CSE505 Graduate Programming Languages: Lecture 6 Supplement

In class we sketched several proofs, but proof sketches invariably skip steps and have small errors. Here are the proofs more carefully laid out, as one might do on a homework assignment.

Theorem: $H ; e * 2 \Downarrow c$ if and only if $H ; e+e \Downarrow c$.

Proof: (Does not use induction)

- First assume $H ; e * 2 \Downarrow c$ and show $H ; e+e \Downarrow c$. Any derivation of $H ; e * 2 \Downarrow c$ must end with the MULT rule, which means there must exist derivations of $H ; e \Downarrow c^{\prime}$ and $H ; 2 \Downarrow 2$, and c must be $2 c^{\prime}$. That is, there must be a derivation that looks like this:

$$
\frac{\frac{\vdots}{H ; e \Downarrow c^{\prime}} \quad \overline{H ; 2 \Downarrow 2}}{H ; e * 2 \Downarrow 2 c^{\prime}}
$$

So given that there exists a derivation of $H ; e \Downarrow c^{\prime}$, we can use ADD to derive:

$$
\frac{H ; e \Downarrow c^{\prime} \quad H ; e \Downarrow c^{\prime}}{H ; e+e \Downarrow c^{\prime}+c^{\prime}}
$$

Math provides $c^{\prime}+c^{\prime}=2 c^{\prime}$, so the conclusion of this derivation is what we need.

- Now assume $H ; e+e \Downarrow c$ and show $H ; e * 2 \Downarrow c$. Any derivation of $H ; e+e \Downarrow c$ must end with the ADD rule, which means there exists a derivation that looks like this (where $c=c_{1}+c_{2}$):

$$
\frac{\vdots}{\frac{\vdots ; e \Downarrow c_{1}}{H ; e+e \Downarrow c_{1}+c_{2}}}
$$

In fact, we earlier proved determinacy (there is at most one c such that $H ; e \Downarrow c$), so the derivation must have this form (where $c=c_{1}+c_{1}$):

$$
\frac{\vdots}{\frac{\vdots ; e \Downarrow c_{1}}{H ; e+e \Downarrow c_{1}+c_{1}}}
$$

So given that there exists a derivation of $H ; e \Downarrow c_{1}$, we can use mult to derive:

$$
\frac{H ; e \Downarrow c_{1} \frac{\overline{H ; 2 \Downarrow 2}}{H ; e * 2 \Downarrow 2 c_{1}}}{\frac{H}{}}
$$

Math provides $c_{1}+c_{1}=2 c_{1}$, so the conclusion of this derivation is what we need.

$$
C::=[\cdot]|C+e| e+C|C * e| e * C
$$

Formal definition of "filling the hole":

$$
\begin{aligned}
([\cdot])[e] & =e \\
\left(C+e_{1}\right)[e] & =C[e]+e_{1} \\
\left(e_{1}+C\right)[e] & =e_{1}+C[e] \\
\left(C * e_{1}\right)[e] & =C[e] * e_{1} \\
\left(e_{1} * C\right)[e] & =e_{1} * C[e]
\end{aligned}
$$

Theorem: $H ; C[e * 2] \Downarrow c$ if and only if $H ; C[e+e] \Downarrow c$.
Proof: By induction on (the height of) the structure of C :

- If the height is 0 , then C is $[\cdot]$, so $C[e * 2]=e * 2$ and $C[e+e]=e+e$. So the previous theorem is exactly what we need.
- If the height is greater than 0 , then C has one of four forms:
- If C is $C^{\prime}+e^{\prime}$ for some C^{\prime} and e^{\prime}, then $C[e * 2]$ is $C^{\prime}[e * 2]+e^{\prime}$ and $C[e+e]$ is $C^{\prime}[e+e]+e^{\prime}$. Since C^{\prime} is shorter than C, induction ensures that for any constant $c^{\prime}, H ; C^{\prime}[e * 2] \Downarrow c^{\prime}$ if and only if $H ; C^{\prime}[e+e] \Downarrow c^{\prime}$.
Assume $H ; C^{\prime}[e * 2]+e^{\prime} \Downarrow c$ and show $H ; C^{\prime}[e+e]+e^{\prime} \Downarrow c$: Any derivation of $H ; C^{\prime}[e * 2]+e^{\prime} \Downarrow c$ must end with ADD, i.e., it looks like this (where $c=c^{\prime}+c^{\prime \prime}$):

$$
\frac{\vdots}{\frac{\vdots ; C^{\prime}[e * 2] \Downarrow c^{\prime}}{H ; C^{\prime}[e * 2]+e^{\prime} \Downarrow c} \frac{\vdots}{H ; e^{\prime} \Downarrow c^{\prime \prime}}}
$$

As argued above, the existence of a derivation of $H ; C^{\prime}[e * 2] \Downarrow c^{\prime}$ ensures the existence of a derivation of $H ; C^{\prime}[e+e] \Downarrow c^{\prime}$. So using ADD and the existence of a derivation of $H ; e^{\prime} \Downarrow c^{\prime \prime}$, we can derive:

$$
\frac{H ; C^{\prime}[e+e] \Downarrow c^{\prime} \quad H ; e^{\prime} \Downarrow c^{\prime \prime}}{H ; C^{\prime}[e+e]+e^{\prime} \Downarrow c}
$$

Now assume $H ; C^{\prime}[e+e]+e^{\prime} \Downarrow c$ and show $H ; C^{\prime}[e * 2]+e^{\prime} \Downarrow c$: Any derivation of $H ; C^{\prime}[e+e]+e^{\prime} \Downarrow c$ must end with ADD, i.e., it looks like this (where $c=c^{\prime}+c^{\prime \prime}$):

$$
\frac{\vdots}{\frac{\vdots ; C^{\prime}[e+e] \Downarrow c^{\prime}}{H ; C^{\prime}[e+e]+e^{\prime} \Downarrow c}} \frac{\vdots}{H ; e^{\prime} \Downarrow c^{\prime \prime}}
$$

As argued above, the existence of a derivation of $H ; C^{\prime}[e+e] \Downarrow c^{\prime}$ ensures the existence of a derivation of $H ; C^{\prime}[e * 2] \Downarrow c^{\prime}$. So using ADD and the existence of a derivation of $H ; e^{\prime} \Downarrow c^{\prime \prime}$, we can derive:

$$
\frac{H ; C^{\prime}[e * 2] \Downarrow c^{\prime} \quad H ; e^{\prime} \Downarrow c^{\prime \prime}}{H ; C^{\prime}[e * 2]+e^{\prime} \Downarrow c}
$$

- The other 3 cases are similar. (Try them out.)

Theorem: The two semantics below are equivalent, i.e., $H ; e \Downarrow c$ if and only if $H ; e \rightarrow^{*} c$.

Proof: We prove the two directions separately.
First assume $H ; e \Downarrow c$; show $\exists n . H ; e \rightarrow^{n} c$. By induction on the height h of derivation of $H ; e \Downarrow c$:

- $h=1$: Then the derivation must end with Const or var. For Const, e is c and trivially $H ; e \rightarrow^{0} c$. For VAR, e is some x where $H(x)=c$, so using SVAR, $H ; e \rightarrow^{1} c$.
- $h>1$: Then the derivation must end with ADD, so e is some $e_{1}+e_{2}$ where $H ; e_{1} \Downarrow c_{1}, H ; e_{2} \Downarrow c_{2}$, and c is $c_{1}+c_{2}$. By induction $\exists n_{1}, n_{2}$. $H ; e_{1} \rightarrow^{n_{1}} c_{1}$ and $H ; e_{2} \rightarrow^{n_{2}} c_{2}$. Therefore, using the lemma below, $H ; e_{1}+e_{2} \rightarrow^{n_{1}} c_{1}+e_{2}$ and $H ; c_{1}+e_{2} \rightarrow^{n_{2}} c_{1}+c_{2}$, so ADD lets us derive $H ; e_{1}+e_{2} \rightarrow^{n_{1}+n_{2}+1} c$.

Lemma: If $H ; e \rightarrow^{n} e^{\prime}$, then $H ; e_{1}+e \rightarrow^{n} e_{1}+e^{\prime}$ and $H ; e+e_{2} \rightarrow^{n} e^{\prime}+e_{2}$.
Proof: By induction on n. If $n=0$, the result is trivial because $e=e^{\prime}$. If $n>0$, then there exists some $e^{\prime \prime}$ such that $H ; e \rightarrow^{n-1} e^{\prime \prime}$ and $H ; e^{\prime \prime} \rightarrow^{1} e^{\prime}$. So by induction $H ; e_{1}+e \rightarrow^{n-1} e_{1}+e^{\prime \prime}$ and $H ; e+e_{2} \rightarrow^{n-1} e^{\prime \prime}+e_{2}$. Using SRIGHT and SLEFT respectively, $H ; e^{\prime \prime} \rightarrow^{1} e^{\prime}$ ensures $H ; e_{1}+e^{\prime \prime} \rightarrow^{1} e_{1}+e^{\prime}$ and $H ; e^{\prime \prime}+e_{2} \rightarrow^{1} e^{\prime}+e_{2}$. So with the inductive hypotheses, $H ; e_{1}+e \rightarrow^{n} e_{1}+e^{\prime}$ and $H ; e+e_{2} \rightarrow^{n} e^{\prime}+e_{2}$.

Now assume $\exists n . H ; e \rightarrow^{n} c$; show $H ; e \Downarrow c$. By induction on n :

- $n=0: e$ is c and CONST lets us derive $H ; c \Downarrow c$.
- $n>0$: So $\exists e^{\prime}$. $H ; e \rightarrow e^{\prime}$ and $H ; e^{\prime} \rightarrow^{n-1} c$. By induction $H ; e^{\prime} \Downarrow c$. So this lemma suffices: If $H ; e \rightarrow e^{\prime}$ and $H ; e^{\prime} \Downarrow c$, then $H ; e \Downarrow c$. Prove the lemma by induction on height h of derivation of $H ; e \rightarrow e^{\prime}$:
$-h=1$: Then the derivation ends with SVAR or SADD. For SVAR, e is some x and $e^{\prime}=H(x)=c$. So with VAR we can derive $H ; x \Downarrow H(x)$, i.e., $H ; e \Downarrow c$. For SADD, e is some $c_{1}+c_{2}$ and $e^{\prime}=c=c_{1}+c_{2}$. So with ADD, we can derive $H ; c_{1}+c_{2} \Downarrow c_{1}+c_{2}$, i.e., $H ; e \Downarrow c$. (Note the $h=1$ case may look a little weird because in fact in this case $n=1$, i.e., e^{\prime} must be a constant.)
$-h>1$: Then the derivation ends with Sleft or SRIght. For Sleft, the assumed derivations end like this:

$$
\frac{H ; e_{1} \rightarrow e_{1}^{\prime}}{H ; e_{1}+e_{2} \rightarrow e_{1}^{\prime}+e_{2}} \quad \frac{H ; e_{1}^{\prime} \Downarrow c_{1} \quad H ; e_{2} \Downarrow c_{2}}{H ; e_{1}^{\prime}+e_{2} \Downarrow c_{1}+c_{2}}
$$

Using $H ; e_{1} \rightarrow e_{1}^{\prime}, H ; e_{1}^{\prime} \Downarrow c_{1}$, and the induction hypothesis, $H ; e_{1} \Downarrow c_{1}$. Using this fact, $H ; e_{2} \Downarrow c_{2}$, and ADD, we can derive $H ; e_{1}+e_{2} \Downarrow c_{1}+c_{2}$.
For sRight, the assumed derivations end like this:

$$
\frac{H ; e_{2} \rightarrow e_{2}^{\prime}}{H ; e_{1}+e_{2} \rightarrow e_{1}+e_{2}^{\prime}} \quad \frac{H ; e_{1} \Downarrow c_{1} \quad H ; e_{2}^{\prime} \Downarrow c_{2}}{H ; e_{1}+e_{2}^{\prime} \Downarrow c_{1}+c_{2}}
$$

Using $H ; e_{2} \rightarrow e_{2}^{\prime}, H ; e_{2}^{\prime} \Downarrow c_{2}$, and the induction hypothesis, $H ; e_{2} \Downarrow c_{2}$. Using this fact, $H ; e_{1} \Downarrow c_{1}$, and ADD, we can derive $H ; e_{1}+e_{2} \Downarrow c_{1}+c_{2}$.

