Hint: Do not use induction.

Solution:

- (a) (For all $H, H', s_1, s_2, \text{ and } s_3$), $H; (s_1; (s_2; s_3)) \Downarrow H'$ if and only if $H; ((s_1; s_2); s_3) \Downarrow H'$.
- (b) We prove the two directions of the if and only if separately. First assume H; $(s_1; (s_2; s_3)) \Downarrow H'$. Inverting the derivation ensures we have a derivation that looks like this for some H_1 and H_2 :

$$\frac{\frac{\vdots}{H_1;s_1 \Downarrow H_1}}{\frac{H_1;s_2 \Downarrow H_2}{H_1;(s_2;s_3) \Downarrow H'}} \frac{\frac{\vdots}{H_2;s_3 \Downarrow H'}}{\frac{H_1;(s_2;s_3) \Downarrow H'}{H_1;(s_2;s_3)) \Downarrow H'}}$$

.

.

So we know $H; s_1 \Downarrow H_1, H_1; s_2 \Downarrow H_2$, and $H_2; s_3 \Downarrow H'$, from which we can derive:

$$\frac{\frac{H; s_1 \Downarrow H_1 \quad H_1; s_2 \Downarrow H_2}{H; (s_1; s_2) \Downarrow H_2} \qquad H_2; s_3 \Downarrow H'}{H; ((s_1; s_2); s_3) \Downarrow H'}$$

Now assume H; $((s_1; s_2); s_3) \Downarrow H'$. Inverting the derivation ensures we have a derivation that looks like this for some H_1 and H_2 :

.

$$\frac{ \begin{array}{c} \vdots \\ \overline{H; s_1 \Downarrow H_1} \\ \hline H; (s_1; s_2) \Downarrow H_2 \\ \hline H; ((s_1; s_2); s_3) \Downarrow H' \end{array}} \qquad \begin{array}{c} \vdots \\ \overline{H_2; s_3 \Downarrow H'} \\ \hline \end{array}$$

So we know $H; s_1 \Downarrow H_1, H_1; s_2 \Downarrow H_2$, and $H_2; s_3 \Downarrow H'$, from which we can derive:

.

$$\frac{H_{;}s_{1} \Downarrow H_{1}}{H_{;}(s_{2};s_{3}) \Downarrow H'} \frac{H_{1};s_{2} \Downarrow H_{2}}{H_{1};(s_{2};s_{3}) \Downarrow H'} \frac{H_{1}}{H_{;}(s_{2};s_{3}) \Downarrow H'}$$

Name:_____

(This page intentionally blank)

Name:

3. (14 points) Describe what, if anything, each of the following Caml programs would print:

```
(a) let f x y = x y in
   let z = f print_string "hi " in
   f print_string "hi"
(b) let f x = (fun y \rightarrow print_string x) in
   let g = f "elves " in
   let x = "trees " in
   g "cookies "
(c) let rec f n x = 
     if n>=0
     then (let _ = print_string x in f (n-1) x)
     else ()
   in
   f 3 "hi "
(d) let rec f n x = 
     if n>=0
     then (let _ = print_string x in f (n-1) x)
     else ()
   in
   f 3
(e) let rec f x = f x in
   print_string (f "hi ")
```

Solution:

- (a) hi hi
- (b) elves
- (c) hi hi hi hi
- (d) prints nothing (evaluates to a function that prints when called)
- (e) prints nothing (goes into an infinite loop)

Name:_____

4. In this problem, we use the untyped lambda calculus with small-step call-by-value left-to-right evaluation. Recall this encoding of pairs:

"mkpair" $\lambda x. \lambda y. \lambda z. z x y$ "fst" $\lambda p. p(\lambda x. \lambda y. x)$ "snd" $\lambda p. p(\lambda x. \lambda y. y)$

(a) (9 points) For any values v_1 and v_2 , "fst" ("mkpair" $v_1 v_2$) produces a value in 6 steps. Writing only lambda terms (i.e., no abbreviations), show these steps. Show just the result of each step, not the derivation that produces it.

 $(\lambda p. p (\lambda x. \lambda y. x)) ((\lambda x. \lambda y. \lambda z. z x y) v_1 v_2)$

(b) (6 points) Again using no abbreviations, extend the encoding to include a "swap" function. Given an encoding of the pair (v_1, v_2) , "swap" should return an encoding of the pair (v_2, v_1) .

Solution:

- (a) $(\lambda p. p (\lambda x. \lambda y. x)) ((\lambda x. \lambda y. \lambda z. z x y) v_1 v_2)$ $\rightarrow (\lambda p. p (\lambda x. \lambda y. x)) ((\lambda y. \lambda z. z v_1 y) v_2)$ $\rightarrow (\lambda p. p (\lambda x. \lambda y. x)) (\lambda z. z v_1 v_2)$ $\rightarrow (\lambda z. z v_1 v_2) (\lambda x. \lambda y. x)$ $\rightarrow (\lambda x. \lambda y. x) v_1 v_2$ $\rightarrow (\lambda y. v_1) v_2$ $\rightarrow v_1$
- (b) There are an infinite number of correct solutions. Here are four:
 - $\lambda p. (\lambda x. \lambda y. \lambda z. z x y)(p \lambda x. \lambda y. y)(p \lambda x. \lambda y. x)$
 - $\lambda p. \lambda z. z (p \lambda x. \lambda y. y)(p \lambda x. \lambda y. x)$
 - $\lambda p. (\lambda x. \lambda y. \lambda z. z y x)(p \lambda x. \lambda y. x)(p \lambda x. \lambda y. y)$
 - $\lambda p. p \lambda x. \lambda y. \lambda z. z y x$

Name:__

5. In this problem, we consider the simply-typed lambda-calculus (using small-step call-by-value left-toright evaluation). We suppose the integer constants c (of type int) include only positive integers (1, 2, 3, ...), i.e., we remove negative numbers. We add a subtraction operator (e ::= ... | e - e) and these rules:

c_3 is math's subtraction of c_2 from c_1	$\Gamma \vdash e_1: int \qquad \Gamma \vdash e_2: int$
$c_1 - c_2 \rightarrow c_3$	$\Gamma \vdash e_1 - e_2 : int$

- (a) (4 points) Our operational semantics needs two additional rules. Give them.
- (b) (6 points) Our language is *not* type-safe. Demonstrate this.
- (c) (10 points) Consider the Preservation Lemma, the Progress Lemma, and the Substitution Lemma. Which of these lemmas are true in our language? Explain your answers briefly, but proofs are not required.

Solution:

(a)

$$\frac{e_1 \rightarrow e'_1}{e_1 - e_2 \rightarrow e'_1 - e_2} \qquad \qquad \frac{e_2 \rightarrow e'_2}{v - e_2 \rightarrow v - e'_2}$$

- (b) Consider an expression like 3 4. It type-checks under the emtpy context (·) with type int, but it cannot take a step because the result of the mathematical subtraction is -1, which is not in our language, so no rule applies.
- (c) The Progress Lemma does *not* hold; see part (b).

The Preservation Lemma *does* hold: all three new operational rules produce an expression of type int assuming the expression before the step type-checks with type int.

The Substitution Lemma does hold (assuming $(e_1 - e_2)[e/x] = (e_1[e/x]) - (e_2[e/x]))$; the case of the proof for subtractions expressions follows from induction just like the case for application.