Name: \qquad

CSE 505, Fall 2009, Midterm Examination 5 November 2009

Please do not turn the page until everyone is ready.

Rules:

- The exam is closed-book, closed-note, except for one side of one $8.5 x 11$ in piece of paper.
- Please stop promptly at 11:50.
- You can rip apart the pages, but please write your name on each page.
- There are $\mathbf{1 0 0}$ points total, distributed unevenly among $\mathbf{5}$ questions (which have multiple parts).

Advice:

- Read questions carefully. Understand a question before you start writing.
- Write down thoughts and intermediate steps so you can get partial credit.
- The questions are not necessarily in order of difficulty. Skip around. In particular, make sure you get to all the problems.
- If you have questions, ask.
- Relax. You are here to learn.

Name: \qquad
For your reference:

$$
\begin{array}{rl}
s & ::= \\
e & \text { skip }|x:=e| s ; s \mid \text { if } e s s \mid \text { while } e s \\
e & c|x| e+e \mid e * e \\
(c & \in\{\ldots,-2,-1,0,1,2, \ldots\}) \\
(x & \left.\in\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{z}_{1}, \mathrm{z}_{2}, \ldots, \ldots\right\}\right)
\end{array}
$$

$H ; e \Downarrow c$

$$
H_{1} ; s_{1} \rightarrow H_{2} ; s_{2}
$$

SEQ1
$\overline{H ; \text { skip } ; s \rightarrow H ; s}$

SEQ2

$$
\begin{aligned}
H ; s_{1} & \rightarrow H^{\prime} ; s_{1}^{\prime} \\
I ; s_{1} ; s_{2} & \rightarrow H^{\prime} ; s_{1}^{\prime} ; s_{2}
\end{aligned}
$$

IF1
$\frac{H ; e \Downarrow c}{H ; \text { if } e s_{1} s_{2} \rightarrow H ; s_{1}} \quad \frac{H ; e \Downarrow c}{H ; \text { if } e s_{1} s_{2} \rightarrow H ; s_{2}}$
while
$\overline{H \text {; while } e s \rightarrow H \text {; if } e(s \text {; while } e s) \text { skip }}$

$$
\begin{aligned}
e & ::=\lambda x \cdot e|x| \text { e e } \mid c \\
v & ::=\lambda x \cdot e \mid c \\
\tau & ::=\text { int } \mid \tau \rightarrow \tau
\end{aligned}
$$

$e \rightarrow e^{\prime}$
$\overline{(\lambda x . e) v \rightarrow e[v / x]}$

$$
\frac{e_{1} \rightarrow e_{1}^{\prime}}{e_{1} e_{2} \rightarrow e_{1}^{\prime} e_{2}} \quad \frac{e_{2} \rightarrow e_{2}^{\prime}}{v e_{2} \rightarrow v e_{2}^{\prime}}
$$

$e\left[e^{\prime} / x\right]=e^{\prime \prime}$

$$
\begin{array}{cc}
\frac{y \neq x}{x[e / x]=e} & \frac{y}{y[e / x]=y} \\
\frac{e_{1}[e / x]=e_{1}^{\prime} \quad y \neq x}{\left(\lambda y \cdot e_{1}\right)[e / x]=\lambda y \cdot e_{1}^{\prime}} & \frac{e_{1}[e / x]=e_{1}^{\prime} \quad e_{2}[e / x]=e_{2}^{\prime}}{\left(e_{1} e_{2}\right)[e / x]=e_{1}^{\prime} e_{2}^{\prime}}
\end{array}
$$

$\Gamma \vdash e: \tau$

$\overline{\Gamma \vdash c: \mathrm{int}} \quad \overline{\Gamma \vdash x: \Gamma(x)} \quad \frac{\Gamma, x: \tau_{1} \vdash e: \tau_{2}}{\Gamma \vdash \lambda x . e: \tau_{1} \rightarrow \tau_{2}} \quad \frac{\Gamma \vdash e_{1}: \tau_{2} \rightarrow \tau_{1} \quad \Gamma \vdash e_{2}: \tau_{2}}{\Gamma \vdash e_{1} e_{2}: \tau_{1}}$

- Preservation: If $\cdot \vdash e: \tau$ and $e \rightarrow e^{\prime}$, then $\cdot \vdash e^{\prime}: \tau$.
- Progress: If $\cdot \vdash e: \tau$, then e is a value or there exists an e^{\prime} such that $e \rightarrow e^{\prime}$.
- Substitution: If $\Gamma, x: \tau^{\prime} \vdash e: \tau$ and $\Gamma \vdash e^{\prime}: \tau^{\prime}$, then $\Gamma \vdash e\left[e^{\prime} / x\right]: \tau$.

Name: \qquad

1. In this problem, we change IMP by adding one more constant, \square :

$$
c \in\{\ldots,-2,-1,0,1,2, \ldots\} \cup\{\square\}
$$

Because \square is a constant, it can also be an expression, the result of evaluating an expression, or the contents of a heap variable. However, \square is not a legal argument to any "math" operators like "(blue) plus" except "=" and " \neq ".

Informally, if an expression has any subexpression that evaluates to \square, then the expression evaluates to \square.
(a) ($\mathbf{7}$ points) Add four inference rules to the $H ; e \Downarrow c$ judgment to account for \square.
(b) ($\mathbf{1 7}$ points) Considering all the inference rules now in the language, prove that if e contains a \square and $H ; e \Downarrow c$, then c is \square. Hint: Use induction. The new rules from part (a) are not the difficult cases.
(c) ($\mathbf{6}$ points) Our IMP statement semantics can now get stuck. In English, explain exactly how this could occur. Propose a small change to the statement semantics to avoid this. Give any new inference rule(s) and explain in English how you changed the meaning of the language.

Solution:

(a)

SQ1	SQ2	SQ3	SQ4
$\frac{H ; e_{1} \Downarrow \square}{H ; e_{1}+e_{2} \Downarrow \square}$	$\frac{H ; e_{2} \Downarrow \square}{H ; e_{1}+e_{2} \Downarrow \square}$	$\frac{H ; e_{1} \Downarrow \square}{H ; e_{1} * e_{2} \Downarrow \square}$	$\frac{H ; e_{2} \Downarrow \square}{H ; e_{1} * e_{2} \Downarrow \square}$

(b) Proof by induction on the derivation of H; e $\Downarrow c$ proceeding by the rules instantiated at the bottom of the derivation:

CONST Then $e=c$, so if e contains \square, then e and c are \square.
var Holds vacuously because e is some x and therefore does not contain \square.
ADD Because the result is $c_{1}+c_{2}$, neither c_{1} nor c_{2} is \square. Therefore, since $H ; e_{1} \Downarrow c_{1}$ and $H ; e_{2} \Downarrow c_{2}$, by induction neither e_{1} nor e_{2} contains \square. So $e_{1}+e_{2}$ does not contain \square and the theorem holds vacuously.
mult Because the result is $c_{1} * c_{2}$, neither c_{1} nor c_{2} is \square. Therefore, since $H ; e_{1} \Downarrow c_{1}$ and $H ; e_{2} \Downarrow c_{2}$, by induction neither e_{1} nor e_{2} contains \square. So $e_{1} * e_{2}$ does not contain \square and the theorem holds vacuously.
SQ1 Holds trivially because c is \square.
SQ2 Holds trivially because c is \square.
SQ3 Holds trivially because c is \square.
SQ4 Holds trivially because c is \square.
Note: The proof can also be done by structural induction on e, but then you need to argue for each form of e what rules could apply.
(c) A statement can get stuck if the expression in an if-statement evaluates to \square because it is neither the case that $\square>0$ nor $\square \leq 0$. There are of course many ways to fix this. We could add the rule below, which has the effect of treating \square as false, just like a non-positive number.

$$
\begin{aligned}
& \text { IF3 } \\
& \frac{H ; e \Downarrow \square}{H ; \text { if } e s_{1} s_{2} \rightarrow H ; s_{2}}
\end{aligned}
$$

Name:
(This page intentionally blank)

Name: \qquad
2. In this problem, we use the following large-step semantics for IMP statements: The judgment is $H ; s \Downarrow H^{\prime}$ meaning s under heap H produces heap H^{\prime}. The inference rules are:

$$
\begin{aligned}
& \begin{array}{lll}
\text { SKIP } & \begin{array}{l}
\text { ASSIGN } \\
\hline H ; \text { skip } \Downarrow H
\end{array} & \overline{H ; e \Downarrow c} \\
H ; x:=e \Downarrow H, x \mapsto c & \frac{\text { SEQ }}{} \quad \begin{array}{l}
s_{1} \Downarrow H_{1} \quad H_{1} ; s_{2} \Downarrow H_{2} \\
H ;\left(s_{1} ; s_{2}\right) \Downarrow H_{2}
\end{array}, ~
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { while } \\
& \frac{H \text {; if } e\left(s \text {; while es) skip } \Downarrow H^{\prime}\right.}{H ; \text { while } e s \Downarrow H^{\prime}}
\end{aligned}
$$

The sequence operator is associative. That is, $s_{1} ;\left(s_{2} ; s_{3}\right)$ and $\left(s_{1} ; s_{2}\right) ; s_{3}$ are equivalent.
(a) (5 points) State this associativity fact formally as a theorem in terms of the large-step semantics for statements.
(b) ($\mathbf{1 6}$ points) Prove the theorem you stated in part (a). Hint: Do not use induction.

Solution:

(a) (For all $H, H^{\prime}, s_{1}, s_{2}$, and $\left.s_{3}\right), H ;\left(s_{1} ;\left(s_{2} ; s_{3}\right)\right) \Downarrow H^{\prime}$ if and only if $H ;\left(\left(s_{1} ; s_{2}\right) ; s_{3}\right) \Downarrow H^{\prime}$.
(b) We prove the two directions of the if and only if separately.

First assume $H ;\left(s_{1} ;\left(s_{2} ; s_{3}\right)\right) \Downarrow H^{\prime}$. Inverting the derivation ensures we have a derivation that looks like this for some H_{1} and H_{2} :

So we know $H ; s_{1} \Downarrow H_{1}, H_{1} ; s_{2} \Downarrow H_{2}$, and $H_{2} ; s_{3} \Downarrow H^{\prime}$, from which we can derive:

$$
\frac{\frac{H ; s_{1} \Downarrow H_{1} \quad H_{1} ; s_{2} \Downarrow H_{2}}{H ;\left(s_{1} ; s_{2}\right) \Downarrow H_{2}} \quad H_{2} ; s_{3} \Downarrow H^{\prime}}{H ;\left(\left(s_{1} ; s_{2}\right) ; s_{3}\right) \Downarrow H^{\prime}}
$$

Now assume $H ;\left(\left(s_{1} ; s_{2}\right) ; s_{3}\right) \Downarrow H^{\prime}$. Inverting the derivation ensures we have a derivation that looks like this for some H_{1} and H_{2} :

$$
\frac{\frac{\vdots}{H ; s_{1} \Downarrow H_{1}}}{\frac{\vdots}{H ;\left(s_{1} ; s_{2}\right) \Downarrow H_{2}}} \frac{\frac{H_{1} ; s_{2} \Downarrow H_{2}}{H ;\left(\left(s_{1} ; s_{2}\right) ; s_{3}\right) \Downarrow H^{\prime}}}{\frac{\vdots}{H_{2} ; s_{3} \Downarrow H^{\prime}}}
$$

So we know $H ; s_{1} \Downarrow H_{1}, H_{1} ; s_{2} \Downarrow H_{2}$, and $H_{2} ; s_{3} \Downarrow H^{\prime}$, from which we can derive:

$$
\frac{H_{;} s_{1} \Downarrow H_{1} \quad \frac{H_{1} ; s_{2} \Downarrow H_{2} \quad H_{2} ; s_{3} \Downarrow H^{\prime}}{H_{1} ;\left(s_{2} ; s_{3}\right) \Downarrow H^{\prime}}}{H ;\left(s_{1} ;\left(s_{2} ; s_{3}\right)\right) \Downarrow H^{\prime}}
$$

Name:
(This page intentionally blank)

Name: \qquad
3. ($\mathbf{1 4}$ points) Describe what, if anything, each of the following Caml programs would print:
(a) let $f x y=x y$ in
let $z=f$ print_string "hi " in
f print_string "hi"
(b) let $f x=$ (fun $y->$ print_string x) in let $g=f$ "elves " in
let $\mathrm{x}=$ "trees " in
g "cookies "
(c) let rec $f \mathrm{n} x=$ if $n>=0$ then (let _ = print_string x in $f(n-1) x$) else ()
in
f 3 "hi "
(d) let rec $f \mathrm{n} x=$

$$
\text { if } \mathrm{n}>=0
$$

 then (let _ = print_string \(x\) in \(f(n-1) x\))
 else ()
 in
f 3
(e) let $\mathrm{rec} \mathrm{f} x=\mathrm{f} x$ in print_string (f "hi ")

Solution:

(a) hi hi
(b) elves
(c) hi hi hi hi
(d) prints nothing (evaluates to a function that prints when called)
(e) prints nothing (goes into an infinite loop)

Name: \qquad
4. In this problem, we use the untyped lambda calculus with small-step call-by-value left-to-right evaluation. Recall this encoding of pairs:
"mkpair" $\lambda x \cdot \lambda y . \lambda z \cdot z x y$
"fst" λp. $p(\lambda x . \lambda y . x)$
"snd" $\lambda p . p(\lambda x . \lambda y . y)$
(a) ($\mathbf{9}$ points) For any values v_{1} and v_{2}, "fft" ("mkpair" $v_{1} v_{2}$) produces a value in 6 steps. Writing only lambda terms (i.e., no abbreviations), show these steps. Show just the result of each step, not the derivation that produces it.
$(\lambda p . p(\lambda x \cdot \lambda y \cdot x))\left((\lambda x, \lambda y \cdot \lambda z . z x y) v_{1} v_{2}\right)$
\rightarrow \qquad
\rightarrow \qquad
\rightarrow \qquad
\rightarrow \qquad
\rightarrow \qquad
\qquad
(b) (6 points) Again using no abbreviations, extend the encoding to include a "swap" function. Given an encoding of the pair $\left(v_{1}, v_{2}\right)$, "swap" should return an encoding of the pair $\left(v_{2}, v_{1}\right)$.

Solution:

(a) $(\lambda p \cdot p(\lambda x \cdot \lambda y \cdot x))\left((\lambda x \cdot \lambda y \cdot \lambda z \cdot z x y) v_{1} v_{2}\right)$
$\rightarrow(\lambda p . p(\lambda x \cdot \lambda y \cdot x))\left(\left(\lambda y . \lambda z \cdot z v_{1} y\right) v_{2}\right)$
$\rightarrow(\lambda p \cdot p(\lambda x \cdot \lambda y \cdot x))\left(\lambda z \cdot z v_{1} v_{2}\right)$
$\rightarrow\left(\lambda z . z v_{1} v_{2}\right)(\lambda x . \lambda y . x)$
$\rightarrow(\lambda x . \lambda y . x) v_{1} v_{2}$
$\rightarrow\left(\lambda y . v_{1}\right) v_{2}$
$\rightarrow v_{1}$
(b) There are an infinite number of correct solutions. Here are four:

- $\lambda p .(\lambda x . \lambda y . \lambda z . z x y)(p \lambda x . \lambda y . y)(p \lambda x . \lambda y \cdot x)$
- $\lambda p . \lambda z . z(p \lambda x . \lambda y . y)(p \lambda x . \lambda y . x)$
- $\lambda p .(\lambda x . \lambda y . \lambda z . z y x)(p \lambda x . \lambda y . x)(p \lambda x . \lambda y . y)$
- λp. $p \lambda x$. λy. λz. $z y x$

Name: \qquad
5. In this problem, we consider the simply-typed lambda-calculus (using small-step call-by-value left-toright evaluation). We suppose the integer constants c (of type int) include only positive integers (1,2 , $3, \ldots$), i.e., we remove negative numbers. We add a subtraction operator ($e::=\ldots \mid e-e$) and these rules:

(a) (4 points) Our operational semantics needs two additional rules. Give them.
(b) ($\mathbf{6}$ points) Our language is not type-safe. Demonstrate this.
(c) ($\mathbf{1 0}$ points) Consider the Preservation Lemma, the Progress Lemma, and the Substitution Lemma. Which of these lemmas are true in our language? Explain your answers briefly, but proofs are not required.

Solution:

(a)

$$
\frac{e_{1} \rightarrow e_{1}^{\prime}}{e_{1}-e_{2} \rightarrow e_{1}^{\prime}-e_{2}} \quad \frac{e_{2} \rightarrow e_{2}^{\prime}}{v-e_{2} \rightarrow v-e_{2}^{\prime}}
$$

(b) Consider an expression like 3-4. It type-checks under the emtpy context (.) with type int, but it cannot take a step because the result of the mathematical subtraction is -1 , which is not in our language, so no rule applies.
(c) The Progress Lemma does not hold; see part (b).

The Preservation Lemma does hold: all three new operational rules produce an expression of type int assuming the expression before the step type-checks with type int.
The Substitution Lemma does hold (assuming $\left.\left(e_{1}-e_{2}\right)[e / x]=\left(e_{1}[e / x]\right)-\left(e_{2}[e / x]\right)\right)$; the case of the proof for subtractions expressions follows from induction just like the case for application.

